outline ( mid 90’s to now)

23
Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline (Mid 90’s to now) Single-particles measurements Classical dynamics, phonons bath… quantum effects ?... Tunneling of ensembles of large spins molecules (Mn 12 -ac). Slow quantum dynamics and transition to classical dynamics Some effects of the spin bath (tunneling and decoherence). Case of a large molecule with spins ½ (V 15 ) A gapped spin 1/2 molecule, phonons bath Extension to Rare-Earth ions Role of strong hyperfine coupling, electro-nuclear entanglement, From slow to fast quantum dynamics: towards a new type of spins qubits Nanomagnetism: From Classical to Quantum Nano-particles, atomic clusters, molecules, ions. _________

Upload: avram-caldwell

Post on 03-Jan-2016

22 views

Category:

Documents


1 download

DESCRIPTION

Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles…. Nanomagnetism: From Classical to Quantum Nano-particles, atomic clusters, molecules, ions . _________. Outline ( Mid 90’s to now) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Outline  ( Mid 90’s to now)

Initial goal:70’s: Search for « macroscopic » quantum tunneling in magnetism

Measurements on « narrow domain walls », ensemble of nanoparticles…

Outline (Mid 90’s to now)

Single-particles measurements Classical dynamics, phonons bath… quantum effects ?...

Tunneling of ensembles of large spins molecules (Mn12-ac).Slow quantum dynamics and transition to classical dynamicsSome effects of the spin bath (tunneling and decoherence).

Case of a large molecule with spins ½ (V15)A gapped spin 1/2 molecule, phonons bath

Extension to Rare-Earth ions

Role of strong hyperfine coupling, electro-nuclear entanglement,From slow to fast quantum dynamics: towards a new type of spins qubits

Nanomagnetism: From Classical to QuantumNano-particles, atomic clusters, molecules, ions.

_________

Page 2: Outline  ( Mid 90’s to now)

Collaborations (Louis Néel lab)

S. Bertaina (Post-doc, LLN)

R. Giraud (LPN), I. Chiorescu (FSU),

E. Bonet (LLN), W. Wernsdorfer (LLN),

L. Thomas (IBM)

Other Collaborations

D. Mailly (LPN), A. Benoit (CRTBT)

S. Gambarelli (DRF-Grenoble), A. Stepanov (Marseille)

B. Malkin, M. Vanyunin (Kazan)

H. Pascard (Palaiseau), A.M. Tkachuk (St Petersbourg), H. Suzuki (Tsukuba),

D. Gatteschi (Florence), G. Cristou (FSU) , A. Müller (Bielefeld)

Tupitsyn, Stamp and Prokof’ev

Page 3: Outline  ( Mid 90’s to now)

Micro-SQUID magnetometry

 

particle

Josephson junctions

stray field

≈ 1 µmM - M

H ~ Hsw

I ~ Ic

M

Large dB/dt

• Fabricated by electron beam lithography(D. Mailly, LPM, Paris)

• Sensivity ~ 10-4 0, 10-18 emu, 102 B

Superconducting Normal

W. Wernsdorfer, K. Hasselbach, D. Mailly, B. Barbara, A. Benoit, L.Thomas, JMMM, 145, 33 (1995).

Page 4: Outline  ( Mid 90’s to now)

Particles from micrometers to 100 nanometers Obtained by: Lithography, Electro-deposition

Measurements: Micro-Squids

100 nm

50 nm x 1m

1m x 2 m

Small ellipse Large ellipseNanowire

-1

0

1

-40 -20 0 20 40M

/M

S

H(mT)

MULTI – DOMAIN: nucleation, pinning,

propagation and annihilation of domain

walls

-1

0

1

-100 0 100

M/M

S

H(mT)

SINGLE - DOMAINSingle Nucleation

Curling

2(dH/dt,T)

<Hsw(dH/dt,T)>counts

H

Page 5: Outline  ( Mid 90’s to now)

0

0.5

1

30°

60°90°

120°

-150°

-120°-90°

-60°

-30°

hn

S < 1

S = 1.3

S = 1.6

S = 2

S = 3

S = 6

0

0.5

1

30°

60°90°

120°

-150°

-120°-90°

-60°

-30°

hsw

S < 1

S = 1.4

S = 2.4

Evidence of the « curling mode » (nanowires)

Frei, Shtrikman, D. Treves et A. Aharoni, 1957

Page 6: Outline  ( Mid 90’s to now)

Evidence of the 2-D Stoner-Wohlfarth astroidPhil. Trans. R. Soc.,240, 599 (1948)

5 nm 0

50

100

150

200

250

30°

60°90°

120°

210°

240°270°

300°

330°

oH

sw(m

T)

FeS, filled nanotubleN. Demoncy, H. Pascard, A. Loiseau

W. Wernsforfer, E. Bonet, B. Barbara,N. Demoncy, H. Pascard, A. Loiseau,

JAP, 81, 5543 (1997).

Page 7: Outline  ( Mid 90’s to now)

Observation of 3D Stoner-Wohlfarth astroidand origin of the magnetic anisotropy

Josephson junctions

Co clusters (3 nm)

Interface anisotropy

M. Jamet et al, J. Magn.Magn.Mat. 237, 293-301 (2001); PRL, 86, 10 (2001) 281.

clusters

Co (20 nm) and BaFeO (10 nm)

Shape anistropy + Surface anisotropy

E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, A. Thiaville, PRL, 83, 20, 4188 (1999).

Page 8: Outline  ( Mid 90’s to now)

Temperature dependence of the switching fields of a 3nm Co cluster

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0H

z (

T)

0Hy (T)

0.04 K

1 K2 K

4 K8 K

12 K

TB 14 K ∆t ≈ 1 s

Page 9: Outline  ( Mid 90’s to now)

Effect of a transverse field close to the anisotropy field: Telegraph noise

-200

-100

0

100

200

-400 -300 -200 -100 0 100 200 300 400

oH

x(m

T)

oHy(mT)

Hy = const.

0 10 20 30 40 50 60 70t(s)

0.2 K

0.25 K

0.3 K

µoHy = 430.7 mT

106 spins

- W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. R.ev. Lett., 78, 1791 (1997) - B. Barbara et al, Proc. Mat. Res. Symp. 475, 265 (1997); Lecture Notes in Physics (2001) http://www.springer.de

Single phonons shots

Reversal

up, down, up…

Page 10: Outline  ( Mid 90’s to now)

2

H sw

p(H)

0

0.4

0.8

1.2

-45° 0° 45° 90° 135°

E( )

h > 0

T ° 0 K

²E kT

activation thermique

Néel-Brown model

M ~ (Min- Meq)e-t/eq

t

0e-E0(1-H/H0)3/2/kT

HMP ~ H0 [1 – (kT/E0)

2/3.(ln(/ 0vH))2/3]H(t)~ (2H0/3)(kT/E0)2/3.(ln(0T/ vH))

-1/3

- J. Kurkijärvi, PRB 6, 832 (1972)- L. Gunther and B. Barbara, PRB 49, 3926 (1994)

H

M

Hsw

Two types of measurements

Page 11: Outline  ( Mid 90’s to now)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-300 -200 -100 0 100 200 300

Flux()

H(mT)

A

AB

B

0

20

40

60

80

100

no

mb

re

HSW

2

Switching field Measurements of

the 20 nm Co particle

One switch

Page 12: Outline  ( Mid 90’s to now)

20nm Co particle embeeded in Carbone

-W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. Rev. Lett., 78, 1791 (1997).- B. Barbara, W. Wernsdorfer, E. Bonet, K. Hasselbach, D. Mailly, A. Benoit, M.P. Pileni, Proc. Mat. Res. Symp. 475, 265 (1997).

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-300 -200 -100 0 100 200 300

Flux()

H(mT)

A

AB

B

0

0.2

0.4

0.6

0.8

1

0.1 1 10

T = 4 K

P(t)

t(s)

141.953 mT= 6.1 s

141.922 mT= 33.8 s

141.983 mT= 1.7 s

142

142.2

142.4

142.6

142.8

143

0 5 10 15 20[Tln(105T/(v 1/2 ))] 2/3

0.14K

2K

0.9K

1.5K

3K

H

sw

(mT

)

5K

4K

Most probable switching field Exponential relaxation and Arrhenius law

E0 ≈ 2.2 10 5 K ≈ (20 nm)3

0 ~ 4 10-9 s

D. MaillyN. Demoncy, A. Loiseau, H. Pascard

Page 13: Outline  ( Mid 90’s to now)

Hysteresis measurements of ferromagnetic nanoparticles made by the micro-Squid technique (last decade)Obtained by: Lithography, Electro-deposition, Arc discharge, LECBD

100 nm50 nm x 1m1m x 2 m

-1

0

1

-40 -20 0 20 40

M/M

S

H(mT)

-1

0

1

-100 0 100

M/M

S

H(mT)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-300 -200 -100 0 100 200 300

Flux()

H(mT)

A

AB

B

20 nm

Page 14: Outline  ( Mid 90’s to now)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-150 -100 -50 0 50 100 150

Flux()

H(mT)

Hw

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

T = 0.13 K

P(t)

t(s)

64.22 mT= 5.4 s

= 0.64

64.34 mT= 1.0 s

= 0.67

64.09 mT= 21.8 s

= 0.6

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

T = 6 K

P(t)

t(s)

62.38 mT= 0.97 s

= 1.69

62.51 mT= 0.24 s

= 1.67 62.25 mT= 8.6 s

= 1.62

62.12 mT= 40.7 s

= 1.32

Waiting time measurements

Non-exponential single particle relaxation:

Low T: < 1 Nucleation-creep Propagation (surface)

High T: > 1 Nucleation-coalescence

Page 15: Outline  ( Mid 90’s to now)

Macroscopic Quantum Tunneling of 105 B ?

Easy axis

Barium ferrite Insulating ferri. nanoparticle (10 nm)

3D - astroid

W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, D. Mailly, O. Kubo, H. Nakano, and B. Barbara, PRL, 79, 4014, (1997)

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5 3

Hy=250mT

Hy=180mT

Hy=0mT

particle II

T(K)

odH/dt = 10 mT

(mT)

263

263.2

263.4

263.6

263.8

264

264.2

0 2 4 6 8 10[Tln(2*10 6T/(v 1/2 ))] 2/3

0.13K 0.3K

0.5K

H

sw

(mT

)1.3K

0.9K

= 79°

0.2K

0.13-0.3K

0.5K

1.3K

0.9KT = T*

0

50

100

150

200

250

300

50 50.1 50.2 50.3 50.4 50.5 50.6

cou

nts

µoHsw(mT)

2 K1.3 K

0.9 K

0.5 K

0.15 K

N = 2000

Page 16: Outline  ( Mid 90’s to now)

0.2

0.4

0.6

0.8

1

1.2

0° 15° 30° 45° 60° 75° 90°

Tc(

)/T

c(4

5°)

angle

Tc=0.31 K

Teff

T

Tc() 0Ha 1/4 cot 1/ 61 cot 2/3 1

E. Chudnovsky, PRB 54, 389 (1996)

Quantum description

W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, D. Mailly, O. Kubo, H. Nakano, and B. Barbara, PRL, 79, 4014, (1997)

Hy=250 mT

Hy=180 mT

Hy= 0 mT

Bigger particle

Page 17: Outline  ( Mid 90’s to now)

Nanometer scale

NanoparticleCluster

20 nm3 nm1 nm 2 nm

Magnetic ProteinSingle Molecule

50S = 10 103 106

Page 18: Outline  ( Mid 90’s to now)

Single Molecule Magnets

The molecules are regularly arranged in the crystal

Page 19: Outline  ( Mid 90’s to now)

Tunneling of Magnetization in Mn12-ac, S=10

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K

1.6K

1.9K

2.4K

M/M

S

BL (T)

Thomas et al Nature (1996); Friedman et al, PRL (1996). Barbara et al (ICM’94)

NATO ASI workshop QTM’94 Chichilianne and Grenoble (B.Barbara, L.Gunther, N.Garcia, A. Leggett).

…….

…. Slow quantum dynamics of molecule magnets spins ….

Resonances at Hn= nD/gB= 450.n mT

102

104

106

-2 -1 0

(s

ec)

H (T)

(sec

)

T(K)103

105

2 3

0 T0.44 T0.6 T0.88 T1.32 T1.76 T2.2 T2.64 T

Magnetic relaxation

Page 20: Outline  ( Mid 90’s to now)

Mn(IV)S=3/2

Mn(III)S=2

Total Spin =10

Mn12acetateMn12acetate

Page 21: Outline  ( Mid 90’s to now)

fig2

Magnetization of a single crystal of Mn12-ac

Tupitsyn and Barbara, review, Wiley-VCH (2001)

DH= 108 21

Page 22: Outline  ( Mid 90’s to now)

Barrier in zero field (symmetrical)H= - DSz

2 - BSz4 - E(S+

2 + S-2) - C(S+

4 + S-4)

spin down spin up

|S,S-2> |S,-S+2>

Ground state tunneling

|S,S-1> |S,-S+1>

|S,S> |S,-S>

SZ

En

erg

y

en

erg

y

magnetic field

²

| S, -m >

| S, m-n >

1 P

1 - P

| S, -m >

| S, m-n >

H // -M

New resonances at gBHn = nD (B=0)

Thermally activated tunneling

Landau-Zener transition at avoided level crossing

(single molecule)

Tunneling probability:

P=1 – exp[-(/ħ)2/c]

c = dH/dt

Coexistence of tunneling and hysteresis

Page 23: Outline  ( Mid 90’s to now)

From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase

ener

gy

magnetic field

²

| S, -m >

| S, m-n >

1 P

1 - P

| S, -m >

| S, m-n >

LZ probability:PLZ = 1 – exp[-(/ħ)2/c] ~ 2/c

Spin-bath (Prokofiev and Stamp):

PSB ~ (2/0)e-││/0

.n(ED) >> PLZ

0= hyperfine energy = tunnel window

Large spins Mesoscopic tunneling (slow)

Nuclear spins Observation possible Strong decoherence.

H= - DSz2 - BSz

4 - E(S+2 + S-

2) - C(S+4 + S-

4) - gBSzHz