outline time derivatives & vector notation

24
Outline 1.Time Derivatives & Vector Notation 2.Differential Equations of Continuity 3.Momentum Transfer Equations

Upload: adelia-perkins

Post on 17-Jan-2018

236 views

Category:

Documents


0 download

DESCRIPTION

Lagrangian Perspective z Lagrangian coordinate system Motion of a particle (fluid element) The position of the particle is relative to the position of an observer pathline 2 1 y x

TRANSCRIPT

Page 1: Outline Time Derivatives & Vector Notation

Outline

1. Time Derivatives & Vector Notation

2. Differential Equations of Continuity

3. Momentum Transfer Equations

Page 2: Outline Time Derivatives & Vector Notation

Lagrangian Perspective

x

y

z

pathline

• Lagrangian coordinate system

• Motion of a particle (fluid element)

• The position of the particle is relative to the position of an observer 1

2

1 p1 o1

1 p1 o1

1 p1 o1

x x x

y y y

z z z

2 p2 o2

2 p2 o2

2 p2 o2

x x x

y y y

z z z

o1 o1 o1, ,x y z

Page 3: Outline Time Derivatives & Vector Notation

Lagrangian Perspective

x

y

z

pathline

1 1

,( , , )p p p

t t

r x y z trt t

1

22 p2 o2

2 p2 o2

2 p2 o2

x x x

y y y

z z z

Local time derivative

1 p1 o1

1 p1 o1

1 p1 o1

x x x

y y y

z z z

p1 p1

p p, p

p p

( , , )

x x

r x y z trx x

Local spatial derivative

Page 4: Outline Time Derivatives & Vector Notation

Lagrangian Perspective

t x y zt x y z

Total differential/change for any property

Total time derivative

d x y zdt t x t y t z t

Page 5: Outline Time Derivatives & Vector Notation

Lagrangian Perspective

x y zv v v v i j kFluid velocity

If the observer follows the fluid motion

x y zD v v vDt t x y z

x y zx y zv v vt t t

Substantial time derivative

Page 6: Outline Time Derivatives & Vector Notation

Eulerian Perspective

flow

x

y

z

Motion of a fluid as a continuum

Fixed spatial position is being observed rather than the position of a moving fluid particle (x,y,z).

Page 7: Outline Time Derivatives & Vector Notation

Equation of Continuity

differential control volume:

Page 8: Outline Time Derivatives & Vector Notation

Differential Equation of Continuity

yx zvv v

t x y z

yx zx y z

vv vv v vt x y z x y z

yx zvv vD

Dt x y zv

Page 9: Outline Time Derivatives & Vector Notation

Differential Equation of Continuity

In cylindrical coordinates:

1 1 0

r zrv v vd

dt r r r z

2 2 1where , tan yr x yx

If fluid is incompressible:

1 0

r r zvv v vr r r z

Page 10: Outline Time Derivatives & Vector Notation

Equations of Motion

For 1D fluid flow, momentum transport occurs in 3 directions

Fluid is flowing in 3 directions

Momentum transport is fully defined by 3 equations of motion

Page 11: Outline Time Derivatives & Vector Notation

Differential Equation of Motion

yxxx zxx x x xx y z x

v v v v pv v v gt x y z x y z x

xy yy zyy y y yx y z y

v v v v pv v v gt x y z x y z y

yzxz zzz z z zx y z z

v v v v pv v v gt x y z x y z z

Page 12: Outline Time Derivatives & Vector Notation

Differential Equation of Motion

yxxx zxxx

xy yy zyyy

yzxz zzzz

Dv p gDt x y z x

Dv p gDt x y z y

Dv p gDt x y z z

D pDt

v g

Page 13: Outline Time Derivatives & Vector Notation

Navier-Stokes Equations

Assumptions

1. Newtonian fluid

2. Obeys Stokes’ hypothesis

3. Continuum

4. Isotropic viscosity

5. Constant density

Page 14: Outline Time Derivatives & Vector Notation

Navier-Stokes Equations

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

x x x xx

y y y yy

z z z zz

Dv v v vp gDt x x y z

Dv v v vp gDt y x y z

Dv v v vp gDt z x y z

2D pDt

v g v

Page 15: Outline Time Derivatives & Vector Notation

Navier-Stokes Equations

2

2 2

2 2 2 2

2

1 1 2

1

r r r rr z

r r r rr

r r r rr z

v vv v v vv vt r r r z

rv v v vp gr r r r r r z

v vv v v vv vt r r r z

pr

2 2

2 2 2 2

2

2 2

2 2 2

1 1 2

1 1

r r r rr z

z z zz

rv v v vg

r r r r r z

v vv v v vv vt r r r z

v v vp g rz r r r r z

Page 16: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

1. Steady state flow2 2 2

2 2 2

2 2 2

2 2 2

x x x x x x xx y z x

y y y y y y yx y z y

z z z zx y z

v v v v v v vpv v v gt x y z x x y z

v v v v v v vpv v v gt x y z y x y z

v v v v pv v vt x y z

2 2 2

2 2 2z z z

zv v vg

z x y z

Page 17: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

2. Unidirectional flow2 2 2

2 2 2

2 2 2

2 2 2

2 2

2

x x x x x xx y z x

y y y y y yx y z y

z z z z zx y z z

v v v v v vpv v v gx y z x x y z

v v v v v vpv v v gx y z y x y z

v v v v vpv v v gx y z z x y

2

2 2zvz

Page 18: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

3. No viscous dissipation (INVISCID FLOW)2 2 2

2 2 2

0 0

0 0

x x x xx x

y

z

v v v vpv gx x x y zg

g

xx xv pv gx x

Euler’s equation

Page 19: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

4. No external forces acting on the system

0xxvvx

Inviscid flow:

0 constantxx

v vx

Page 20: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

4. No external forces acting on the system

2 2 2

2 2 2x x x x

xv v v v

vx x y z

Viscous flow:

Page 21: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

5. Semi-infinite system

2 2 2

2 2 2x x x x

xv v v vvx x y z

, y x z y

x

z

Page 22: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

6. Laminar flow (no convective transport)2

2x x

xv v

vx y

2

2 0xvy

1 2 xv c y c

Page 23: Outline Time Derivatives & Vector Notation

Application

The Navier-Stokes equations may be reduced using the following simplifying assumptions:

6. Laminar flow (no convective transport)

0 02 0 1

Boundary conditions:

1 at 0 lower plate , ,

2 at upper plate , 0x

x

y v v vc v cy v

00 0 or 1x x

v yv y v v v

Page 24: Outline Time Derivatives & Vector Notation

Quiz 9 – 2014.01.17

Derive the equation giving the velocity distribution at steady state for laminar, downward flow in a circular pipe of length L and diameter D. Neglect entrance and exit effects.

TIME IS UP!!!