oscar: online services for correction of atmosphere in ... · radiation at near ir wavelengths is...

5
1 OSCAR: Online Services for Correction of Atmosphere in Radar Paul von Allmen, Eric Fielding, Eric Fishbein, Zhangfan Xing, Lei Pan, Martin Lo Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Zhenhong Li School of Geographical and Earth Sciences, University of Glasgow, Glasgow, U.K. 1. Introduction Interferometric Synthetic Aperture Radar (InSAR) is used to measure the deformation of Earth’s surface by computing the interference of two radar images taken at different times. The phase of a SAR image is affected by propagation delays in the atmosphere and constitutes the largest source of error in InSAR measurements. While both the ionosphere and the troposphere contribute to the propagation delays, the majority of SAR archives is in the C‐band (wavelength 6 cm) and is only weakly affected by the ionosphere. OSCAR concentrates on web services for locating, collecting and processing atmospheric data to correct the InSAR propagation delays caused by the wet atmosphere. InSAR‐based corrections have historically used single atmospheric data sets and ad hoc methodologies that cannot be applied to all situations. One can distinguish four methods to correct for atmospheric delays, which are using ancillary data: a. Continuous Global Positioning Systems: Global Navigation Satellite Systems signals have propagation delays similar to those of InSAR. The ground receivers can measure both ionospheric and tropospheric delays. The ionospheric delay is estimated from the multiple frequencies of the GPS signal by using the property that delays are dispersive in the ionosphere but not in the troposphere. The remaining delay of the GPS signal is the tropospheric component. The total tropospheric delay can be estimated as random walk processes and then be interpolated spatially and temporally to the grid of the InSAR images. b. Near IR absorption and reflection data: The MODIS instrument (on both the NASA Terra and Aqua satellites) provides a water vapor product that can be calibrated to agree with GPS data by using one continuous GPS station within a 2,030 km x 1,354 km MODIS scene. The MERIS instrument is collocated with the radar ASAR on the European platform ENVISAT. It produces a water vapor product that closely agrees with GPS data. Both MODIS near IR and MERIS near IR measure the absorption of reflected sunlight by water vapor in the troposphere. This means that they can only make measurements during the day. In addition, Figure 1. Stretched Boundary Layer and Truncated Boundary Layer algorithms for the extrapolation of the specific humidity as a function of altitude. The top panel illustrates the tropospheric model and the air flow patterns near obstacles. The middle panel shows the original ECMWF model (green), the TBL (blue) and SBL (red) precipitable water vapor profiles. The lower panel shows the elevation of the unperturbed profile.

Upload: others

Post on 13-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

1

OSCAR:OnlineServicesforCorrectionofAtmosphereinRadar

PaulvonAllmen,EricFielding,EricFishbein,ZhangfanXing,LeiPan,MartinLoJetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109

ZhenhongLiSchoolofGeographicalandEarthSciences,UniversityofGlasgow,Glasgow,U.K.

1. IntroductionInterferometricSyntheticApertureRadar(InSAR)isusedtomeasurethedeformationofEarth’ssurfacebycomputingtheinterferenceoftworadarimagestakenatdifferenttimes.ThephaseofaSARimageisaffectedbypropagationdelaysintheatmosphereandconstitutesthelargestsourceoferrorinInSARmeasurements.Whileboththeionosphereandthetropospherecontributetothepropagationdelays,themajorityofSARarchivesisintheC‐band(wavelength6cm)andisonlyweaklyaffectedbytheionosphere.OSCARconcentratesonwebservicesforlocating,collectingandprocessingatmosphericdatatocorrecttheInSARpropagationdelayscausedbythewetatmosphere.InSAR‐basedcorrectionshavehistoricallyusedsingleatmosphericdatasetsandadhocmethodologiesthatcannotbeappliedtoallsituations.Onecandistinguishfourmethodstocorrectforatmosphericdelays,whichareusingancillarydata:a. ContinuousGlobalPositioningSystems:Global

NavigationSatelliteSystemssignalshavepropagationdelayssimilartothoseofInSAR.Thegroundreceiverscanmeasurebothionosphericandtroposphericdelays.TheionosphericdelayisestimatedfromthemultiplefrequenciesoftheGPSsignalbyusingthepropertythatdelaysaredispersiveintheionospherebutnotinthetroposphere.TheremainingdelayoftheGPSsignalisthetroposphericcomponent.ThetotaltroposphericdelaycanbeestimatedasrandomwalkprocessesandthenbeinterpolatedspatiallyandtemporallytothegridoftheInSARimages.

b. NearIRabsorptionandreflectiondata:TheMODISinstrument(onboththeNASATerraandAquasatellites)providesawatervaporproductthatcanbecalibratedtoagreewithGPSdatabyusingonecontinuousGPSstationwithina2,030kmx1,354kmMODISscene.TheMERISinstrumentiscollocatedwiththeradarASARontheEuropeanplatformENVISAT.ItproducesawatervaporproductthatcloselyagreeswithGPSdata.BothMODISnearIRandMERISnearIRmeasuretheabsorptionofreflectedsunlightbywatervaporinthetroposphere.Thismeansthattheycanonlymakemeasurementsduringtheday.Inaddition,

Figure1.StretchedBoundaryLayerandTruncatedBoundaryLayeralgorithmsfortheextrapolationofthespecifichumidityasafunctionofaltitude.Thetoppanelillustratesthetroposphericmodelandtheairflowpatternsnearobstacles.ThemiddlepanelshowstheoriginalECMWFmodel(green),theTBL(blue)andSBL(red)precipitablewatervaporprofiles.Thelowerpanelshowstheelevationoftheunperturbedprofile.

2

radiationatnearIRwavelengthsisreflectedbyclouds,withtheconsequencethattheseinstrumentsonlymeasurethewatervaporaboveanycloudsthatarepresent.

c. ThermalIR:MODISprovidesthermalIRmeasurementsofwatervapor,butwefoundthistobeinsufficientlyaccurateforourpurposes.WewillconsiderAIRSdataatlaterstage.

d. NumericalWeatherModels(NWF):GPSandnear‐IRdataarecomplementarybutnotgloballyavailableatalltimes.WeatherforecastmodelslikethosefromtheEuropeanCenterforMediumRangeWeatherForecasting(ECMWF)andtheNOAANCEPNorthAmericanMesoscaleModel(NAM)fillthisgapbutcarehastobetakentocorrectforlowspatialresolutioninthemodel,ascomparedtothehighresolutionofInSAR.CorrectionsfromNWFaregreatlyimprovediflocaltopographiccorrectionsareapplied.WedevelopedtheStretchedBoundaryLayer(SBL)andtheTruncatedBoundaryLayer(TBL)algorithmstomodulatethecoarsefieldsoftheweathermodeldatawiththehighresolutiontopographyoftheSAR(Figure1).TheTBLalgorithmtruncatesthemodelprofileatthecorrectelevationobtainedfromaDigitalElevationModel(DEM)whentheDEMsurfaceisabovethemodelsurface,andlinearlyextrapolatesthelogarithmofthewatervaporasafunctionofthelogarithmoftheelevationwhentheDEMsurfaceisbelowthemodelsurface.TBLisexpectedtobemostaccuratewhentheairflowsaroundobstacles.TheSBLalgorithmlinearlyexpandsorcontractsthemodeltroposphericelevationgridtomatchtheDEMsurfaceelevation.SBLisexpectedtobemostaccuratewhentheairflowsalongtheslopes.

2. Informationtechnologyarchitecture OSCARconsistsofasetofservicesthathelptheclientsgenerateatmosphericcorrections.Thediagramabovedepictsthefunctionalarchitecturediagram(Fig.2).

Dataprocessing“smarts”aredistributedamongservices.Thedesignprinciplesareoutlinedasfollows:(1)Eachserviceisresponsibleforasingletask.(2)Communicationsbetweenclientsandservices,andamongservicesuseconciseRESTfulWebAPIs.Thisapproachprovidesflexibilityfor

!"#$%&'(

!"#$%"!&

)*+( ),-( ./01( 234( -54(

2346(23-78(9$":;(<$%$=:>?%(

5-0(

@$A#B"$(C:DD#%<(&?(

:(%$&E?=F(?G('$=H$='(

)*+6('D:!$(I(>C$(JK$=;(

),-6(-L1.)('KB'$&(M(C$=<$(

./016(-L1.)(9$":;(<$%$=:>?%(

5-06(C:D(&?(:(!?CC?%(<=#9(

-546(C$=<$(9$":;(#C:<$'((

'D:!$N(>C$( -L1.)(<=:%K"$'( 9$":;(#C:<$(

'$=H#!$'(

-L1.)(9$":;(

23-78(9$":;(

-L1.)(9$":;(OP(:=!('$!(

23-78(9$":;(OP(:=!('$!(

Figure2.FunctionalarchitecturediagramforOSCAR.

3

buildingcomplexapplicationslikeOSCARandestablishesanewfoundation,onwhichfutureEarthscienceapplicationscanleverage.OSCARincludes6services,ofwhichthefirst4arefunctional:(1)theSpaceandTimeQuery(STQ)service,(2)theSubsetAndMerge(SAM)service,(3)theInterpolatedZenithPathDelay(IZPD)service,(4)theECMWFdelayGeneration(ECG)service,(5)theReMaPpingservice(RMP),and(6)theMeRGe(MRG)service.Atypicalusecaseisdescribedbythefollowing8steps.

1. UserselectsInSARscenes,whereOSCARwillcomputetroposphericdelays2. Userselectsdatatouseforcorrections(MODIS,MERIS,AIRS,ECMWF,NAM)3. UserprovidesOSCARclientwithspatialboundingboxandtemporalconstraints4. OSCARretrievestheURLofdatagranulescorrespondingtospatio‐temporalconstraints5. OSCARmergesgranulesandsubsetsthedata6. OSCARreturnsthedelaysonalatitude‐longitudegrid7. UserappliesgriddeddelaystoInSARscenesindataprocessingpackage(e.g.,ROI_pac)8. UserretrievesscientificanalysisfromInSARpackage(ROI_pacorISCE)

3. MergingRemoteSensingandWeatherForecastDataOneofthekeyobjectivesofOSCARistocombineremotesensingdatafromforexampleMODISwithweatherforecastdatafromforexampleECMWF.WehavedevelopedamergingmethodbasedonBayesianstatisticsthatrequiresthefollowingelementsforthedatasets.MODISnear‐IRtotalprecipitablewatervaporneedsqualitycontrol,errorcharacterization,biascorrectionandremappingtoauniformlatitude‐longitudegrid.ECMWFglobalanalysisdatarequiresbiasandtopographycorrections,andremapping.MODISQualityControlModelThequalityofthedataisalsoassessedfrom5parametersdirectlyavailablefromtheMODISdata:Water_Vapor_Near_Infrared,Cloud_Mask_QA,surfacetypeflag,Quality_Assurance_Near_Infrared,andthetotalprecipitablewater(NIR)usefulnessflag.Wedefineasinglequalitycontrolmaskthattakesthevalue1ifalltheMODISqualityparametersaresatisfactoryand0otherwise.ECMWFTopographyCorrectionThetopographycorrectionisappliedusingtheTBLortheSBLalgorithmsdescribedinsection1.2.

ThevalidityofthecorrectionalgorithmsisassessedbycomparingwithwatervaporburdendatafromasetofGPSstationsequippedwithameteorologicalpackage,obtainedfromA.MooreoftheBocketal.AISTprojectonreal‐timeGPSprocessing.Figure3showshistogramsforthewaterburdendifferencefortheoriginalmodeldataandtheSBLandTBLcorrecteddata,conditionalontheelevationdifferencebetweenthemodelandtheGPSstation.ThisstatisticalanalysisshowsthattheSBLandTBLalgorithmsleadtobettercorrectionswhenthesurfaceisaboveandbelowthemodelsurface,respectively.WeusethisresulttochoosewhichalgorithmtoapplyforagivenInSARscene.ECMWFBiasCorrectionValidationstudiesshowthatECMWFdataincludesa5.5%drybiasandaregionalandseasonalwatervaporbiaswhencomparedwithMODISorGPSdata.Sincewatervaporismodulatedbytopographyandaffectedbylargeseasonalvariations,weselectedabiascorrectionthatisdynamicandderivedfromcoincidentandcollocatedECMWFandMODISdata.Figure3.Histogramofthewatervapor

burdendifferenceconditionalonelevationdifference.

4

ThetopographicallycorrectedECMWFandMODISdataarecollocatedonauniformlatitude‐longitudegridandascalingfactoriscomputedastheratioofthemedianECMWFtothemedianMODISwatervapordataintheregionswherethequalitycontrolflagforMODIS(seesection3.1)is1.Anannealingalgorithmextendsthebiascorrectiontotheemptybins.MergingAlgorithmABayesianmergingalgorithmgivesthecombinedwatervaporastheaverageoftheMODISandtheECMWFdataweightedbytheinverseofthesquareoftheerrors.Asneitherproductprovideserrorcovariancematrices,adhocpointerrorestimatesareinferred.TheMesoscaleAlpineExperiment,SpecialObservingPeriod(MAP‐SOP)1999usingGPSoverEuropegivesanerrorforECMWFof2.6kg/m2(13%RMS)ataspatialresolutionof0.25o(O.Bocketal.2005).TheaccuracyofMODISNIRdatawasestimatedintheliteraturetobe5.44kg/m2at1kmresolutionbycomparisonwithGPS,radiosondesandAERONETSunphotometerdata(Prasadetal.2009).WhiletheMODISandECMWFhavecomparableerrors,atthesamespatialresolution(foruncorrelatederrors)theMODISdataisabout25timesmoreprecisethantheECMWFdata.TheECMWFerrorisspatiallycorrelatedoverroughly25MODISpixels.ThereforeintransitioningsmoothlyfromaregionofpoorMODISdatatogood,thetransitionshouldbesmoothedovertheECMWFcorrelationlength.

ThequalitycontrolmaskforMODISdata(seesection3.1)isusedinthemergingalgorithmtoweighttheMODISandtheECMWFerrorsaccordingtothefollowingexpression.

Figure4.IllustrationofthemergingforascenecoveringSouthernCalifornia.TopleftpanelshowsthequalitycontrolledMODISwatervapordata.ToprightpanelshowstheweightoftheMODISdatainthemergingalgorithm.MiddleleftpanelshowsthetopographicallycorrectedECMWFdata.MiddlerightpanelshowsthebiasfactorforthecorrectionofECMWFdata.ThebottompanelshowsthemergedmapoftheMODISandECMWFdata.

5

!ECMWF

2

!MODIS

2=smoothed_qc_mask

1!smoothed_qc_mask

wherethesmoothedquanlitycontrolmapisobtainedbymappingthemaskforeachoftherelevantMODISgranulestoauniformgridandapplyaboxcarsmoothing.TheresultofthemergingalgorithmisillustratedinFigure3.Thesuccessofthemergingalgorithmisdemonstratedbythefactthatthemapofthemergeddataatthebottomofthefigureuniformlycoversthescene,smoothlyintegratingtheECMWFdataintheregionswhereMODISdataisnotavailable,asshowninthetopleftpanelinFig.4.Wehavetestedthealgorithmforseveralotherspatialandtemporalconditionsandhavenotyetfoundancasewherethealgorithmfails.4. ConclusionAlgorithmswerepresentedandvalidatedforcorrectingtheeffectoftroposphericwatervaporonInSARimagesusingmergedtotalwatervaporcontentsfromMODISandfromECMWFnumericalweatherforecast.AwebservicearchitecturewasdevelopedandimplementedusingRESTfulservicestopresentthecorrectionalgorithmstotheuser.5. AcknowledgmentsThistaskwasperformedattheJetPropulsionLaboratoryundercontractwiththeNationalAeronauticsandSpaceAdministration.FundingwasprovidedbytheAdvancedInformationSystemsTechnologiesprogrammanagedbytheEarthScienceTechnologyOffice.6. ReferencesO.Bocketal.2005,QJRoy.Meteor.Soc.,131,3013.Prasadetal.2009,J.Geophys.Res.,114,D05107.