outline 1.critical short-time dynamics ― hot start & cold start ― 2. application to lattice...

18
Outline 1. Critical short-time dynamics hot start & cold start ― 2. Application to lattice gauge theory ― extract critical Short-Time Scaling in SU(2) Lattice Gauge Theory at Finite Temperature OTOBE, Tsuyoshi (Waseda Univ.) OKANO, Keisuke (Tokuyama Univ.)

Upload: maximilian-adams

Post on 05-Jan-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

  Outline  

1. Critical short-time dynamics

―   hot start & cold start  ―

2. Application to lattice gauge theory

― extract critical exponents ―

3. Summary

Short-Time Scaling in SU(2) Lattice Gauge Theory

at Finite Temperature

OTOBE, Tsuyoshi (Waseda Univ.)

OKANO, Keisuke (Tokuyama Univ.)

Page 2: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Motivation

Certain initial State Relaxation in Tc

non-equilibrium

critical slowing down

Initial StateRelaxation in Tc

long-time

Usual method

thermalequilibrium

Ising model etc. (statistical system), lattice gauge theory

New method ?

Ex. : calculating the critical exponents

Page 3: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

t

M(t)

t

zt t_mic : O(101 ~ 2)

t_max : depending on N_space

tte

Critical short-time dynamics (Hot start & Cold start)

x0 : anomalous dimension of m0

Janssen et. al. Z. Phys. B73(1989)539.

),,,(,,, 011

00 mbLbbtbMbmLtM xzkkk

Generalized scaling law

New universal stage !

tmic ttmax

HOT

COLD

Page 4: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

zd

z

z

d

ttM

ttM

ttA

ttM

)2()2(

1

0

~ )(

~),(ln

~ )(

~ )(

HOT start

z

x 0

Initial state

new dynamic exponent

z : dynamic exponent

ν, β : static exponent

Second moment M(2)

(t)

Autocorrelation A(t)

M(0) = 0 : high temperature

Magnetization M(t)

M(0) = m0 : small but non-ze

ro

(θ, z, ν, β)

Page 5: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

z

z

z

d

ttM

ttM

ttU

1

0

~ )(

~ ),(ln

~ )(

1))(()()( 2)2( tMtMtU

LbbtbMbLtM zkkk 11 ,,,,

generalized scaling law

Finite size dynamic scaling law in short-time

m0=1

z : dynamic exponent

ν, β : static exponent

Binder cumulant :

COLD start

Initial state For U(t), M(t) M(0) = 1 : completely ordered

(z, ν, β)

d : spatial dim. of the system

Page 6: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

・・・

Practical simulation t0 O(102 ~ 3)

tM tM

t t

samples

Initial states with the condition

z

~)(

ttM

・・・

・・・

sample averaging

Page 7: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

(2+1)-dim. SU(2) lattice gauge theory

at finite temperature

1 , 1

s

t

tt N

N

NaNT

Wilson action p

pUUS

0

),( 00x

ii xxUTrW : Polyakov line

i

iWN

M2

1

asymptotic scaling

―Analysis of deconfinement phase transition ―

Heat Bath algorithm

Order parameter

Physical temperatureof the system

Relaxation dynamics

Page 8: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Universality

In relaxation process

2-dim.Ising model2-dim.Ising model (2+1)-dim. (2+1)-dim. SU(2) LGTSU(2) LGT

same universalitysame universality   classclass

Same values for ( ν , β )

In equilibrium

Same values for ( θ, z ) ?

(1) Christensen & Damgaard ( NP B348 (1991) 226 )

N=64, N0 =2 : 4/gc2 = 3.39, β= 0.120 (8)

(2) Teper ( PL B313 (1993) 417 )

N=64, N0 =2 : 4/gc2 = 3.47, ν= 0.98 (4)

β= 0.125(exact)

ν= 1(exact)

Page 9: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

HOT start ・ includes a new phenomena related to θ ( the anomalous dimension of m0 )

 ・ difficult to prepare the clean Initial state ( with m0≠0 )

  Finally one has to extrapolate the result to m0 → 0

⇒ technical difficulty and complexity

 ・ less convergent compared to the COLD start

COLD start  ・ very simple to prepare initial state

 ・ good convergence compared to the HOT start

 ・ needs a relatively bigger lattice

Page 10: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

zz

zz

tatb

tFttM

1

1

1

),(

~ 

~at τ= 0 →   pure power law

for τ≠0 →   some modification

Determination of βc from the short-time scaling law (COLD Start)

β = βc

β > βc

β < βc

β

Inclination parameter

①②③

①②③

①②③

①②

t

M(t)

τ : reduced temperature

Page 11: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

βc = 3.4505

Fit-range dependence of Inclination parameter

[200,800]

[250,800]

[300,800]

[350,800]

[400,800]

Page 12: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Magnetization (COLD start)

M(t)

zttM

~ )(

t

βc = 3.4505

Lattice size : 1282×2

Sample : 20000

tmic

Page 13: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Cumulant (COLD start)

zttU2

~

βc = 3.4505

Lattice size : 1282×2

Sample : 20000

t

U(t)

tmic

Page 14: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Summary of Results (COLD start)

①① ②② ③③

2/z2/z 1/νz1/νz β/νzβ/νz

SU(2)SU(2) 0.917(4)0.917(4) 0.496(17)0.496(17) 0.0633(2)0.0633(2)

IsingIsing 0.9280.928 0.4640.464 0.05800.0580

zz νν ββ

SU(2)SU(2) 2.182(10)2.182(10) 0.925(40)0.925(40) 0.128(5)0.128(5)

IsingIsing 2.16(2)2.16(2)** 1.01.0**** 0.1250.125****

① cumulant tau-difference of magnetization magnetization ② ③

From K. Okano, L. Schulke and B. Zheng, Nucl. Phys. B485 (1997) 727

** exact** 2.155(03)2.155(03)

* From several literature

Page 15: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Magnetization (HOT start)

tM )( ttM ~

Linear increase of the magnetization

M(t)

t

βc = 3.4505

Lattice size : 1282×2

Sample : 20000 tmic

Page 16: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

)()2( tM

tA

Auto-correlation & second moment of magnetization

(HOT start)

t

βc = 3.4505

Lattice size : 1282×2

Sample : 30000

tmic

z

d

ttA

~ )(

zdttM

)2()2( ~ )(

Page 17: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

θθ zz νν ββ

hothot 0.1943(4)0.1943(4) 2.108(35)2.108(35) 1.08(9)1.08(9) 0.117(27)0.117(27)

coldcold 2.182(10)2.182(10) 0.925(40)0.925(40) 0.128(5)0.128(5)

IsingIsing

(hot)(hot)0.191(1)0.191(1) 2.16(2)2.16(2) 11 1/81/8

Summary for HOT and COLD simulation

(includes preliminary result)

The 2+1 dim. SU(2) Lattice gauge theory 2-dim. Ising model

Universal (including dynamics)

Page 18: Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time

Summary(1) Short time scaling behavior is observed near the critical point.

(2) It is possible to determine the Critical point βc.

(3) Static critical exponents (ν , β) (SU(2) LGT) ⇔ (Ising Model) consistent

⇒⇒    Validity of short-time critical dynamics

(4) Dynamic critical exponents (z , θ) are also obtained. (Also consistent)

(5) 2+1 dim. SU(2) Lattice gauge theory  ⇔  2-dim. Ising model                        universal                 ( including the relaxation

dynamics )

We can obtain Much information from non-equilibrium(short-time).