outflows & jets: theory & observations - mpia.de · 2009-01-24 · > model: similar to...

31
Lecture winter term 2008/2009      Henrik Beuther   &   Christian Fendt Outflows & Jets:                Theory &                              Observations                    

Upload: others

Post on 21-Feb-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Lecture winter term 2008/2009      

Henrik Beuther   &   Christian Fendt

Outflows & Jets:                Theory &                              Observations                    

Page 2: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations

10.10 Introduction & Overview ("H.B." & C.F.)17.10   Definitions, parameters, basic observations (H.B.)24.10   Basic theoretical concepts & models I (C.F.): Astrophysical models, MHD31.10   Basic theoretical concepts & models II (C.F.) : MHD, derivations, applications07.11   Observational properties of accretion disks (H.B.)14.11   Accretion, accretion disk theory and jet launching (C.F.)21.11   Outflow-disk connection, outflow entrainment (H.B.)28.11   Outflow-ISM interaction, outflow chemistry (H.B.)05.12   Theory of outflow interactions; Instabilities (C.F.)12.12   Outflows from massive star-forming regions (H.B.)19.12 Radiation processes - 1: forbidden emission lines (C.F.)26.12 and 02.01      Christmas and New Year's break09.01   Radiation processes - 2 (H.B.)16.01   Observations of AGN jets (C.F.)23.01   Some aspects of AGN jet theory (C.F.): superluminal motion, beaming, black holes30.01   Summary, Outlook, Questions (H.B. & C.F.)

Page 3: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

 

Outflows & Jets: Theory & Observations 

Proper motion of jet knots:

Example 1:   M87 inner knots by HST:     ­>  v ~ 6c     apparent superluminal motion      (Biretta et al. 1999)

Note: optical resolution sufficient          for nearest extragalactic jet           source (16 Mpc),            ­>  other sources:                 radio interferometry

Velocity of extragalactic jets

Extragalactic jets – proper motion              

Page 4: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

 

Velocity of extragalactic jets

Example 2:   Blazars & Quasars:     jets pointing towards the observer;     high variability, strong beaming

      3C 345:    ~7c (period 5 yrs)      0827+243:  Lorentz factor ~20

­>  highest resolution with VLBA      radio interferometry

Extragalactic jets – proper motion              Outflows & Jets: Theory & Observations 

Page 5: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

 

Outflows & Jets: Theory & Observations 

Galactic relativistic jets                               

 

Galactic sources of relativistic velocity

­> detected in radio emission:                       ejection  superluminal knots             (Mirabel & Rodriguez 1994)

­> jet sources:  (# ~ 20)                                 Galactic high energy sources :                 High Mass X­ray Binaries

­> model:  similar to AGN/quasars:         black hole (neuron star) + accretion disk                

­> central mass  <  10 Mo   

­> laboratory for AGN processes:               ­> time scale reduced for physical             processes (Kepler, free fall, instabil.)       ­>  accessible for observations:                    4 MQ weeks <­­> 10 AGN years

GRS 1915+105

propagation:  jet  17.6 mas/d  c­jet 9.0 mas/d 

distance: 12 kpc

velocities:  v        = 0.92 c  vj,app  = 1.25 c  vcj,app = 0.65 c

inclination: 70 deg

source mass:  MBH = 14 Mo

( Fender 1999,  Greiner et al. 2002)

Velocity in “micro quasars”:

Page 6: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

For relativic motion = v/c  towards observer:

-> time t = 0 when 1st signal emitted

time t = t when 2nd signal emitted

  -> arrival of 1st signal:

  -> projected path of source:

       _|_ to l.o.s. d =   t sin( || to l.o.s. d' =  t cos(    -> arrival of 2nd signal:

        Observer

Source, t=0

Source, t=t

Dis

tanc

e

t 1=D /c

t 2= tD−d ' c

= tDc− t cos

Apparent superluminal motion:

Extragalactic jets – propagation            Outflows & Jets: Theory & Observations 

Page 7: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Apparent superluminal motion:Apparent velocity _|_ to l.o.s.:   app=

dt 2− t1

=sin

1−cos

Extragalactic jets – propagation            Outflows & Jets: Theory & Observations 

Page 8: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Apparent superluminal motion:Apparent velocity _|_ to l.o.s.:  

For fixed  v/c : is maximal for

Then:                                                   and 

with

    

Superluminal motion

                        

possible if

app=d

t 2− t1

=sin

1−cos

=1

1−2

d appd

=0

app cos max =

app ,max=

app ,max1

1/2

Extragalactic jets – propagation            Outflows & Jets: Theory & Observations 

Page 9: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler shift:

   consider radiation source moving with  ~1 , inclination 

   ­>  time lapse (dilatation) between  co­moving frame () and  observer's  frame ('):

   ­>  since  v~c   ­>  difference in photon arrival times:

         ­>  radiation source has traveled: 

         ­>  earlier arrival times of photons: 

         ­>  observed frequency:  

   ­>  relativistic Doppler factor: 

                                                                         ­>  note relativistic                                                                          ­>  strong function of aspect angle 

=1 t

=1

t '= '

s=v t cos

t arr= t 1−cos

obs=1

t arr

= '

1− cos

D≡1

1− cos

Page 10: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler shift:                                          ­>  relativistic Doppler factor:         

D≡1

1− cos

Page 11: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler boosting/beaming:

­>  “one can show ” that a concerved quantity under Lorentz transformation is:         phase space density of photons                               ( observer's frame un­primed )

    ­>  with Doppler factor                         ­>   intensity boost:                                               

­>  Doppler boosting of flux:

         ­>  in case of isotropic flux from sphere:                    note that                                    with  solid angle

                ­>  numbers:   = 0.97,    ~ 4   ­>  D3 ~ 1000 

         ­>  similar for power law spectrum :

         ­>  in general:                                                                          with p=3 for sphere, p=2 for continuous jet                    ­>  in case of synchrotron radio spectrum: 

I

3=I ' '

'3

I =D3 I ' ' ' =D '

=D2 '

S =D 3S ' '

S =D p S ''

S ~ , 0.3−1

S =∫ I dS =D3 S ' '

Page 12: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler boosting/beaming:

­>  Beaming of radiation:     ­>  radiation isotropically emitted in co­moving           frame into region (­/2, +/2),            half opening angle' = /2

     ­>  relativistic aberation  ' ­>  :

                (coordinate transformation for angles)     ­>   decrease in opening angle:                       

            ­>  for  >> 1 :  

tan =sin '

cos '

tan =1

≃1

Page 13: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler boosting:

­> application:    appearance of intrinsically symmetric jets  for  l. o. s. viewing angle    ­> boosting of approaching jet,  de­boosting of receding counter­jet

     ­>  flux ratioS1

S2

= 1 cos1− cos

n

=app2D2

n; n=2 , 3 ,...

Page 14: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – radiation                   

Doppler boosting:

­> application:    appearance of intrinsically symmetric jets for  l. o. s. viewing angle   ­> boosting of approaching jet,  de­boosting of receding counter­jet

     ­>  flux ratio    ­>  example:  radio  = 0.5,   jet n=2+,   >> 1/ >> 1   ­>   S1 / S2  ~ (2/)5         ­>  factor  1000  for   = 30°   ­>  counter­jets very diffcult to observe                                 ( of course not applicable for protostellar jets with  = 1 )    ­>  one­sided  AGN jets  (“core­dominated” sources )          one­sided AGN jets on kpc in spite of two lobes observed

    However:   The cause of one­sidedness in ... jets of otherwise symmetrical ... radio  sources is a subject of ...              controversy.   During a study ... polarization properties of powerful radio  sources, it became clear that             in ...  sources with one­sided jets,  depolarization with increasing wavelength is ... weaker for the lobe             containing  the jet. One ...  interpretation is ... depolarization is caused by differential  Faraday rotation             through ... magnetoionic medium  surrounding ... source.  The side with ... stronger jet closer to us, is seen             through a smaller  amount of material and therefore shows less depolarization. Laing, Nature 331, 1988

     ­>  strong  & rapid variability in light curves due to changes in beaming geometry (?)

S1

S2

= 1 cos1− cos

n

=app2D2

n; n=2 , 3 ,...

Page 15: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Jet of 3C279 

time series 1995 ­ 2001:

ejection of “knots” from corecorrelated withluminosity flares

­> “knots” in radio­>  flares in IR, X

­> knot velocity ~ 4c

Outflows & Jets: Theory & Observations 

Extragalactic jets – variability              

Page 16: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

 

Outlook:   comparison of models with observations: 

MHD provides time­dependent dynamics of propagation

Radiation field follows from density, velocity etc        ­> Intensity maps to be compared with observations

Simulation of highly resolved radio observations of 3C279.          time evolution of radio knots at 22 GHz.          resolution 0.15 mas.   Apparent jet velocity  5c (Lindfors et al. 2006)

 

Extragalactic jets – radiation                   Outflows & Jets: Theory & Observations 

Page 17: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

 

 Nssss

­> jets are collimated disk/stellar winds,           launched,              accelerated,                    collimated                      by electro­magnetic forces

MHD model of jet formation:

­>  5 basic questions of jet theory:

● collimation & acceleration of a  disk/ stellar wind into a jet ?

● ejection of disk/stellar material into wind?

● accretion disk structure? 

● generation of magnetic field?

● jet propagation / interaction with  ambient medium  

Standard model of jet formation          Outflows & Jets: Theory & Observations 

Page 18: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets –  central black hole (BH)

Evidence for central black holes in center of AGN:

 (1)  rapid variability < 1 min (Rees 1977)          ­>   light crossing time  ~  Schwarzschild                   radius of 107 Mo  BH          ­>   characteristic time scale increases                    with luminosity 

 (2)  high efficiency of rest mass energy conversion             in radiation          ­>                                                       ­>   compare to  < 10 ­10 for chem. reaction,                                     < 10 ­3  for H­He fusion

 (3)  superluminal (ie. highly relativistic) speed of jets           ­>  expected if originating in relativistically                 deep potential well

 (4a)  rotation curve in NGC 4258: Water maser 22GHz     ­> resolution 0." 0006 ~ 0.017pc (Miyoshi et al. 1995)     ­>  “perfect” Keplerian orbit, central mass 3.3x10 7 Mo

          concentrated within r < 0.012 p (4b)  orbital motion of stars in Galactic center

L≃M c2 0.1

Page 19: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets –  central black hole (BH)

Evidence for central black holes in centers of AGN:

 (5)  stellar velocity disperion close to  nucleus ~ 10 ­3 c

 (6)  radio jet orientation constant  for > 10 7 yrs  ­>  compact spinning high mass object

 (7)  broad emission lines         (optical & X­ray)        ­>  relativistic motion of       radiation source (inner       accretion disk) in        relativistic potential well  

Nandra et al. 1997:FeK emission line in Seyfert galaxies

Page 20: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – central  BH               

Example: center of Milky Way:

  ­> orbital motion of central stellar cluster          (Schödel et al. 2002, Ghez et al. 2005)

  ­>  stars close to GC as test particles to probe          central mass

  ­>  diffraction­limited Keck imaging           ­> mapping the GC  w/ sufficient angular                  resolution (Chez et al 2003, '05)         ­> stars move at  12,000 km/sec 

  ­>  orbits imply 3.7 x 10 6 solar mass dark matter          within r < 0.0002 pc  (= 6 lh or 600 RS ) 

  ­>  exceeds volume averaged mass densities           inferred  for  any other galaxy           ­>  massive central black hole

Ghez et al.; 

ww

w.astro.ucla.edu/~ghezgroup/gc/

ESO

1 pc

Page 21: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

BH definition: 

   ­>  solution to general relativistic field equations with asymptoically          flat  space time and horizon  

   ­>  horizon separates visible and invisble events; encloses singularity           (of classical physics)          ­>  hypothesis of  “ cosmic censorship “:  singularity will always                 be hidden (Penrose 1969);  not finally settled (quantum gravity ...)

BH parameters: 

    ­>  “ no hair ” theorem  (Wheeler):  BH characterised solely by three parameters:                ­>  mass M,  angular momentum a = J/Mc,  charge Q

    ­>  radius of horizon ( convention G = c = 1 ):             ­>  Schwarzschild radius (a=0):  rS = 2M             ­>  gravitational radius  (a=1):    rg = M

r H=MM 2−a2

Page 22: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

BH metric: 

­>  metric often described by Boyer­Lindquist coordinates (singular at horizon):

      

         ­>  “ frame dragging “  :  angular velocity of space:   

                   ­> ZeroAngularMomentumObserver  angular velocity,  = ( d / dt )ZAMO

         ­>  “ red shift “, “ lapse function “ : gravitational time lapse:

                   ­>  time lapse of ZAMO proper time  <­­> global time t, = ( d/ dt )ZAMO )

­>  Kerr­Schild coordinates avoid horizon singularity  ­>  applied in numerical simulations­>  Reissner­Nordstroem metric for non­rotating, charged BH­>  Kerr­Newman metric for rotating, charged BH

ds 2=

2 c2 dt 2−r

2d−dt 2−/dr 2

−2 d 2

2≡r2

a2 cos2 ≡r 2

−2G M r /c2a2

2≡r 2

a2

2−a2

sin2 r≡/sin

r ,≡2aG M r /c2

r ,≡

Page 23: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

BH orbits:

­>  Schwarzschild metric independent of, t­>  conservation of energy & angular momentum:    ­>  e. o. m. (similar to non­relativistic case): 

     with effective potential

   V r =1−2M /r 1h2

/r 2

(from MIT physics 8.033)

e=−u0=1−2M /r dt /d

h=u=r 2 d/d

dr /d =− e2−V r

Page 24: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

BH orbits:

 ­>  e. o. m. (similar to non­relativistic case): 

­>  solve problem of test particle motion        in potential well:     ­ stable circular orbits at radii minimising V(r)        non­circular orbits not closed for                                           (oscillations in radius around minimum)    ­ instable circular orbits at radii maximising V(r)

­>  last stable circular orbit: marginally stable orbit at                     ( inner edge of  disk) 

             binding energy

­>  Kerr metric:  case a=1:                         (direct orbit),     

                                                                  (retrograde orbit)  

(from MIT physics 8.033)

e2 V r min

r ms=3r s

r ms=r g

r ms=9 r g

dr /d =− e2−V r

V r ms =1−ems =0.057

Page 25: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Ergosphere of rotating BH: ­>  Kerr metric

 ­>  stationary observer, fixed (r,),        angular velocity    = d/ dt    

 ­>  normalization of 4­velocity:        

       ­>  constraint on rotation law:                        ­>  implying static limit for rotating BH:

                 ­>  observer is enforced to rotate,   min

              ­>  close to the horizon:                                                                                      

                                                                                               , BH angular velocity

 

(from Soshichi Uchii)

rr E=MM 2−a2 cos2

u j u j=−1

minmax

r r h : min=max≡h=a

r h2a2

Page 26: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Ergosphere of rotating BH: ­> ergoshpere:        region between  rH and rE 

     ­>  Penrose process (1969):           orbits with  e < 0 exist crossing           the horizon           ­>  reduce BH mass /energy                by extractingBH  spin energy

  ­> Hawking radiation:                 area of horizon                              cannot decrease

            ­>  defines irreducible mass:                  (cannot be lost by classical processes)

            ­>  reducible mass:    

(from Soshichi Uchii)

M irr= A/16=M r h/ 2 ; H1

8 M irr

M−M irr0.29 M

A=8 M r h

Page 27: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Energy extraction from rotating BH:

­> Blandford­Znajek mechanism (1973):       electromagnetic coupling to BH     ­>  4  thought experiments,         involving membrane paradigm

 a)  BH in constant electric field   ­>  solve Maxwell equations for E in         Schwarzschild metric        ­>  BH is electric conductor with             horizon as equipotential surface

 b)  BH in magnetized (B,E) cloud    ­>  accretion of magnetized  plasma    ­>  B,E  fluctuations, decay time ~ rg / c          ­>  if BH endowed with resistancee  RH  (i.e. not perfect conductor )           ­>  with Maxwell's eqs:         

                  ­>  RH = 4Ohm,     exact!!,  Znajek (1978)

∂B∂ t

=−∇ x E≃−Er g

≃−j Rh

r g

≃B Rh

4 r g

≃−B

(from Blandford 1990)

Page 28: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Energy extraction from rotating BH:

­> Blandford­Znajek mechanism (1973):       electromagnetic coupling to BH     ­>  4  thought experiments,         involving membrane paradigm

 c) Schwarzschild BH, constant magnetic       field, connected to battery (battery        emf is V )      ­>  electric current  I = V / RH  across B       ­>  Lorentz force ~ j x B       ­>  torque ~ I B  spins up BH 

 d) Inverse case: rotating BH, constant B       ­>  BH is conductor       ­>  unipolar  induction ( E ~ v x B ) causes potential difference              from pole to equator with magnetic flux  across the BH               ­>  if electric current is able to flow from pole to equator externally                           ­>  dissipation, work on external gas                                   ­>  energy extraction from BH spin 

(from Blandford 1990)

V≃h M 2 B≃h

Page 29: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Energy extraction from rotating BH:

­>  Does BZ  work?      power estimate by Ohmic heating:

               maximum external  power for  RH ~ Rext               ­> 

­>  application to AGN:     magnetic field provided by accretion disk, equipartition,   Pgas ~ Pmag,  B ~ 104 G

    ­>  electric potential: 

    ­>  power of rotating BH (a<<M):

    ­>  comparison to “free energy“ (a<<M):

    ­>  available even for low accretion rate, as electro­magnetically extracted by BZ

NOTE:  BZ is heavily debated: causality issues, boundary conditions, matter inertia issues;               ongoing MHD & ED simulations tend to support feasibility of BZ mechanism

LBZ≃I 2 RhI 2 Rext

LBZ≃I 2 Rext≃r g2 B2

/Rh

V≃r g B=1019 M

108 M o B

104 G Volts

LBZ≃1045 aM

2

M108 M o

2

B104 G

2

erg s−1

M−M irr~4 M 3h

2≃5 x1061 a

M 2

M108 M o erg

Page 30: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations 

Extragalactic jets – black holes               

Energy extraction from rotating BH:       Simulations of BZ:  (taken from Komissarov 2008)

Koide et al. (1999):  BL­coordinates, thin disk, short run, transient ejection from the disk (?)Komissarov (2001): BL­coordinates; wind from disc; outflow in magnetically­dominated                                   funnel  (BZ­process?)McKinney&Gammie (2004), McKinney (2005):  KS­coordinates, outflow in magnetically­                                    dominated funnel –> clear indications of the BZ­processHirose et al. (2004 ­ 2006): BL­coordinates;  outflow in funnel  (BZ­process?),                                  but Punsly (2006):  MHD­Penrose process or computational errors?  

     

(from Komissarov 2004)

Field lines  entering the ergosphere are set in rotation. Dissipative layer in  equatorial plane acts as energy source.  (emits negative energy photons that fall into BH) ­>  Energy is extracted from the                  space between the horizon      and the ergosphere!  

 

                                   

horizon

ergospheredissipative layer

Page 31: Outflows & Jets: Theory & Observations - MPIA.de · 2009-01-24 · > model: similar to AGN ... > KerrSchild coordinates avoid horizon singularity > applied in numerical simulations

Outflows & Jets: Theory & Observations

10.10 Introduction & Overview ("H.B." & C.F.)17.10   Definitions, parameters, basic observations (H.B.)24.10   Basic theoretical concepts & models I (C.F.): Astrophysical models, MHD31.10   Basic theoretical concepts & models II (C.F.) : MHD, derivations, applications07.11   Observational properties of accretion disks (H.B.)14.11   Accretion, accretion disk theory and jet launching (C.F.)21.11   Outflow-disk connection, outflow entrainment (H.B.)28.11   Outflow-ISM interaction, outflow chemistry (H.B.)05.12   Theory of outflow interactions; Instabilities (C.F.)12.12   Outflows from massive star-forming regions (H.B.)19.12 Radiation processes - 1: forbidden emission lines (C.F.)26.12 and 02.01      Christmas and New Year's break09.01   Radiation processes - 2 (H.B.)16.01   Observations of AGN jets (C.F.)23.01   Some aspects of AGN jet theory (C.F.)30.01   Summary, Outlook, Questions (H.B. & C.F.)