overview of nanoparticle materialsnanoparticles.org/pdf/47-texter.pdf · 2006. 4. 28. ·...

77
Overview of Nanoparticle Materials John Texter College of Technology, Eastern Michigan University, Ypsilanti, MI

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Overview of Nanoparticle MaterialsJohn Texter

    College of Technology, Eastern Michigan University, Ypsilanti, MI

  • Particle Synthesis, Particle Modification

    Particle Characterization

    Particle-Based Materials

  • Synthesis and ModificationGas Phase (Pratsinis)

  • Synthesis and ModificationGas Phase (Pratsinis)

  • Synthesis and ModificationLiquid Feed Flame-Spray Pyrolysis (Laine)

  • Synthesis and ModificationSegmented Flow Tube Reactor (Hoffman)

  • Synthesis and ModificationHydrothermal (Matijevic)

  • Synthesis and ModificationBinary Metal Oxides - Nonaqueous Sol-Gel (Niederberger)

    General Synthesis General Synthesis ProtocolProtocol::

    1) Metal Alkoxide + Benzyl Alcohol(C6H5CH2OH)

    Metal Alkoxides:

    VO(OiPr)3, Nb(OEt)5, Hf(OEt)4, Ta(OEt)5, Sn(OtBu)4, In(OiPr)3

    2) Heat Treatment in Autoclave at 200°C-250°C Ta2O5

  • Synthesis and ModificationMonodisperse Particles from Aggregation of Nanoparticles (Matijevic)

  • Synthesis and ModificationMonodisperse Emulsions (Pine)

    polar fluid+ surfactant

    polymer particles

    monomerliquid

    swell with monomer

    polymerize monomers Mw small

    swell with oil

    Add solvent (oil) for polymer

  • Synthesis and ModificationBarium Sulfate Morphogenesis (Coelfen, Qi)

    2μm

    0.5μm

    0.5μm

    2μm

    PEGPEG--bb--PEIPEI--SOSO33HH

    PEGPEG--bb--PMAAPMAA--POPO33HH22

    PEGPEG--bb--PMAAPMAA--AspAsp

    2μm

    PEGPEG--bb--PEIPEI--COOHCOOH

    NoNo additiveadditive

  • Synthesis and ModificationSIP (Advincula)

  • Synthesis and ModificationBlock Copolymers as Nanoreactors (Advincula)

    Cationicpolyelectrolytes

    Amphiphilicblock copolymers

    (PS-b-P2VP)

    Dendrimers(PAMAM)

  • Synthesis and ModificationMicrogels by Dispersion Polymerization (Lyon)

    Oligoradical Precursor ParticleGrowing Particle Microgel

    Precipitation Polymerization

    NHO NH

    NH

    O

    OX

    O+ +SDS

    APS

    70 oC

    >4 hrs.

  • Synthesis and ModificationFunctionalization (Hoffman)

  • Synthesis and ModificationLigand Coated Metal Nanoparticles (Stellacci)

    Metal Salt (AuHCl4) + HSReducing Agent (NaBH4)+

    HS

    Ligand exchange reaction*

    Direct mixed ligands reaction**

  • Synthesis and ModificationQuantum Dots in Frogs (Norris)

    Me2Cd Se CdSe NCs

    320 °C

    • diameters between 2nm to 12nm• size distributions

  • Synthesis and Modificationin Reverse Micelles (Pinna)

  • Synthesis and ModificationMicroemulsion Polymerization (Kaler)

    P•

    MM M M

    PM•

    MM

    M

    M M

    MM

    M

    M

    MM

    M

    M

    I•

    IM•M•

    310~Particles#Micelle#

    Initiation by IM•

    Propagation

    Initiationby M•

    ChainTransfer

    M

    M

    M

    M

    M

    5 nm

  • Synthesis and ModificationTemplating in Matrices (Braun)

    z 5 mmzz

    x

    y

    zzzzzz

    xx

    yy

    xx

    yy

    xx

    yy

    xx

    yy

  • Synthesis and ModificationReplacement of Ag by Au (Xia)

  • Synthesis and ModificationStretching Polymer Beads (Xia)

  • Synthesis and ModificationDimeric Colloids (Xia)

  • Synthesis and ModificationGeometrical Clusters (Pine)

    silica spheres

    11

    silica-coatedPMMA spheres

    11

    4 5 6 7

    8 9 10 11

    118 9 10

    3 4 5 6 7

  • Synthesis and ModificationColloidal Molecules (Pine)

    2 3 4

  • Synthesis and ModificationEncapsulation (Velev)

  • CharacterizationConfocal Microscopy (Wiltzius)

    photomultiplier tube

    objective lens, e.g. 100x

    laser

    illuminating aperture

    dichroic beamsplitter

    confocal aperture

    focal planesample

    in focusout of focus

  • CharacterizationSurface Charge in Heterocoagulation (Matijevic)

  • CharacterizationAnalytical Ultracentrifugation (Coelfen)

  • CharacterizationHRTEM (Pinna)

  • CharacterizationTEM Image Analysis (Coelfen)

    0.80.8 1.21.2 1.61.6 2.02.0 2.42.4 2.82.8 3.23.2 3.63.600

    55

    1010

    1515

    2020350350 countscounts

    particle diameterparticle diameter [nm][nm]

    Num

    ber f

    requ

    ency

    %

  • CharacterizationParticle Interaction Potentials (Yodh)

  • CharacterizationSANS (Kaler)

  • CharacterizationRheology (Weitz)

  • Particle-Based Materials

    Particle Assembly

    Thermodynamics

    Functional Materials

    Devices

  • Particle AssemblyThermodynamics (Wiltzius)

  • Particle AssemblyEntropy Drives Growth (Weitz)

  • Particle AssemblyEntropy and Other Forces (Yodh)

  • Particle AssemblyDielectrophoreticMicrowire Assembly(Velev)

    AC Voltage

    Grounded

    FDEP

  • Particle Assembly2D Epitaxy (Yodh)

  • Particle AssemblyTemplate Assisted Assembly (Niederberger)

  • Particle AssemblyTemplated Clusters (Xia)

  • Particle Assembly2D Dielectrophoretic Assembly (Velev)

    Fourier transform Diffraction pattern

    5 s

    15 s

    Optical micrograph

  • Particle AssemblyDomain sizes too small (Wiltzius)

  • Particle AssemblyConvective Crystallization (Xia)

  • Particle AssemblyConvective Assembly(Velev)

    - Ambient light

    - Low angleLight transmission

    cm2 coatings from μL drops in minutes1.1 μm latex crystal viewed with:

    1cm

  • Particle AssemblyCCAs to close-packed photonic xtals (Wiltzius) no salt

    salt

    electrostaticsdominate

    screenedelectrostatics

    VdW’s attraction“guide” adhesion

    add salt

    Charge Stabilized

    u(r)

    rvan der Waals

    attraction

    electrostaticrepulsion

    Screened

    u(r)

    r

    screening

  • Particle AssemblyModifying interactions and annealing in microgel photonic materials (Lyon)

  • Particle AssemblyStrategies for Assembling Anisotropic Structures (Niederberger)

  • Particle AssemblySelf-Assembly of Nanoparticles (Niederberger)

  • Particle AssemblyChains with Given Handedness (Xia)

  • Particle AssemblyColloidal Crystalline Arrays (Asher)

    ~ 1013 spheres/cm3

    spacing dependent only upon particle number density and crystalline structure

    -

    Dialysis /Ion Exchange Resin

    Self-assembly

    Crystalline Colloidal Array

    FCC--

    ----

    - --

    +

    -

    --

    ---

    - --

    +

    --

    ---- -

    - --

    ---

    - ---

    --

    --- -

    -

    --

    ---

    - --

    -

    --

    ---

    - --

    --

    ---- -

    -+

    +-

    -

    -

    --

    --

    -

    ---

    -----

    --

    ---

    - --

    --

    ---

    - --

    --

    ---

    - --

    --

    ---

    - --

    --

    -

    -

    -

    --

    ++

    +

    ++ + +

    +

    +

    +

    +

    +++

    +

    +

    +

    ++

    +

    +

    +

    ++

    +

    +

    ++

    +

    +

    +

    +

    +

    +

    + +

    ++

    +

    ++

    +

    ++

    + +

    --

    ---- -

    -+

    ++

    +

    --

    ---- -

    -+ +

    +

    ++

    +

    +

    +

    +

    +

    +

    +

    + +

    ++

    +

    +

    +

    ++ +

    +

    +

    +

    - ---

    --

    --

    --

    ---- -

    -+

    +

    --

    --- -

    -+

    +

    --

    ---- -

    -+

    +

    +

    +--

    --- -

    -+---

    ---- +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    ++

    +

    +-

    -

    --

    -+

    +

    +

    +

    +

    +

    -

    ---

    ----

    -+

    +-

    - -

  • Particle AssemblyMechanism of Convective Crystallization(Norris)

    100X

    microscopeobjective

    immersionoil

    CC

    D

    video camera

    800nm spheres

    real time video

  • Particle AssemblyBiomineralization (Coelfen)

    SEM ofSEM of broken mussel broken mussel shellshell

    SEM ofSEM of broken mussel broken mussel shell after proteinshell after protein

    removalremoval

    SEM ofSEM of broken mussel broken mussel shell after shell after CaCOCaCO33

    removalremovalTEM TEM thin cutthin cut ofofdeveloping developing mussel shellmussel shell

    SEM ofSEM ofdeveloping developing mussel shellmussel shell

    SEM SEM mature mussel mature mussel shellshell

  • Particle AssemblyMagnetically Driven Assembly (Asher)

    350 400 450 500 550 600 650 7000

    2

    4

    6

    NaCl Concentration (From left to right)4.0mM, 2.0mM, 1.0mM, 0.67mM, 0.33 mM,0.16 mM, 0mM

    Rel

    ativ

    e in

    tens

    ity

    wavelength (nm)

    0 1 2 3 4

    160

    180

    200

    220

    240FC

    C (1

    11) p

    lane

    spc

    aing

    / nm

    NaCl concentration / mM

  • Particle AssemblyBalancing Interfacial Interactions (Coelfen)

    Nucleationclusters

    Primary nanoparticles> 3 nm

    Crystal growth

    Amplification Mesoscale assembly

    Single crystal Iso-orientedcrystal

    TemporaryStabilization Mesoscale

    assembly

    Mesocrystal

  • Particle AssemblyBalancing Interfacial Interactions (Hoffman)

  • Particle AssemblyCopper Oxalate Assembly (Hoffman)

  • Functional MaterialsFlame Pyrolysis (Laine)

    • Pure nano α-Al2O3• Abrasives

    –Chemical mechanical polishing• Transparent ceramics

    –Sodium vapor lamps–Ti:Sapphire lasers among other things.

    • Coatings• High strength monoliths

    –Ceramic prosthetics for example• Catalyst supports that do not sinter• Catalysts

  • Functional MaterialsMicroporous and Mesoporous Materials (Stein)

  • Functional MaterialsInorganic Pigments (Stein)

  • Functional MaterialsPhotonic Crystals (Norris)

  • Functional MaterialsHierarchically Ordered Structures (Pine)

    PDMS Master(10 µm

    structures)Place on substrate

    Place a drop of suspension of

    polystyrene spheres at one end (1 µm

    structures)

    Fill channels by capillary flow; evaporate solvent.

    Place sol droplet; fillSpace between latex particles by capillary flow.

    Allow to gel. RemovePDMS master. Calcine.

  • Functional MaterialsTwo Photon Fab (Braun)

  • Functional MaterialsOptical Switch (Asher)

    S NN S

    500 600 700

    1

    2

    3

    4

    5

    6

    Rel

    ativ

    e In

    tens

    ity (a

    .u.)

    -20 Oe -9 Oe +9 Oe +20 Oe

    Rel

    ativ

    e In

    tens

    ity (a

    .u.)

    Wavelength /nm-120 -90 -60 -30 0 30 60 90 120

    1

    2

    3

    4

    5

    6

    686 nm 549 nm

    H / Oe

  • Functional MaterialsMetal Cation Sensors (Asher)

    500 550 600 650 700 750 800

    bu ffe red sa line

    5 m M

    2 m M0.5 m M

    54 μM0.54 μM

    1 μM

    11 nM

    Diff

    ract

    ion

    inte

    nsity

    / a.

    u.

    λ / nm

    No Cu2+11 nM0.54 μM1 μM

    54 μM 0.5 mM 2 mM 5 mM

  • Functional MaterialsGlucose Sensing (Braun)

    HydrogelFlow cell

    Inflow from syringe pump

    10x ObjectiveBeamsplitter

    Optical fiberPinhole

    Light source

    PhotodiodeArray

    Detector

    Outflow

    RBOH

    OHRB

    OHOHOH

    O

    RBOH

    OO

    OH

    OH

    OH

    Glucose-PBA complex

    PBA (phenylboronic acid)

    1 mM glucose

    0 mM glucose[Glucose]0 mM 100 mM

    SEM of templated hydrogel

  • Functional MaterialsGyricon Display (Morrison)

    Charged,bichromalballs.

    Suspendedin an oil.

    Encased ina plasticsheet.

    Addressedwith electrodes. That Xerox

    built.

  • Functional MaterialsElectrophoretic Display (Morrison)

    Sony’s LIBRie EBR-1000EP from E Ink and Phillips Electronics

    Negativelychargedpigmentparticles.

    Positivelychargedpigmentparticles.

    Suspendedin a clear oil.

    Addressedwith electrodes.

  • Functional MaterialsElectrochromic Devices (Kotov)

  • Functional MaterialsDonor-Acceptor Tagging (Kotov)

  • Functional MaterialsInsulin Incorporation and Release (Lyon)

    Linear increase in insulin content with

    particle layer number.

  • Functional MaterialsGlucose Sensing (Asher)

  • Functional MaterialsLab on a Chip (Velev)

    gold nanoparticles →

    sulfate latex →

  • Functional MaterialsQuantum Dots in Frogs (Norris)

  • Acknowledgments

    • Liehui Ge, Swapnil Bondre, Swapna Devireddy

    • Lecturers• Students for their participation and

    stimulation• Petroleum Research Fund ($$$$)

  • Overview of Nanoparticle MaterialsJohn Texter

    College of Technology, Eastern Michigan University, Ypsilanti, MI