outline 1. coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. coupled...

78
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative fluctuations (c) Non-perturbative effects: Berry phases (d) Schwinger-boson mean-field theory - triangular lattice (e) Visons and the Kitaev model 3. Cuprate superconductivity (a) Review of experiments, old and new (b) Fermi surfaces and the spin density wave theory (c) Fermi pockets and the underdoped cuprates Outline

Upload: others

Post on 08-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality

2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative fluctuations (c) Non-perturbative effects: Berry phases (d) Schwinger-boson mean-field theory - triangular lattice (e) Visons and the Kitaev model 3. Cuprate superconductivity (a) Review of experiments, old and new (b) Fermi surfaces and the spin density wave theory (c) Fermi pockets and the underdoped cuprates

Outline

Page 2: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality

2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative fluctuations (c) Non-perturbative effects: Berry phases (d) Schwinger-boson mean-field theory - triangular lattice (e) Visons and the Kitaev model 3. Cuprate superconductivity (a) Review of experiments, old and new (b) Fermi surfaces and the spin density wave theory (c) Fermi pockets and the underdoped cuprates

Outline

Page 3: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Half-filled band Mott insulator with spin S = 1/2

Triangular lattice of [Pd(dmit)2]2 frustrated quantum spin system

X[Pd(dmit)2]2 Pd SC

X Pd(dmit)2

t’tt

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

Page 4: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

H =!

!ij"

Jij!Si · !Sj + . . .

H = J!

!ij"

!Si · !Sj ; !Si ! spin operator with S = 1/2

Page 5: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

What is the ground state as a function of J !/J ?

H =!

!ij"

Jij!Si · !Sj + . . .

H = J!

!ij"

!Si · !Sj ; !Si ! spin operator with S = 1/2

Page 6: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Anisotropic triangular lattice antiferromagnet

Neel ground state for small J’/J

Broken spin rotation symmetry

Page 7: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Anisotropic triangular lattice antiferromagnet

Possible ground states as a function of J !/J

• Neel antiferromagnetic LRO

Page 8: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Magnetic CriticalityT N

(K)

Neel order

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

X[Pd(dmit)2]2Et2Me2Sb (CO)

!J !/J

Page 9: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=(|!"# $ |"!#)%

2

Anisotropic triangular lattice antiferromagnet

Possible ground state for intermediate J’/JN. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Page 10: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=(|!"# $ |"!#)%

2

Anisotropic triangular lattice antiferromagnet

Possible ground state for intermediate J’/JValence bond solid (VBS)

Broken lattice space group symmetry

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Page 11: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=(|!"# $ |"!#)%

2

Anisotropic triangular lattice antiferromagnetBroken lattice space group symmetry

Possible ground state for intermediate J’/JValence bond solid (VBS)

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Page 12: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=(|!"# $ |"!#)%

2

Anisotropic triangular lattice antiferromagnetBroken lattice space group symmetry

Possible ground state for intermediate J’/JValence bond solid (VBS)

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Page 13: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=(|!"# $ |"!#)%

2

Anisotropic triangular lattice antiferromagnetBroken lattice space group symmetry

Possible ground state for intermediate J’/JValence bond solid (VBS)

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Page 14: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Anisotropic triangular lattice antiferromagnet

Possible ground states as a function of J !/J

• Neel antiferromagnetic LRO

• Valence bond solid

Page 15: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Magnetic CriticalityT N

(K)

Neel order

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

X[Pd(dmit)2]2Et2Me2Sb (CO)

!J !/J

Page 16: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Magnetic CriticalityT N

(K)

Neel order

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

EtMe3P

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

X[Pd(dmit)2]2Et2Me2Sb (CO)

!J !/J

Spingap

Page 17: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Magnetic CriticalityT N

(K)

Neel order

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

EtMe3P

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

X[Pd(dmit)2]2Et2Me2Sb (CO)

!J !/J

VBS order

Spingap

Page 18: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, 093701 (2006)Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, 256403 (2007)

Observation of a valence bond solid (VBS) in ETMe3P[Pd(dmit)2]2

Spin gap ~ 40 K J ~ 250 K

X-ray scattering

Page 19: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Magnetic CriticalityT N

(K)

Neel order

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

EtMe3P

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

X[Pd(dmit)2]2Et2Me2Sb (CO)

!J !/J

VBS order

Spingap

Page 20: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory on the square lattice and perturbative fluctuations

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

%

Page 21: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory on the square lattice and perturbative fluctuations

bi! ! bi!ei"(i) bj! ! bj!e!i"(j)

Qij ! Qijei(!(i)!!(j))

! with Qij = |Qij |eiAij , we have Aij ! Aij + !(i)" !(j)or Ai,i+µ ! Ai,i+µ + "µ!

Origin of gauge invariance

Page 22: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory on the square lattice and perturbative fluctuations

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

%

Page 23: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory on the square lattice and perturbative fluctuations

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

%

Page 24: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory on the square lattice and perturbative fluctuations

Nonperturbative e!ects lead to a gap in Aµ,confinement of z!,

and valence bond solid (VBS) order

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

%

Page 25: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory: from the square to the triangular lattice

bi! ! bi!ei"(i) bj! ! bj!e!i"(j)

Qij ! Qijei(!(i)!!(j))

Page 26: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory: from the square to the triangular lattice

bi! ! bi!ei"(i) bj! ! bj!e!i"(j)

Qij ! Qijei(!(i)!!(j))

!ii! ! !ii!ei(!(i)+!(i!))

Page 27: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Schwinger boson mean field theory: from the square to the triangular lattice

!ii! ! !ii!ei(!(i)+!(i!))

In the continuum limitz! ! zei",

Aµ ! Aµ + !µ",!! !e2i" .

Page 28: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Low energy theory for U(1) spin liquid

s > 0, z! gapped.

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

!

Page 29: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Low energy theory for Z2 spin liquid

s > 0, z! gapped.

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

+|(!! ! 2iA! )!|2 + !c2|(!x ! 2iAx)!|2 + !s|!|2 + !u|!|4"

!s < 0, ! condensed

Page 30: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Low energy theory for Z2 spin liquid

s > 0, z! gapped.

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

+|(!! ! 2iA! )!|2 + !c2|(!x ! 2iAx)!|2 + !s|!|2 + !u|!|4"

!s < 0, ! condensed

Page 31: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Low energy theory for Z2 spin liquid

s > 0, z! gapped.

S =!

d2xd!

"|("! ! iA! )z"|2 + c2|("x ! iAx)z"|2 + s|z"|2

+ u#|z"|2

$2 +1

2e2(#µ#$"#A$)2

+|(!! ! 2iA! )!|2 + !c2|(!x ! 2iAx)!|2 + !s|!|2 + !u|!|4"

!s < 0, ! condensed

Theory is stable to non-perturbative effects

Page 32: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Topological excitation of a Z2 spin liquid (vison)

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

An Abrikosov vortex in the ! condensate

!d2r(!" !A) = "

!! !e2i!

Page 33: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Topological excitation of a Z2 spin liquid (vison)

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

An Abrikosov vortex in the ! condensate

!d2r(!" !A) = "

!! !e2i!

Visons are are the dark matter of spin liquids:they likely carry most of the energy, but are veryhard to detect because they do not carry chargeor spin.

Page 34: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Topological excitation of a Z2 spin liquid (vison)

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

An Abrikosov vortex in the ! condensate

!d2r(!" !A) = "

!! !e2i!

Parallel transport of a gapped spinon z!

around a vison yields z! ! "z!.Spinons and visons are mutual semions.

Page 35: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 36: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 37: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 38: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 39: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 40: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

=

-1

-1

Excitations of the Z2 Spin liquid

A vison

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Page 41: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 42: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 43: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 44: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 45: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 46: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 47: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 48: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 49: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 50: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 51: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

A Simple Toy Model (A. Kitaev, 1997)‏

Spins Sα living on the links of a square lattice:

− Hence, Fp's and Ai's form a set of conserved quantities.

Page 52: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Properties of the Ground State

Ground state: all Ai=1, Fp=1 Pictorial representation: color each link with an up-spin. Ai=1 : closed loops. Fp=1 : every plaquette is an equal-amplitude superposition of

inverse images.

The GS wavefunction takes the same value on configurationsconnected by these operations. It does not depend on the geometry of the configurations, only on their topology.

Page 53: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Properties of Excitations

“Electric” particle, or Ai = –1 – endpoint of a line “Magnetic particle”, or vortex: Fp= –1 – a “flip” of this plaquette

changes the sign of a given term in the superposition. Charges and vortices interact via topological Aharonov-Bohm

interactions.

Page 54: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Properties of Excitations

“Electric” particle, or Ai = –1 – endpoint of a line (a “spinon”) “Magnetic particle”, or vortex: Fp= –1 – a “flip” of this plaquette

changes the sign of a given term in the superposition. Charges and vortices interact via topological Aharonov-Bohm

interactions.

Page 55: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Properties of Excitations

“Electric” particle, or Ai = –1 – endpoint of a line (a “spinon”) “Magnetic particle”, or vortex: Fp= –1 – a “flip” of this plaquette

changes the sign of a given term in the superposition (a “vison”). Charges and vortices interact via topological Aharonov-Bohm

interactions.

Page 56: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Properties of Excitations

“Electric” particle, or Ai = –1 – endpoint of a line (a “spinon”) “Magnetic particle”, or vortex: Fp= –1 – a “flip” of this plaquette

changes the sign of a given term in the superposition (a “vison”). Charges and vortices interact via topological Aharonov-Bohm

interactions.

Spinons and visons are mutual semions

Page 57: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Beyond Z2 spin liquids

String nets - M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).

Doubled SU(2)k Chern-Simons theory - M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, Annals of Physics 310, 428 (2004).

Spin model on the honeycomb lattice - A. Y. Kitaev, Annals of Physics 321, 2 (2006).

Quantum spin liquids with anyonic excitations

Page 58: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality

2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative fluctuations (c) Non-perturbative effects: Berry phases (d) Schwinger-boson mean-field theory - triangular lattice (e) Visons and the Kitaev model 3. Cuprate superconductivity (a) Review of experiments, old and new (b) Fermi surfaces and the spin density wave theory (c) Fermi pockets and the underdoped cuprates

Outline

Page 59: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality

2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative fluctuations (c) Non-perturbative effects: Berry phases (d) Schwinger-boson mean-field theory - triangular lattice (e) Visons and the Kitaev model 3. Cuprate superconductivity (a) Review of experiments, old and new (b) Fermi surfaces and the spin density wave theory (c) Fermi pockets and the underdoped cuprates

Outline

Page 60: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

The cuprate superconductors

Page 61: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Ground state has long-range spin density wave (SDW) order

Square lattice antiferromagnet

H =!

!ij"

Jij!Si · !Sj

Order parameter is a single vector field !" = #i!Si

#i = ±1 on two sublattices!!"" #= 0 in SDW state.

Page 62: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

The cuprate superconductors

Page 63: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

! !

Page 64: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Phase diagram of electron-doped superconductorsNd2!xCexCuO4!y and Pr2!xCexCuO4!y

(a)

ΓQ

K1

K 2K3

K4

Q

2Q

4

Q 3 1N

SC

N+SC

x

(b)T

QCP

Neel order (N)

Page 65: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007)

Quantum oscillations andthe Fermi surface in anunderdoped high Tc su-perconductor (ortho-II or-dered YBa2Cu3O6.5). Theperiod corresponds to acarrier density ! 0.076.

Quantum oscillations

Page 66: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Quantum oscillations

Onsager-Lifshitz relation:Frequency of oscillations in 1/H

=hc

2e

(Area of Fermi surface)2!2

Luttinger relation:Area of Fermi surface = 4!3(density of fermions)

Page 67: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Nature 450, 533 (2007)

Quantum oscillations

Page 68: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

!

Fermi surfaces in electron- and hole-doped cupratesHole states

occupied

Electron states

occupied

!E!ective Hamiltonian for quasiparticles:

H0 = !!

i<j

tijc†i!ci! "

!

k

!kc†k!ck!

with tij non-zero for first, second and third neighbor, leads to satisfactory agree-ment with experiments. The area of the occupied electron states, Ae, fromLuttinger’s theory is

Ae ="

2"2(1! p) for hole-doping p2"2(1 + x) for electron-doping x

The area of the occupied hole states, Ah, which form a closed Fermi surface andso appear in quantum oscillation experiments is Ah = 4"2 !Ae.

Page 69: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Spin density wave theory

In the presence of spin density wave order, !" at wavevector K =(#, #), we have an additional term which mixes electron states withmomentum separated by K

Hsdw = !" ·!

k,!,"

ck,!!$!"ck+K,"

where !$ are the Pauli matrices. The electron dispersions obtainedby diagonalizing H0 + Hsdw for !" ! (0, 0, 1) are

Ek± =%k + %k+K

"#%k " %k+K

2

$+ "2

This leads to the Fermi surfaces shown in the following slides forelectron and hole doping.

Page 70: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in electron-doped cuprates

Increasing SDW order

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

!

Page 71: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in electron-doped cuprates

Increasing SDW order

!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Page 72: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in electron-doped cuprates

Increasing SDW order

!!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Hole pockets

Electron pockets

Page 73: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in electron-doped cuprates

Increasing SDW order

SDW order parameter is a vector, !",whose amplitude vanishes at the transition

to the Fermi liquid.

!!!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Electron pockets

Page 74: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

Photoemission in NCCO

Page 75: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in hole-doped cuprates

!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Page 76: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in hole-doped cuprates

!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Page 77: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in hole-doped cuprates

!!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Electron pockets

Hole pockets

Page 78: Outline 1. Coupled dimer antiferromagnetsqpt.physics.harvard.edu/leshouches/lecture3.pdf1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence

Increasing SDW order

Spin density wave theory in hole-doped cuprates

!!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

!

Hole pockets

SDW order parameter is a vector, !",whose amplitude vanishes at the transition

to the Fermi liquid.