overview of nmr of bulk polymersoverview of nmr of bulk polymers. introduction • configuration,...

67
Hans Wolfgang Spiess Max-Planck-Institut für Polymerforschung Mainz, Germany “NMR Spectroscopy of Polymers” Tutorial ACS National Meeting New Orleans, April 6, 2008 Overview of NMR of Bulk Polymers

Upload: others

Post on 18-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Hans Wolfgang Spiess

Max-Planck-Institut für PolymerforschungMainz, Germany

“NMR Spectroscopy of Polymers”Tutorial

ACS National Meeting

New Orleans, April 6, 2008

Overview of NMR of Bulk Polymers

Page 2: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Overview of NMR of Bulk Polymers

Introduction •

Configuration, Conformation •

Local Structure & Dynamics •

Phase Behavior •

Supramolecular Organization •

Conclusions •

Basics

Chain Branching

Amorphous & Crystalline Polymers

Core Shell Structures

Functional Polymeric Systems

Scattering and NMR

Page 3: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Chemical Shift

Ranges for

Organic

Compounds

Isotropic Anisotropic (13C)

Analogous for 2H quadrupole coupling

Page 4: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Structure and Dynamics from Solid-State NMR

Dipole-Dipole

Coupling

i

jθij

rij

B0 ( cos )Drij

iji j∝ -3 13

12

2θγ γ

Orientation of internuclear vectorDistance between nuclei

1H-1H1H-13C 13C-13C1H-15N

20 15 10 5 025

coupling strength [kHz]

Typical

pairs

of nuclei

Structure

Dynamics

2H quadrupolecoupling

Page 5: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

static

1 kHz

2 kHz

4 kHz

8 kHz

15 kHz0 4 8-12 -4 12-16

frequency [kHz]16-80 1 2 3 4 5 6 7

time [ms]

Solid State NMR Spectra

2H static spectra

13C MAS spectraSpin

nin

g f

requen

cy

2H quadrupole coupling

Page 6: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Magic-angle spinning (MAS)

rotor is spun around an axis inclined at an angle of θm =54.7° with respect to B0 .

spatial part of interaction tensor averaging by

fast rotationresulting average tensor

How does MAS work ?

in terms of coordinate transformations:

212 (3cos 1)θ − 21 1

2 2sin cos(2 2 ) sin(2 ) cos( )R Rt tβ ω γ β ω γ− − −

rotor modulations with frequencies 2ωR and ωR

θm

ωR

B0

ωR

θ

θmωR

B0 B0 B0

Page 7: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Polyolefin Branching

Short (SCB)< 30 C

Long (LCB) > Me ≈

270 C

pronounced effect on viscosity &

melt processability

Page 8: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

MAS-NMR in Melts: Very Low Branch Contents

‘Linear’

PE

∗ α∗B2

α

∗B2 α α

Quantification of 7–8 branches per 10 000 COptimised solution

NMR:

50,000 to 2,000,000 scans (up to 60 days!)Optimised melt-state NMR: 21,500 scans (13 h)

Site SNR Content

per 1000 C

*B2 4.5 0.07

* 3.7 0.05

α 9.4 0.08

Sample:R.H. Grubbs, Caltech

Macromolecules 37, 813 (2004), Macromol. Chem. Phys. 207, 382 (2006).

Page 9: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

13 C –

NMR: Conformational Effects

Potential Energy

Polymer Chain

Gamma -

gauche effect:-

5,2 ppm in alkanes

Sensitivity of

13C Chemical Shifts

on Conformation

:

42 40 38 36 34 32 30 28 26 24 22

13C NMR spectrum of PE

Crystalline regions:all-trans

Non-crystallineregions: gauche

Page 10: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Conformational Effects on 13C Chemical Shifts

Page 11: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Self-Assembly and Molecular Dynamics of Peptide- Functionalized Polyphenylene Dendrimers

Short polypeptides (n < 16)High order of columns,

Low order of peptide chains

Long polypeptides (n > 20)Low order of columns,

High order of peptide chains(α-helices)

X-ray Scattering:columnar order

Solid state NMR:Peptide conformation

176.3 ppm 172.4 ppm

13C=O

PLys

G2

F16

N16

G2

F16

N58

α -

helix β -

sheet

Page 12: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Overview of NMR of Bulk Polymers

Introduction

Configuration, Conformations •

Local Structure & Dynamics

Phase Behavior •

Supramolecular Organization •

Conclusions •

Basics

Chain Branching

Amorphous & Crystalline Polymers

Core Shell Structures

Functional Polymeric Systems

Scattering and NMR

Page 13: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Motional averaging effects

( ) 2 ( ) ( ) ( ) ( )12 (3cos 1)(3 )ij i j i j

ijD θ= ⋅ − −D Z ZH I I I I

Motional averaging:2 !21

20 0

(3cos 1) sin 0d dπ π

θ ϕ θ θ− =∫ ∫

221

2 (3cos 1)(3 )2 (2 1)Q

e qQI I

θ= ⋅ − − ⋅− ⋅ Z ZH I I I I

h

2 212 (3cos 1 sin cos(2 ))δ θ η θ ϕ= ⋅ − − ⋅CS ZH I

Solid crystal

Plastic crystalLiquid crystal

Anisotropic Chemical Shift

Dipole-Diplole Coupling

Quadrupole Coupling

order parameter Sij :

)1cos3(S 221

ij −θ=

Page 14: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Motional averaging effects

Basics: Two site jumps

(analogous to chemical exchange)

Calculated NMR line shapes resulting from interchange between two NMR frequencies.

Δ

: coupling strengthΩ

: exchange rate

The numerical values apply to 2H NMR of deuterons in C-H bonds

fast

intermediate

slow

ultraslow

Page 15: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Two-site jumps: CSA

1H powder spectrumof H2 O molecules

in crystalline CaSO4 ·2H2 O

δ

1jump

jump

kδ δ τ= = ⋅m

m

m

m

m

m

m

Two-site jump in solid: Different frequencies depending on orientation.

Result in fast motion limit:Averaged interaction tensor

Line shape analysis yields both:Timescale and geometry of motion

Page 16: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Two-site jumps: CSA, DDC and QC

Example: Phenyl180° ring flip:

Reorientation C-H bondsby β

= 120°

Averaged principal axes (1), (2) and (3)

δ = 5/8 δ ; η

= 0.6

Single transition Pake pattern

Anisotropic Chemical Shift

QuadrupoleCoupling

Page 17: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

The “solid echo”

experiment

0 0.5 1-0.5-1ω/δ

x

xx

sampling (“dwell”) time

deadtime

Large spectral width (> 250 kHz) requires short dwell and dead times (< 4 µs).

x y

Overcoming the dead-time problem by echo experiments:

spin (“Hahn”) echo solid (“Solomon”) echo

refocuses “linear-spin” interactions refocuses “bilinear-spin” interactions

Page 18: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Motions in the “solid echo”

experiment: Increased dynamic range

Absorption spectra:Line shape changes within one order of magnitude

Solid echo spectra:Line shape changes over several orders of magnitude,

But: loss of signal!

Page 19: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

NMR line shapes conveniently calculated by NMR Weblab

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

Page 20: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

NMR Weblab: How to use it

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

Page 21: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

NMR Weblab: Example phenyl flip

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

Page 22: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Inhomogeneous and homogeneous line broadening

...

Inhomogeneous:CSA, quadrupolar, dipolar two-spin

Due to spin-spin couplings the energy levels of single transitions (resonance lines) are no longer degenerate, but

split into a multitude of levels

Overall resonance consists of indiviual sharp lines and

represents the sum over all different orientations

Homogeneous:dipolar multi-spin

Similar distinction ifwhole line shapes are superimposed due to a distribution of

• different structures, or• different rates, or • different geometry of

motion

Page 23: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Example of heterogeneous rate distribution

narrow broad

distribution

rigid limit

rapid exchange

Superposition of line shapes for different rates

Page 24: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

2D-Exchange-Spectroscopy:

Simplicity

Pulse Sequence Spectra

Determine geometry and time scale of motions directly and in real time

Page 25: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Geometry

of Chain Motion in Polymers

POM (crystalline) PEO(disordered) PVAc

(amorphous)

13C 2D Exchange NMR Spectra of Polymers with Different Degrees of Disorder

Page 26: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Helical jumps in polymer crystallites: POM

Timescale and Geometry of Motion

Page 27: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Chain Folding, Chain Diffusion and Drawability

Chain motionMorphology Chain diffusion

Local Collective

Ordered Disordered

SolutionCrystallized

MeltCrystallized

DrawabilitySample:

UHMW-PE (Mw =3.4 M)

Solution

Crystallized:

Drawable

Melt

Crystallized:

Not

Drawable

Page 28: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Timescales of Molecular Dynamics Accessible by NMR

Averaging of dipole-dipole couplings, as detected by spinning sideband experiments: C-H, N-H: REREDOR, REPT-HDORH-H: double-quantum

Destructive interference effects: reduction and loss

of NMR signal

Change of anisotropic interactionsduring experimental “mixing time”:exchange NMR

experiments2H, 13C, 15N: 2D, CODEX etc.

Spin-lattice relaxation:dipole-dipole coupling, quadrupole coupling,anisotropic chemical shift

fast

10010-110-210-310-410-510-610-710-810-9

slowvery fast intermediate

motional correlation time [seconds]

Page 29: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Conformational Dynamics at the Glass Transition

Potential Energy

Gamma - gauche effect:- 5,2 ppm in alkanes

Polymer Chain

Sensitivity of 13C Chemical Shifts

on Conformation :

Page 30: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Chain Dynamics of Atactic Poly(propylene) at the Glass Transition

Correlation Times of Chain Motionfrom different NMR experiments

All data fit on a singleWLF - curve

Conformational dynamics from 2D 13C MAS NMR

Rotational dynamics from 2D 2H NMR

Geometry: ReorientationalAngle Distribution

Conformational transitions,but no defined geometry

Page 31: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Structure Schemes of Syndiotactic

and

Isotactic

Poly-(Methyl-Methacrylate)

syndiotactic isotactic

ω33ω33

localchain-axis

localchain-axis

schematicstructure

crystal structures

schematicstructure

NMR probes local chain-axis

through ω33

n-alkyl-methacrylates contain extended chain segments

Example:PMMA

Page 32: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

a-PEMA: Two-step Randomization of Chain Motion

180°

CO

13

ω33<10°

ω22

ω11

180°C

O13

-

180°

180°

CO

13 ω

50°ω

400 K

405 K

411 K

433 K

472 K

394 K

250 200 150 100

298 K

ω

ω

ω22

ω33

ω11

1D 13C NMR: experimentsimulation

melt

melt

melt

gla

ss

Tgrigid + fractionalsidegroup flips

+ anisotropicchain motion

+ randomizationof chain motion

Tg = 354 K

Page 33: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

tem

pera

ture

s-PEMA: Conformation and Conformational Dynamics

(mr)

(rr)

CH3 (main chain)

CD3(side chain)

(mm)

T = 303 K

t.tt.g / g.t

g.g

t.g / g.tg.g / g.g

g.g

35 30 25 20 15 10 ppm

[ [

Tg - 50 K

s-PEMA

T = 353 K

Tg + 65 K

Tg = 354 K

T = 418 K

35 30 25 20 15 10 ppm

(mm)(mr)

(rr)

13C MAS NMR

Page 34: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Separation of Dynamic Timescales in PEMA-Melts

Correlation Times from NMR, PCS, Dielectrics

Tg = 338K

α-Relaxation(WLF)

β-relaxation(Arrhenius)

NMR: spatial randomisation

(tI, WLF)

NMR: confromational relaxation

NMRPCSDielectric

2.2 2.4 2.6 2.8 3.0 3.2 3.410-8

10-6

10-4

10-2

100

102

2.0

1000 / T [K-1]

time

[s]

Difference in time scale (factor 50):consistent with length scale 7 repeat units

Tc

Page 35: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Intersegmental

Order in Poly(methacrylates): WAXS(LVDW)

PMMA

PEMA

PBMA

PHMA

Inte

nsity

[a.u

.]

q [nm-1]0 10 20

II/I

WAXS-DataIII

(VDW)

III

?syndiotactic

PEMA

main chain

side chains

dI

dIII

d0

IIId

dII

„layered nano aggregates"

isotacticPEMA

main chains

side chains

monolayer

bilayer

X-Ray patternsreminiscent of

stiff macromoleculeswith

flexible sidechains

X-R

aySca

tter

ing

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12# sidechain carbon atoms

Brag

gdi

stan

ces

d [n

m]

I

II

III

(VDW)

(LVDW)

Bragg-Distance

intra chain

inter chain

inter layer

Page 36: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

2D DECODER NMR for Ordered Systems

Example: Biaxially stretched PET

2D exchange with sample fliprather than molecular motion

Page 37: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Recoupling CSA: CODEX

CODEX: Centreband-Only Detection of ExchangeApproach: Recoupling the chemical-shift anisotropy (CSA) under MAS

0 1 N/2

~ ~

N/2+n

CP

DD DD

[ ]N/2-1 [ ]N/2-1

tm AQ

nτR

+ + + +- - --

CP DD

exchange during tm ?Complete refocusing of CSA only if there is no exchange during tm !

Advantages:High spectral resolution, short measuring time compared to 2D exchange NMR

θm

ωR

B0

Page 38: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

0 1 2 3 4 5 6 7 8 9 10 11 120,0

0,1

0,2

0,3

0,4

0,5

0,6

δ N τR / π

10°/170°

20°/160°

30°/150°

40°/140°

50°/130°

70°-110°

60°/120°

DMST = 288 K

Exc

hang

e in

tens

ity

tmtm

CODEX: reorientation angle

CODEX build-up curves

exchange intensity for a given mixing time depends on the overall duration of recoupling

shape of the curves depends significantly on the reorientation angle

Page 39: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Overview of NMR of Bulk Polymers

Introduction

Configuration, Conformations •

Local Structure & Dynamics •

Phase Behavior •

Supramolecular Organization

Conclusions •

Basics

Chain Branching

Amorphous & Crystalline Polymers

Core Shell Structures

Functional Polymeric Systems

Scattering and NMR

Page 40: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Phase Separation Probed by Spin diffusion

NMR spectra

Morphology and1H magnetization

MZ

selection spin diffusion

x

A B A

inte

nsi

ty

ωCS

spin diffusion time tm

A B A

B

AA

BA B

NMR spin diffusion experiment

selection diffusion

tm

Chemical shift filters (e.g. DANTE): spectral selection

Dipolar filters (e.g. SR-12): motional selection

Page 41: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Domain Sizes in Phase Separated Polymers

Both Components RigidRigid and Mobile Components

Page 42: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Spin Diffusion in 2D Wideline

Separation Spectra

Interface

spin diffusion

Page 43: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Investigating core-shell particles

structure and particle size can be determined

0 10 20 30 40 50

1.0

0.8

0.6

0.4

0.2

0.0

tm [ms 0.5 ]0.5

I/I0

38 nm76 nm113 nm

(t ms)1/2

d Particle =

contact surface: S source volume: V

withS/V Deff tmSπ

= 2eff

DA DBDDA

=+ DB

magnetization source

magnetization drain

initial slope

I/ I0

1.0

0.8

0.6

0.4

0.2

0.00 5 10 15 20 25

tm [ms0.5 ]0.5

Page 44: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Overview of NMR of Bulk Polymers

Introduction

Configuration, Conformations •

Local Structure & Dynamics •

Phase Behavior

Supramolecular Organization

Conclusions •

Basics

Chain Branching

Amorphous & Crystalline Polymers

Core Shell Structures

Functional Polymeric Systems

Scattering and NMR

Page 45: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Key Elements of Supramolecular Assemblies

shapeπ−π

stac

king

C 1 2 H 2 5

C 1 2 H 2 5

C 1 2 H 2 5

C 1 2 H 2 5

C 1 2 H 2 5

C 1 2 H 2 5

H-bonds

C H2713

N

N

HaO

N

C H27Hd

ON

Hc Hb Hb Hc

O N

NHa

O

N N

Hd

13

n

surfac

es

Challenge: Elucidate Noncrystalline

Structures

Page 46: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Scattering

X-ray- or neutron-scattering

Incident Scattered

Wave

Scattering Diagram / (Reflections)

1/d

r

r

rf- irradiation

DoubleQuantumCoherence

NMR Spectrum

1/r3

Double Quantum NMR

Analogy:In both cases: coherent superposition

of signals from spatially separated centers

Page 47: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

1H NMR spectra in solid and liquid state

60 40 20 0 -20 -40 kHz-60

5 0 kHz

20 10 0 kHz

static

30 kHz MAS

solution

θm

ωR

Magic-AngleSpinning (MAS)

rapid isotropictumbling

3 kHz4HRMAS

partialmobility

increasing

spectral

resolution

rigidsolid

dipolarbroadening

high magneticfield: 700 MHz

Page 48: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Dipolar DQ Spectroscopy of a Spin-Pair under MAS

Reconversion DetectionEvolution

t1

Excitation

texc = nexctR

y -yx -x

nexc

y -yx -x

nrec=nexc

x τR

trec = nrectR

θm

ωR

i

j

θij

B0

rij

Dipole-Dipole Coupling:

$ $ $, ,H R T= ⋅2 0 2 0

Space Spin

t2Recoupling Recoupling

Page 49: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Line Narrowing in Solid-State NMR

Hamiltonian of Dipole-Dipole Coupling:

i

j

θij

B0

$ ( cos ) ( $ $ $ $ ), ,Hr

I I I Iij

ij i j Z i Z j i j∝ − − ⋅1

3 1 3312

2 θ γ γ

$ $ $, ,H R T= ⋅2 0 2 0

Space Spin

Magic Angle Spinning:

$,R2 0 0 ωR

θ

θm

ωR

θm

ωR

B0 B0 B0 B0

R R

RF Irradiation:

$,T2 0

00 tC

-x y -y x

tτ ττ τ2τ τ ττ τ2τ τ ττ 2τ

-x y -y x -x y -y

tC

0 t

t

t

(CRAMPS)

(Recoupling)HD,eff.

x y -y-x

τ τ

x y -y-x

τ τ

x y-x

τ

Page 50: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Signal build-up versus rotor-encoding

I

S

REDOR scheme

I

S

t1

Rotor-

encoded

REDOR scheme

trcpl

trcpl trcpl

Two alternative

concepts for measuring recoupled interactions:

• following the signal intensity as a function of the recoupling time (resulting in build-up

or dephasing curves)• recording rotor-encoded

signal (resulting in MAS sideband patterns)

Page 51: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Rotor-encoding of dipolar Hamitonians

IS0

R

D 2 2 sin 2 sinΦ = − β γω

Recoupled

dipolar Hamiltonian:

with dipolar “phases” for first recoupling period:

IS1 R 1t

R

D 2 2 sin 2 sin( t )Φ = − β ω + γω

and for “rotor-encoded”second recoupling period:

t1 2nd recouplingperiod

1st recouplingperiod

ωR

ωR

0Φ0Φ

0Φt1Φ

Leads to Amplitude

Modulation

of Signal

and hence, Sidebands

Page 52: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

REDOR-type curves and sideband patterns

ω/ωR

-3 3-1 1 5-5

(i)

(ii)

(iii)

0 1 2 3

DISt rcpl

/ 2π

Inte

nsi

ty (

a.u.)

0.5

0.4

0.3

0.2

0.1

0

(i)(ii)

(iii)

Build-up curves decay

HDOR sideband patternsrobust:

Multispin effects: additional sidebands

Multispin effects and relaxation

Page 53: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Multiple-quantum NMR methods: investigating (supra)molecular

structure

H H''H'

H

H'H''

CH' CH2CH

O

OCH2

H'H

H

H'

rHH

H

H'

rNH

5 3 1 –1 –3 –5

1 H-1 H

hom

onuc

lear

1 H-13

C/15

N h

eter

onuc

lear

internuclear proximities,chemical

shifts

and π-shiftsinternuclear distances

π

7 -79 -9

5 3 1 –1 –3 –57 -79 -9

0.21 nm

0.24 nm

0.27 nm

0.16 nm

0.18 nm

0.20 nm

molecular

dynamics

Page 54: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Multiple Hydrogen Bonds in Natural and Synthetic Systems

DNA

Supramolecular polymers via hydrogen bonds

C H2713

C H2713

N

NN

Hd

Hb Hb Ha

N

N N

N O

Hd

O

HaO

Hc

N

O

Hc

n

R.P. Sijbesma, E.W. Meijer et al., Science, 1997:Thermoreversible linkages through quadruple hydrogen bonding

C H2713

N

N

HaO

N

C H27Hd

ON

Hc Hb Hb Hc

O N

NHa O

N N

Hd

13

n

Keto form Enol form

Watson-Crickbase pairs

DQ NMRspectrum

DQ NMRspectrum

Page 55: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Heat-Induced Tautomeric

Rearrangement: 1H-1H DQ Spectra of Quadruple Hydrogen Bonds

Heating

51015single quantum ω2 [ppm]

10

15

20

25

30

ω1 [p

pm]

a b c d

b- c

b- b

C H2713

N

N

a

O

N

C H27d

ONc b b c

O N

N a O

N N

d

13

n

before heating: keto form

51015single quantum ω2 [ppm]

10

15

20

25

30

ω1

[ppm

]

a b c d

b- b

a- b

C H2713

C H2713

N

NN

d

b b a

N

N N

N O

d

O

aO

c

N

O

c

n

after heating: enol form

Page 56: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Kinetics

of the

Tautomeric

Rearrangement

0

0.2

0.4

0.6

0.8

1

Temperature [K]

keto form

enol form

310 330 350 370 390 410 430

enol

frac

tion

TemperatureDependence

T [K]

10-3/T [K]Plot 0 2.70 2.75 2.80

-13

-12

-11

-10

lnk

375 365 355

EA = (145± 15) kJ/mol

tran

sitio

n ra

te

Arrhenius

TimeDependence

0 5 10 15 20 25

0.4

0.5

0.6

Time [h]

T = 375 Kenol form

keto form

enol

frac

tion

Page 57: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Multiple N-H Distances in the Pyrimidinone

Form

REREDOR 24/24240 pm280 pm~ 65°

107.5REREDOR 6/6107.5 pm201 pm~ 180°

106

201

1H{15N}

recoupling: 1H - detection

-8 -4 0 4 8 ω/ωR

201

107.5

~180°

-8 -4 0 4 8 ω/ωR

280

240

~65°

REREDOR 8/8107 pm

-8 -4 0 4 8 ω/ωR

107

Page 58: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Separator Membranes and NMR

reveal details of proton conductivityon molecular level(site-selective & non-destructive)

provide structural constraints(proton transfer mechanism ?)

Page 59: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

PVPA: poly(vinyl

phosphonic

acid)

31P NMR

phosphonic

acid units, local dynamics

1H-31P and 1H-1H NMR

hydrogen bonding

at phosphonic acid units

1H-13C NMR

segment mobilities of alkyl chains, polyvinyl backbone

1H NMR

backbone as well as mobile protons

(local dynamics)

2H NMR

primary process: orientation-dependent rate of movement:time scale and geometry (multi-site jumps)

NMR probes for local structure & dynamics

High proton conductivity under dry conditions at elevated temperatures

Page 60: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

PVPA: VT NMR motional narrowing

condensationbackbone unaffected

mobileOH groups

31P

MAS NMR1H

MAS NMR

very narrow

lines in both 1H and 31P spectra

Page 61: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Poly(vinyl phosphonic

acid): PVPA

EA

= 25 kJ/mol2.2 2.4 2.6 2.8 3.0 3.2

-9

-8

-7

-6

-5

Log

(T2* )

1000/T (K-1) -414 12 8 4 0ppm

10 6 2 -2

2015105

-5

ppm

25

0mobile

1H -

1H DQ Spectra

281 K

-416 12 8 4 0ppm

2015105

-5

ppm

2530

0

318 K

motion frozen

**

n

POO

ODD

P-OH proton: mobile

P-OH : mobile proton, hydrogen bondedDynamics of motion involved in proton conduction

20 10 0 -10

413 K

394 K

375 K

356 K

318 K

ppm150 100 50 0 -50 -100 -150

297 K

393 K

353 K

253 K

kHz

230 K

1H MAS spectra

2H solid echo spectra

Page 62: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

PVPA: ab initio structure

(model

geometry)

Ab initio calculation based on model geometry (CPMD):

* Elucidation of hydrogen bondings and 1H chemical shift calculation:H-bonding between phosphonic acids on the same chains and between two parallel chainsMD: Proton hopping occurs along chains as well as between chains mediated by hydrogen bonds.calculated δ(P-OH) = 9.7 ppm (exp.: 10.6 ppm)

H-bonding between the chains

H-bonding along the chains

PO

Page 63: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

PVPA: Averaging of Deuteron Quadrupole

Coupling

Broad distribution of angles betweeninstantaneous O-H and C-P directions,yetQuadrupole coupling reduced by factor 10 after CPMD run of 15 ps

Page 64: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Overview of NMR of Bulk Polymers

Introduction

Configuration, Conformations •

Local Structure & Dynamics •

Phase Behavior •

Supramolecular Organization •

Conclusions •

Basics

Chain Branching

Amorphous & Crystalline Polymers

Core Shell Structures

Functional Polymeric Systems

Scattering and NMR

Page 65: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Scattering and NMR in Bulk Polymers

incoherent coherent single quantum

double quantum

D

Y

N

A

M

I

C

S

Molecular n-quasielastic n-quasielastic 2D-, 3D-, 4D- exchange

sidebands

Collective n-spin-echo 2D-exchange decay of DQC

S

T

R

U

C

T

U

R

E

Molecular WAXS, WANS chemical shift,sidebands

2D pattern,sidebands

Collective

(packing)

X-ray pole figures, SAXS, SANS

DECODER chemical shift

2D signal pattern

SCATTERING NMR

Page 66: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

Advantages of NMR:

- Selectivity, Versatility

- Detailed information on geometryand time scale of dynamics

- Large range of length- and timescales accessible

- Elucidation of supramolecularorganization

- Relation between structure, dynamics and functional behavior

- Limits not reached, e.g. microcoils

Overview of NMR of Bulk Polymers

Page 67: Overview of NMR of Bulk PolymersOverview of NMR of Bulk Polymers. Introduction • Configuration, Conformation • Local Structure & Dynamics • Phase Behavior • Supramolecular

K. Schmidt-Rohr, H.W. Spiess, Multidimensional NMR and Polymers, Academic Press, London, 1994

H. W. Spiess, Advanced Solid-State Nuclear Magnetic Resonance for Polymer Science;J. Polym. Sci. A 42, 5031–5044 (2004).

H.W. Spiess, NMR Spectroscopy, in Macromolecular Engineering, edited by K. Matyjaszewski, Y.Gnanou, L. Leibler, WILEY-VCH, Weinheim, Vol. 3, 1937-1965 (2007).

H. W. Spiess, NMR Spectroscopy: Pushing the Limits of SensitivityAngew. Chem. Int. Ed. 47, 639-642 (2008).

References