[organophosphorus chemistry] organophosphorus chemistry volume 40 || phosphines and related...

51
Phosphines and related P–C-bonded compounds D. W. Allen a DOI: 10.1039/9781849732819-00001 1 Introduction This chapter covers the literature published during 2009 relating to the above area, apart from a few papers from 2008 in less accessible journals which came to light in Chemical Abstracts in 2009. As in recent years, it has been necessary to be somewhat selective in the choice of publications cited but, nevertheless, it is hoped that most significant developments have been noted. The year under review has seen the publication of a considerable number of review articles and many of these are cited in the various sections of this report. Again, the use of a wide range of tervalent phosphorus ligands in homogeneous catalysis has been a major driver in the chemistry of traditional P–C-bonded phosphines (and also that of tervalent phosphorus acid derivatives, covered in detail elsewhere in this volume). Recent reviews of this area have provided coverage of routes to polydentate phosphine ligands, 1 trans-chelating and wide bite-angle diphosphines, 2 and oxazoline- 3 and tetrathiafulvalene- 4 functionalised phosphines. 2 Phosphines 2.1 Preparation 2.1.1 From halogenophosphines and organometallic reagents. This route has continued to be applied widely, with most work involving the use of organolithium reagents. Although very few reports of Grignard procedures have been published, these reagents have found use in the synthesis of propeller-shaped tris-1-(2-alkoxy- and 2,3-dialkoxy- naphthyl)phosphines, e.g.,(1), the related phosphine oxides of which have been shown to exist as configurationally stable residual enantiomers, their racemates being resolved by semi-preparative HPLC on a chiral station- ary phase. Molecules of this type are of interest in that they exhibit chirality in the absence of classical stereogenic elements; however, the parent phosphines are less stable configurationally than the phosphine oxide. 5 Both Grignard and organolithium procedures have been used in the synthesis of the electron-poor diphosphinobiphenyls (2) 6 and the terphenylphosphines (3). 7 Traditional halogen-metal exchange procedures involving butyllithium reagents with halo-arenes or -alkenes, followed by treatment with chlorophosphines, have formed the basis of routes to a range of new phosphines. Among phosphines prepared in this way is a range of ortho-alkyl-substituted aryl(alkyl)monophosphines, 8 the [2.2]- paracyclophanylphosphine (4), 9 various 2-phosphinobiphenyls bearing a a Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK S1 1WB Organophosphorus Chem., 2011, 40, 1–51 | 1 c The Royal Society of Chemistry 2011 Downloaded on 31 May 2012 Published on 27 April 2011 on http://pubs.rsc.org | doi:10.1039/9781849732819-00001

Upload: david

Post on 08-Aug-2016

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

Phosphines and related P–C-bondedcompounds

D. W. Allena

DOI: 10.1039/9781849732819-00001

1 Introduction

This chapter covers the literature published during 2009 relating to theabove area, apart from a few papers from 2008 in less accessible journalswhich came to light in Chemical Abstracts in 2009. As in recent years, ithas been necessary to be somewhat selective in the choice of publicationscited but, nevertheless, it is hoped that most significant developmentshave been noted. The year under review has seen the publication of aconsiderable number of review articles and many of these are cited inthe various sections of this report. Again, the use of a wide range oftervalent phosphorus ligands in homogeneous catalysis has been a majordriver in the chemistry of traditional P–C-bonded phosphines (and alsothat of tervalent phosphorus acid derivatives, covered in detail elsewherein this volume). Recent reviews of this area have provided coverageof routes to polydentate phosphine ligands,1 trans-chelating and widebite-angle diphosphines,2 and oxazoline-3 and tetrathiafulvalene-4

functionalised phosphines.

2 Phosphines

2.1 Preparation

2.1.1 From halogenophosphines and organometallic reagents. This routehas continued to be applied widely, with most work involving the useof organolithium reagents. Although very few reports of Grignardprocedures have been published, these reagents have found use in thesynthesis of propeller-shaped tris-1-(2-alkoxy- and 2,3-dialkoxy-naphthyl)phosphines, e.g., (1), the related phosphine oxides of which havebeen shown to exist as configurationally stable residual enantiomers, theirracemates being resolved by semi-preparative HPLC on a chiral station-ary phase. Molecules of this type are of interest in that they exhibitchirality in the absence of classical stereogenic elements; however, theparent phosphines are less stable configurationally than the phosphineoxide.5 Both Grignard and organolithium procedures have been used inthe synthesis of the electron-poor diphosphinobiphenyls (2)6 and theterphenylphosphines (3).7 Traditional halogen-metal exchange proceduresinvolving butyllithium reagents with halo-arenes or -alkenes, followed bytreatment with chlorophosphines, have formed the basis of routes to arange of new phosphines. Among phosphines prepared in this way is arange of ortho-alkyl-substituted aryl(alkyl)monophosphines,8 the [2.2]-paracyclophanylphosphine (4),9 various 2-phosphinobiphenyls bearing a

aBiomedical Research Centre, Sheffield Hallam University, Sheffield, UK S1 1WB

Organophosphorus Chem., 2011, 40, 1–51 | 1

�c The Royal Society of Chemistry 2011

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

Page 2: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

range of functional groups,10,11 and axially-chiral 2,20-diphosphinobi-phenyls, e.g., (5).12 Among similarly prepared but less-familiar systemsis the phosphinohexahelicene (6),13 a new chiral calixarenylphosphinewith an ABCD substitution pattern at the wide rim in the cone con-formation,14 the thienylphosphines (7)15 and (8),16 the peri-bridgedphosphinoacenaphthenes (9)17 and (10),18 and various phosphines having

OO

OO

PPAr2MeO

PAr2MeO

F F

FF

CF3

PMe2

R1

R1

R2

R3R1R3

R2R1

PCy2

MeO

OMePAr2

PAr2 PPh2

P

SR

R

PAr2

NH

S

P

Ph S

HN

ArP

X PPri2

PPh

Me2Si SS

NMe

TipB PPh2Ph2P

PPh2

SR2P

SPR2

SS

PPh2

(1) (2) Ar = or 3,4,5-F3C6H2 (3) R1 = R3 = Me; R2 = H R1 = R3 = H; R2 = Me

(4) (5) Ar = 3,5-Me2C6H3 (6)

(7) R = Me or Ph Ar = o- or p-tolyl, 3,5-Me2C6H2, or o-PriC6H4

uBro*seM=rA)9()8( t

(10) X = Br, PCl2 or P(OPh)2 (11) (12)

(13) (14) R = Ph or Cy (15)

3

interesting electronic properties, e.g., the 1,4-dihydro-1,4-phosphasilins(11),19 the diphosphinoazaborine (12),20 the spirobifluorene (13)21 andthe bis(phosphino)dithienylethenes (14).22 Direct lithiation of acidiccarbon precursors, followed by treatment with a halogenophosphine,has also been used in the synthesis of new heteroarylphosphines, the ligand

2 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 3: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

PBut

R

NMe2PR2

2R12P PR1

2

PR22

PPh2

R

Me2NPh2P

Ph

H

MeO

N

NAr

R2

R2

PR12

N NN N

PPh2Ph2P N NN

N

R2P

N

NO

PPh2

NCOR2

R1

PPh2

NMe

N

NN

OMe

OMe

NPh

PPh2

Fe Fe Fe

Fe

Ti

Mn(CO)3

(16) Ar = e.g., 2,6-Pri2C6H3, Mes, or o,m,p-MeOC6H4

R1 = Ad, Cy or But ; R2 = H or Ph(17) (18)

(19) R1 = Bu or NMe2

R2 = Me, But, Ph or CF3)12()02(

(22) R = H, tms, PPh2, PCy2 or P(o-Tol)2 (23) R1, R2 = alkyl or aryl (24) R1 = e.g., Ph or 3,5-Me2C6H3

R2 = e.g., Ph, Cy or 3,5-Me2C6H3

R = H or Ph2P(25) (26)

properties of which continue to attract interest. Among these is themoon-shaped benzo[1,2-b;4,3-b0]dithiophene system (15),23 various steri-cally-demanding imidazole-based phosphines, e.g., (16),24 and (17)(subsequently quaternised at nitrogen to give a dicationic diphosphineligand),25 triazolopyridine-based phosphines, e.g., (18),26 and the diphe-nylphosphinosydnone-imines (19).27 Also accessible by direct metallationroutes are the chiral P,N-ligands (20)28 and (21),29 various ortho-functionalised arylphosphine ligands bearing amino30 or phosphinamido31

substituents, several phosphinomethylphosphonate32 and sulphinylme-thylphosphine33 ligands, and further examples of phosphinocarboranes.34

Attempts to develop a simple route to new nitrile-functionalisedbis(diarylphosphino)methanes from the reaction of in situ-deprotonatedacetonitrile with different chlorophosphines led to a remarkably complexoutcome, depending on the steric and electronic demands of the halo-genophosphine. Only for the diarylchlorophosphines Ph2PCl and Mes2PClwere the bis(diarylphosphino)acetonitrile ligands isolated. Use of tBu2-PCl and Cy2PCl resulted in the formation of products of far greatercomplexity, including the alkyne Cy2P–C�C–N(PCy2)2, a het-eropentafulvene structure and a P-substituted 3-amidocrotonitrile.35

Organophosphorus Chem., 2011, 40, 1–51 | 3

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 4: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

Organolithium-chlorophosphine routes have also continued to be widelyused in the synthesis of new phosphinoferrocene ligands, including phos-phino-functional ferrocenophanes,36 further examples of theClickFerrophosfamily (involving a phosphinoferrocene core bearing a phosphino-functionaltriazolyl side chain),37 new benzoferrocenylphosphine ligands with thephosphorus attached to the 5-position of the benzoferrocene,38 planar chiralmonocarboxylated diphosphinoferrocenes,39 the bicyclic P-chiral ferroce-nephospholanes (22),40 the new ‘Fengphos’ family of ferrocene-based chiraldiphosphines (23),41 and a series of C2- and C1-symmetric 2,200-bis(pho-sphino)biferrocenes (24).42 Interest has also been shown in the ring-lockingcontrol of the conformation of the metallocene backbone in di- and tri-phosphinoferrocenes by the introduction of bulky groups at each cyclo-pentadienyl ring.43,44 The titanium-containing metallocene ‘troticene’ hasbeen shown to undergo selective mono- and di-lithiation, followed by treat-ment with chlorodiphenylphosphine, to give the new phosphino-functiona-lised system (25).45 The first example (26) of an enantiopure chiral phosphinebuilt on a (Z5-cyclohexadienyl)Mn(CO)3 scaffold has also been prepared bythis approach.46

Among very few examples of the reactions of organo-sodium or -potas-sium reagents with halogenophosphines appearing in the past year arereports of the synthesis of new bulky pyrazolylphosphines47 and 2-diphe-nylphosphinomalonate esters.48

2.1.2 From metallated phosphines. This route has continued to find con-siderable use, and the volume of published work seems to have increased againin the past year after a couple of years of decline. Lithiophosphidereagents remain the most commonly used, sometimes as borane-protectedsystems, the borane group also providing protection against oxidation of thenew phosphine during purification steps. Lithium arylphosphide reagents havebeen employed in traditional procedures involving nucleophilic displacementreactions of mesylate esters and alkyl or vinylic halides in the synthesis ofthe 3,4-ethylenedioxythiophene-functionalised phosphines (27),49 variousortho-substituted benzyldi-t-butylphosphine-boranes,50 the bidentate phos-phine-imidazolyl ligand (28),51 a series of aminoalkylphosphines of the typeR2PCH2(CH2)nNH2 (R=Ph, Pri or But; n=1 or 2),52 the ab-unsaturated 3-iminophosphines (29),53 a series of bulky ao-bis(diorganophosphino)-propanes54 and the small bite-angle diphosphinomethane, Ph(p-tolyl)PCH2-PPh(p-tolyl).55 A route to the phosphaguanidines (30) is provided by treatmentof the appropriate carbodiimide ArCQNQCAr with lithium diorganopho-sphide reagents.56 Established procedures involving lithiophosphide-inducednucleophilic ring opening of oxiranes, cyclic sulfate esters and spiro-cyclopro-panes have found further application in the synthesis of new phosphines.Among those reported recently are new chiral phosphinoalkylphosphites, e.g.,(31)57 and the indenylalkylphosphine (32), subsequently used to prepare the firstZ5-indenylnickel chelate complex having a pendant phosphine tether.58 Incontrast, the related reactions of oxiranes bearing a triorganostannyl substitu-ent at carbon give rise to either b-hydroxyalkylphosphine oxides (via a-ringopening) or b-phosphinylalkylketones (via b-ring opening).59 Lithiophosphide

4 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 5: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

PPh2

PPh2Ph2P

Ph2P

X

Ar2P N

O

R

R2PN

NHAr

Ar

NR P

Ph

Ph

Ph2P OP

Me Me

O

O

Me

Me

S

OO

X

PBut2

NMe

N PPh2Ph2P

NR3

R1

R2

(27) X = PPh2 or O(CH2)6PPh2 R)92()82( 1 = Ph or But; R2 = H or Me; R3 = But or Ar

(30) R = Ph or Cy (31) (32)

(33) X = PPh2 or OBn (34) Ar = Ph, o-tol or xyl R = Pri, Bu or But

2

(35) R = ButCO, Boc-L-val, Boc-D-val or Cbz-L-val

reagents have also been applied in the synthesis of phosphines bearing bulkyoligosilyl substituents,60 cyclic silylphosphines of the type (iPr2Si)nPH (n=3 or4),61 and a range of cyclic structures involving P2As2 -, PSb2-, PBi2-, PBi3- andP2Bi4-units.

62 The reactionof the ferrocenylphosphineFcPH2with butyllithiumand As(NMe2)3 in TMEDA has given a lithium salt of the anion [FcP–P(Fc)–PFc]2� , the first example of an organometallic phosphanediide anion.63 Thereactions of lithium diphenylphosphide with a cyclopalladated dimer derivedfromN,N-dimethylbenzylamine resulted in a variety of products, depending onthe source and age of the phosphide reagent, the nature of the solvent and thereagent ratio.64 A new study of the reactions of lithium organophosphides (andother phosphorus nucleophiles) with hexahalogenobenzenes or 9-bromo-fluorene has shown that the outcome is dominated by products arising fromnucleophilic attack at halogen, rather than those from attack at carbon, thedesired arylphosphines only being formed in trace amounts.65 Also of interestis a study of adduct formation between borane-protected lithioorgano-phosphide reagents and an additional Lewis acid, such as borane, tris(penta-fluorophenyl)borane or tris(pentafluorophenyl)alane.66

Sodium- and potassium-organophosphide reagents have also continued tofind new applications in synthesis. The application of elemental phosphorus-strong base systems, e.g., P4 in KOH-DMSO or P4 with sodium in liquidammonia, in the synthesis of a wide range of organophosphines and relatedcompounds, has been the subject of a review by Trofimov and Gusarova.67 Ofconsiderable interest is a report of the use of alkali metals (sodium or sodium-potassium alloys) adsorbed in silica gel (M-SG reagents, free-flowing,non-pyrophoric powders) in ether solvents for the efficient cleavage of arylC–P bonds in triaryl- and diaryl(alkyl)-phosphines, the resulting alkali metaldiorganophosphides behaving normally in their subsequent reactions with

Organophosphorus Chem., 2011, 40, 1–51 | 5

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 6: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

alkyl and aryl halides, and other electrophiles, giving very satisfactory yields ofthe desired tertiary phosphines.68 Conventionally-prepared sodio- andpotassio-organophosphide reagents have been applied in reactions with alkylhalides and tosylates to give a variety of new phosphines, including the cis,-cis,cis-1-alkylidene-2,3,4,5-tetrakis(diphenylphosphinomethyl)cyclopentanese.g., (33),69 the NeoPHOX family of ligands (34),70 and the amidomono-phosphines (35).71 Sodioorganophosphide reagents have also been used in asequence from phenyldichlorophosphine to bis(2,4,6-trimethylbenzoyl)phe-nylphosphine (and its oxide, a photoinitiator).72 The use of sodio-andpotassio-organophosphide reagents has dominated the synthesis of a widerange of 6-alkyl- and 6-aryl-2-pyridylphosphines (36) from the related 2-chloro- and 2-bromo-pyridines.73 The reactions of potassio-organophosphidereagents with o-fluoroaryl substrates have been applied in the preparation ofthe phosphine-functionalised N-heterocyclic carbene precursors (37),74 thechiral (valine-derived) PHOX ligand (38),75 and in the early stages of a routeto the diphosphinodialdehyde (39), from which various chiral macrocyclicPNNP systems have been prepared.76 In a study of the well-establishedpalladium complex-catalysed P–C bond forming reactions between diphe-nylphosphine and ortho-substituted aryl bromides, it has been shown that acombination of diphenylphosphine and DABCO is superior to more basicphosphide reagents such as Ph2PK or Ph2PMgBr.77

Ph2P

Me3Si

BH3

P

CH(SiMe3)2

MeO NMe2

P P

OHCCHO

PhPh

N

Ph2P PPh2

K

Ph2PN

NR

R

PPh2N

NR

R

Ca

N PPh2R

P P

O

O O

O

Ph Ph

NR2P

NMe IN

O

Ph2PPri

(36) R = alkyl or aryl (37) R = Ph or Cy (38)

rP=R)04((39) i or Cy (41)

(42) (43) (44)

Interest in the synthesis, structural characterisation and preparative usesof less common metalloorganophosphide systems has also continued. Areview of recent developments in the organic chemistry of calcium includescoverage of calcium organophosphides which, in view of their reactivity(and the ease of handling of metallic calcium), may have some promise as

6 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 7: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

reagents in synthesis and catalysis.78 In this regard, it is interesting to notethe reaction of calcium bis(diphenylphosphide) with dialkylcarbodiimidesto yield the calcium bis(phospha(III)guanidinates (40).79 Schnockel’s grouphas reported the synthesis and characterisation of a series of aluminiumorganophosphides that involve Al–Al s bonds.80 Studies have also beenreported of the chemistry of phosphides of gallium and indium,81 samar-ium,82 germanium and tin,83 and platinum.84 Rhodium(I)-organophosphideintermediates are believed to be involved in a catalytic cycle promoting theaddition of diorganophosphides to cyclic ab-unsaturated carbonyl com-pounds,85 and ruthenium(II)-organophosphides have a catalytic role in theenantioselective alkylation of chiral racemic seondary phosphines, pro-viding a route for the synthesis of P-stereogenic phosphines.86

The use in synthesis of phosphine reagents metallated at atoms other thanphosphorus has also continued to attract interest and some new appli-cations have been described. The usual starting point is a phosphinemetallated at a carbon atom that is the site of subsequent transformations.Structural studies of such metallated phosphines have also continued toattract attention. Recent applications of C-lithiated phosphines in synthesisinclude a route from an ortho C-lithiated carboranyl phosphine to a newo-carborane-based chiral phosphinooxazoline,87 studies of the catalyticasymmetric deprotonation of the t-butyldimethylphosphine-boranecomplex using s-BuLi or n-BuLi and sub-stoichiometric amounts of (–)-sparteine, both in the presence and absence of a stoichiometric amount of asecond achiral ligand,88 and a study of the kinetic resolution of P-stereo-genic racemic secondary and tertiary phosphine-borane complexes viadeprotonation with the s-BuLi/(–)-sparteine system.89 Also reported is aregioselective lithiation of silylphosphine sulfides (generated by n-BuLi/(–)-sparteine treatment of t-butyldimethylphosphine sulfide, followed by sily-lation) leading to a range of P-stereogenic phosphines,90 the synthesis of aseries of carbosilane dendrimers surface-functionalised with P-stereogenicdiphosphine ligands,91 and a new practical synthesis from phenyldi-methylphosphine of P-stereogenic diphosphacrowns, e.g., (41), again util-ising the s-BuLi/(–)-sparteine system.92 Also of interest is the synthesis ofthe vinylidenephosphine-borane (42) from (Me3Si)2CHPPh2BH3, which ontreatment with lithium metal in THF results in Schlenk dimerisation to givea dilithiated system, from which related sodium and potassium salts havealso been prepared.93 Selenium- and tellurium-containing bis(diorgano-phosphinoyl)methane monoanions have been obtained via direct oxidationof the anions [HC(PR2)2]

� (R=Ph or Pri) with the respective chalcogen.94

Among other C-metallated phosphinomethanide complexes prepared andstructurally-characterised is a series of Li-, Na- and K-salts of the mixeddonor phosphine (43),95 and lithium-, calcium-96,97 and rhodium(I)98-saltsof bis(diphenylphosphino)methanides and their borane complexes. Otherexamples of C-metallated phosphines involving cobalt(I),99 tin,100 andgallium101 have also been described.

Phosphines metallated at remote atoms other than carbon have also beenapplied in synthesis, including the bis(phosphinophenyl)amide salt (44),used to prepare various uranium complexes,102 N-metallated 2-phosphi-noindoles, used to prepare new chiral hybrid phosphino-phosphito

Organophosphorus Chem., 2011, 40, 1–51 | 7

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 8: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

ligands,103 and O-lithiated 2-phosphinophenols, from which a range of newO-acylated-2-phosphinophenols has been obtained.104

2.1.3 By the addition of P–H to unsaturated compounds. This route hascontinued to find application, the number of papers published over the pastyear being similar to that in 2008. UV- or AIBN-initiated addition of P–Hbonds to vinyl ethers has been used in the synthesis of a range of phosphines(and related chalcogenides) bearing 2-furyl or 2-tetrahydrofuryl substituents,e.g., (45),105 various hyperbranched tetraphosphines, e.g., (46),106 and thechiral quinolizidinylphosphines, (47).107 UV- initiation has also been appliedin the synthesis of a wide range of water-soluble bis(phosphine) ligands (48) bythe addition of functionalised alkenes to 1,3-diphosphinopropane.108 Base-catalysed addition of P–H bonds to unsaturated compounds has been thebasis of routes to redox-active phosphine ligands bearing a [4Fe–4C]-coresubstituent109 and a series of 2-(2-diphenylphosphinoethyl)pyridines.110 Thealkynyl-functional secondary phosphine (49) has been shown to undergo anintermolecular base-catalysed hydrophosphination to give a series of cyclicoligomeric poly(alkenylphosphines).111 Secondary phosphine-borane adducts

O

R

OP

X

X

R

R

O

O O

O

P

P

P

P

R

R

R

R

R

R

R

R N

H O PR2

X(CH2)nP

X(CH2)n

P(CH2)nX

(CH2)nXC C

Pri

Pri

PHBusN

Ph2P Ph

O

(45) X = CH or N (46) R = Ph or 4-ButC6H4 (47) R = Bu or PhCH2CH2

(48) X = OH (n = 6), P(O)(OEt)2 ( n = 2-8) or NH2 (n = 3) (49) (50)

have also been shown to undergo P–H additions to internal, unactivatedalkynes under basic conditions to form borane-protected vinylphosphines.The presence of a single electron-withdrawing substituent on a non-symmetricalkyne is sufficient to give a high degree of regiocontrol in the additionreaction.112 Secondary phosphine-borane adducts have also been shown toundergo a copper(II)-catalysed addition to terminal arylacetylenes, with theeventual formation of phenacylphosphine-borane complexes of the typeArCOCH2PR2.BH3.

113 Leung’s group has reported chiral palladium-template-promoted asymmetric additions of diphenylphosphine to coordin-ated vinyl- and allylic-phosphines, affording routes to functionalised chiraldiphosphines, with high regio- and stereo-selectivities.114 This group has alsodescribed related asymmetric template-promoted asymmetric hydropho-sphination reactions of diphenylphosphine with coordinated 3-pyridin-2-yl-2-propenone and -propenates, yielding C-chiral unsymmetrical P,N-ligands,e.g., (50).115 The possibility of a europium-catalysed hydrophosphination of

8 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 9: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

1,3-butadiene by PH3, in the presence of Cp2EuH, to give the allylic phosphineCH3CHQCHCH2PH2, has been studied by DFT theoretical methods. Itwould seem that such a reaction should be possible, and that the catalyticallyactive species would be Cp2EuPH2.

116 James’ group has reported a detailedstudy of the addition of secondary phosphines to aldehyde carbonyl groups, thereversible decomposition of the resulting mono(a-hydroxy)-phosphines andtheir subsequent reactions with ab-unsaturated aldehydes.117

2.1.4 By the reduction of phosphine oxides and related compounds. As inrecent years, silane reagents have continued to be widely employed for thereduction of phosphine oxides, usually at the end of a multistage synthesis.Trichlorosilane remains the reagent of choice. Among new monopho-sphines routinely accessed using this reagent in the presence of an aminebase are triarylphosphines bearing long chain alkoxy substituents,118 atriphenylphosphine-based ligand linked to a linear maleimide-styrene co-polymer,119 various axially-chiral monophosphines (51), also bearing anoxazoline,120,121 or triazole122 donor group, and chiral monophosphinesbearing a chiral sulfoximine (52)123 or an o-hydroxyarylsulfonyl (53)group, the latter being subsequently converted into a range of related axi-ally-chiral sulfonyl-functionalised phosphino-phosphito ligands.124 Amongnew diphosphines similarly isolated following reduction of phosphineoxides with trichlorosilane-base systems is the visible region chromophore

Het

PAr2

N

O

RNHN

N(51) Het = or

PPh2NS

O

RPh

(52) R = Me, Et, Bui or PhCH2CH2

PAr2

OH

SO2R

(53)

C C

OC6H13

C6H13O

Ph2P CC PPh2

(54)

PAr2

PAr2

O

O

OMe

OMe

(55)

O

O

PPh2

PPh2

(56)

Ph2P

PPh2

MeMe

(57)

P P(H2C)n (CH2)n

(58) n = 2-4

Organophosphorus Chem., 2011, 40, 1–51 | 9

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 10: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

phosphine (54) (used as a functional element of luminescent metallopoly-mers),125 various axially chiral 2,20-bis(phosphino)biphenyls,126,127 and2,20-diphosphinobinaphthyls, e.g., (55)128 and the dihydrobenzofuran-baseddiphosphine (56).129 Reduction of phosphine oxides with trichlorosilane inthe absence of a base has been used in the synthesis of new conformationallyflexible macrobicyclic diphosphines130 and also for the preparation of newchirally-functionalised mesoporous organosilicas (PMOs) containingpolymer-linked BINAP units, a ruthenium complex of which proved to bean efficient solid catalyst for the asymmetric hydrogenation of b-ketoesterswith an ee as high as 99%, among the highest ever reported for chirally-functionalised PMOs in asymmetric catalysis.131 The trichlorosilane-trie-thylphosphite combination has found further application for the isolationof a new enantiopure example of the CATPHOS family (57), (easily as-sembled by a double Diels-Alder cycloaddition between 9-methylanthraceneand 1,4-bis(diphenylphosphinoyl)buta-1,3-diyne)132 and also for the prep-aration of ultrashort single-walled carbon nanotubes covalently derivatisedwith trialkyl- and triaryl-phosphines.133 Further examples of the use ofphenylsilane for phosphine oxide reduction include routes to triarylpho-sphines bearing dodeca(ethylene glycol) chains as substituents,134 newphosphino-functional calixarene,135,136 and resorcinarene137 cavitand lig-ands, and a homologous series of bidentate cyclic phosphines (58).138 Themechanism of the reduction of phosphine oxides by the titanium isoprop-oxide-tetramethylhydrosiloxane reagent has been studied by ESR methodswhich reveal a single electron transfer pathway. This paper also reports thata significant improvement in yield was achieved by the addition of a dryingagent to the reaction mixture.139

A few papers have reported the use of various aluminium-based reducingagents in phosphine synthesis. Lithium aluminium hydride reduction ofphosphine oxide precursors provides a route to new 2-phosphinomethyl-1H-pyrroles140 and diisobutylaluminium hydride (DIBAL) has been foundto be an excellent reagent for the reduction of phosphinites, phosphinatesand chlorophosphines.141 2-Chloroethylphosphine (ClCH2CH2PH2) hasbeen prepared for the first time by a chemoselective reduction of diethyl 2-chloroethylphosphonate with dichloroalane (HAlCl2), prepared in situ fromLiAlH4 and AlCl3.

142 A patent has described the use of metallic aluminium

NN

PPri2 Pri

2PH

PF6 OsN

N N

N

N

NPR2

PR2

(PF6)2

(59)

(60) R = Pri or Ph

for the reduction of triarylphosphine oxides, mediated by the addition ofoxalyl chloride and a trace of PbBr2.

143 Less-familiar reduction proceduresin phosphine chemistry include the Birch reduction of aryldialkylpho-sphine-boranes to form cyclohexadienyldialkylphosphine-boranes in high

10 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 11: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

yields 144 and the reduction of trifluoromethyldichlorophosphine withsodium tellurides to give the cyclotetraphosphines (CF3P)4 and (CF3P)5.

145

Raney nickel has found further application for the reduction of phosphinesulfides in the final step of routes to the diphosphinocarbene ligandprecursor (59)146 and the bis(phosphinoterpyridyl)osmium(II) ligand (60), arhodium complex of which functions as a light-harvesting system of interestas a photocatalyst for the production of hydrogen from water.147

2.1.5 By miscellaneous methods. Recent reviews include a survey ofmethods for the synthesis of hydrophilic phosphines and their applications inaqueous-phase metal complex-catalysed reactions.148 Improved and efficientprocedures have been developed for the synthesis of water-soluble alkyl-bis(m-sulfonated-phenyl)- and dialkyl-(m-sulfonated-phenyl)-phosphines.149 Thewater-soluble chelating P,S-donor ligand (61) has been prepared and used toassemble water-soluble macrocyclic metal complexes using the ‘weak-link’approach.150 Several groups have reported routes to pyridine-based phos-phines and phosphines bearing pyridyl-substituents. The synthesis of phos-phinomethylpyridines, e.g., (62), has been reviewed151 and a palladium-drivenstereoselective synthesis of the 2-pyridylphospholenes (63) from the related

ZrCp2

Ph

PPh2Ph2P PR

R

N

P

P

Me

Is

Me

Is

(62) Is = 2,4,6-Pr i3C6H2

PN

R1

R2

(63) R1 = Ph, 2- thienyl or 2-pyridylR2 = Ph or Cy

S E

P

S

(69)

PBut2

Py

PyPy

Py

PyFe

(64) R = 4-pyridyl

N

N

N

PPr i2R2P

(65) R = Pri or Cy

(67) (68) R = Me, Et, Bn, Me2C=CH, Pri or But

O

PPh2Ph2P

(70)

P H

CO2MePh2P H

Ph

(71)

NR1P

NR1 CO2R3

R2

Ph2P

(72)

OOMe

SAr2P S PAr2

(61) Ar =4

Cp2ZrPR1

2

R2

ZrCp2

R2

R12P

(66) R1 = Et, Pri, or PhR2 = Ph or Mes

Organophosphorus Chem., 2011, 40, 1–51 | 11

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 12: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

2-pyridylphospholes has been reported.152 Also disclosed is a palladium-cata-lysed pentapyridination of di(t-butyl)phosphinoferrocene to give (64) (and, byextension, related pentaryl derivatives).153New routes to bulky electron-richpropargyl- and azidomethyl-dialkylphosphines have been developed andthese phosphines used to prepare novel triazole-based tridentate ligands,e.g., (65), by ‘pincer-click’ approaches.154 The reactions of alkynylpho-sphines of the type R2PC�CR0 with alkynyldicyclopentadienylzirconiumcomplexes give initially the dimeric phosphinozirconacyclopropene com-plexes (66), and, in subsequent steps, diphosphinozirconacyclopentadienes,e.g., (67).155 A new route to asymmetric alkylphospholanes (68), isolated astheir sulfides, is provided by the addition of an unsymmetrical bis-Grignardreagent and a mono-Grignard reagent to the bicyclic benzothiadiphosphole(69,E=P). The relative cis/trans isomer ratio of the products depends on thesteric bulk of the mono-Grignard reagent used, and NMR data haverevealed a fundamental role played by hexacoordinate phosphorus inter-mediates in directing the stereochemical outcome of the reactionsequence.156 In related work, it has been shown that the bicyclic systems (69,E=As, Sb or Bi) react similarly with Grignard reagents, providing routes tocyclic arsines, stibines and bismuthines.157 Leung’s group has reportedfurther applications of asymmetric Diels-Alder cyclisation reactions inphosphine synthesis. A platinum complex chiral auxiliary has been used topromote the asymmetric [4þ 2] Diels-Alder addition of diphenyl(vinyl)-phosphine to 3-diphenylphosphinofuran, giving the endocycloadduct (70)as the predominant stereoisomer.158 Related cycloadditions between3,4-dimethyl-1-phenylphosphole and ester-functionalised allylic phosphineshave provided chemoselective routes to optically-pure P-chiral 1,2- and1,3-diphosphines, e.g., (71).159 The Juge-Stephan phosphine-P-boraneasymmetric route has been used to prepare a new extensive series ofP-stereogenic 1,2-bis[(aryl)(phenyl)phosphino]ethane ligands involvingsystematic incorporation of a variety of substituents into the P-Aryl unit.160

A route to (Z)-1-diphenylphosphino-2-phenylsulfenylalkenes is provided bythermolysis of thiocarbonyl-stabilised triphenylphosphonium ylides havinga PQCH moiety, the usually observed extrusion of triphenylphosphinesulfide not being observed.161A range of conventional syntheticmethods hasbeen used for the synthesis of a library of hemilabile phosphines of the typeR2P(CH2)nZ (R=Bn or Aryl; n=2 or 3; Z=Oalkyl or NMe2) and alsovarious fluorinated allylphosphines, R2PCH2CHQCH2 (R=4-FC6H4 orC6F5).

162 A newly developed acid-promoted decarboxylative C–P bondformation reaction, involving the reaction of chiral 2-oxazolidines withsecondary phosphines, has been used to prepare a range of chiral, protic 2-(tertiary phosphino)-1-amino-ethanes of the type R2PCH2CHR 0NHR 0 0.163

An interesting route to unsymmetrical 1,2-bis(phosphine) ligands, e.g., (72),is provided by the insertion of alkynes bearing one or two carboxylicester substituents into the P–P bond of 2-diphenylphosphino-1,3-diazaphospholenes.164 The reactivity of trimethylsilylphosphines withreactive halogen compounds has continued to be exploited, providing aselective synthesis of mono-and di-phosphino-triazines from cyanuricchloride,165 a generic route to phosphines bearing perfluoroalkyl substitu-ents,166 and, via the replacement of fluorine in pentafluorobenzenes, a route

12 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 13: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

to various para-substituted tetrafluorophenyldimethylphosphines (andalso the related arsines, by the corresponding reactions of trimethylsily-larsines).167 Interest in the synthesis of dendritic phosphines has alsocontinued. ‘Click’ chemistry, involving the assemblage of triazole rings fromthe reactions of azido-functional phosphine oxides with a tetra-phenylmethane skeleton polyfunctionalised with terminal alkynes has pro-vided a route to a series of dendritic phosphines, after phenylsilane reductionof the intermediate phosphine oxides.168 A series of water-soluble dendriticligands having a phosphine core has been accessed by the coupling of tris(4-hydroxyphenyl)phosphine oxide with a triethyleneglycol-functionalisedpoly(benzyl ether) dendron, again followed by final stage reduction to freethe phosphine centre.169 The water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) has been grafted by its established selectivequaternisation at nitrogen onto benzylic halide-functionalised dendrimers toprovide a series of ligands able to form water-soluble phosphine-metalcomplexes for use in catalysis.170 Non-dendrimeric phosphino-functionalderivatives of PTA have also been prepared by N-quaternisation of o-, m-and p-bis(bromomethyl)benzenes.171 The copolymerisation of 1-hexenewith sterically-demanding o-alkenylphosphines, e.g., But2P(CH2)nCHQCH2 (n=3 or 9), has given a series of phosphino-functional copolymersincorporating up to 9% of the phosphine co-monomer.172

Ph2P

P(O)(OR)2(RO)2(O)P

PPh2

Me

Me

N SO

ButPh2P

ON

R

(73) R = H or Et rP ,nB ,hP = R )57()47( i or Bui

Applications of metal-catalysed routes for C–P bond formation inphosphine synthesis have continued to appear, although the number ofapplications has again been relatively small in the past year. Palladiumcomplex-catalysed reactions of aryl-iodides and -triflates with diphenyl-phosphine have provided routes to hydrophilic triarylphosphinesfunctionalised with a gem-bis(phosphonate) moiety, e.g., (73),173 newenantiopure biphenylyl P,N-ligands, e.g., (74),174 and the spiro[4,4]-1,6-nonadiene-based phosphine-oxazoline ligands (75).175 Palladium-cata-lysed procedures have also been used in the synthesis of borane-protectedvinylphosphines from vinyl tosylates and borane-protected diphenyl-phosphine176 and also of diphenylperfluoroalkylphosphines (and arsines)from a cross-coupling reaction between perfluoroalkyliodides anddiphenyl(tributylstannyl)phosphine (and arsine).177 The reactions ofdiphenylphosphine with aryltriflates have also been catalysed bynickel(II)(diphosphine) complexes in the synthesis of the axially chiralligands (76).178 A route to alkynylphosphine ligands, e.g., (77), is providedby a Ni(acac)2-catalysed cross-coupling between terminal alkynes anddiphenylchlorophosphine.179

Organophosphorus Chem., 2011, 40, 1–51 | 13

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 14: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

N

NX

PPh2

O

O

PPh2

PPh2

CC C hPPC 2Ph2P

N

O

N

NPh

O

O (CH2)n PPh2

S

Ph Ni

PCyHO

S S

S S

S(CH2)nPPh2Ph2P(CH2)nS

S(CH2)nPPh2Ph2P(CH2)nS

(76) X = Cl or PPh2 (77) (78)

(79) 4 ro 3 = n )18(3-1 = n )08(

As in previous years, the elaboration of functional groups present in sub-stituents at phosphorus has led to a wide range of new phosphines. Reductionof aP-cyclohexylphosphorinonewith lithium aluminiumhydride has given therelated secondary alcohol-functionalised phosphine (78).180 O-Alkylation of2,20-dihydroxy-6,60-bis(diphenylphosphino)biphenyl with bis(chloromethyl)-arenes has provided a series of biaxial macrocyclic hybrid chiral diphosphines,e.g., (79).181 Alkylation of P-sulfide-protected o-chloroalkyl(diphenyl)phos-phines with a chiral nickel(II) template complex results in the formation of thephosphino-functional complexes (80), subsequently decomplexed to give freeenantiopureL-phosphino-functional aminoacids thatwere thenused topreparephosphine-modified oligopeptides.182 Base-promoted thioalkylation of o-chloro-alkyl(diphenyl)phosphines with tetrakis(cyanoethylthio)tetrathiafulvalenehas given the tetrakis(diphenylphosphinoalkylthio)tetrathiafulvalenes(81).183 Related reactions of thiolate anions with ortho-chloromethyl-phenyl(diphenyl)phosphine have provided a range of ortho-alkyl andaryl-thiomethylphenyl(diphenyl)phosphines.184 The reactions of 2-amino-alkylphosphines with isocyanates and isothiocyanates have providedroutes to new chiral phosphinoalkyl-urea185 and -thiourea186 ligands.Similarly, treatment of hydroxy- or amino-functional arylphosphines withisocyanides in the presence of a cyclooctadienepalladium(II) complexresults in the formation of bidentate arylphosphino-carbene palladiumcomplexes.187 New chiral phosphinoarylphosphoramidite ligands, e.g.,(82), have been obtained by base-promoted N-phosphorylation of a chiralortho-alkylaminophenyl(diphenyl)phosphine.188 Imine-formation from phos-phinoarylaldehydes and amide- and ester-formation from phosphinoaryl-‘carboxylic acids have continued to be used in synthesis. Newphosphines prepared from 2-diphenylphosphinobenzaldehyde include thehexadentate ligands cis,cis-C6H9(NQCHC6H4PPh2)3 and its aminoalkyl re-duction product C6H9(NHCH2C6H4PPh2)3, both obtained from cis,cis-1,3,5-

14 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 15: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

O

O

P N

PhMe

Ph2P

PPh2

NH OR2O

R1 R1

O N (CH2)8

R

PPh2

NBH

NPR2

PR2

NN

MeO2C(CH2)3

O H

PCy2

P

P

N

N

N

N

N

N

N

N

(82) (83) R = Ph or Pri (84)

(85) R1 = e.g., H, Ph or (CH2)4

R2 = H, Ac or -COC6H4PPh2

(86) R = But, Cy or Ph (87)

triaminocyclohexane,189 and an iminophosphine derived from 2-aminophe-nol.190 The reaction of 2-diphenylphosphinobenzaldehyde with chiral N-(o-alkenyl) 2-aminoethanols has given the phosphinoaryloxazolines (83),subsequently coupled to siloxane supports via addition of a thiol to thedouble bond.191 A similar route to phosphinoarylimidazolinones has pro-vided the chiral ligand (84), easily linkable to a PS-PEG support for use incatalysis.192 Amide-formation from 4-diphenylphosphinobenzenecarboxylicacid methylester and 3-trimethoxysilylpropylamine has given the relatedsiloxyalkylamide, subsequently coupled to a silica support as a palladium(II)chloride complex.193 A series of amido- and ester-functionalisedarylphosphines (85) has been derived from the reactions of 2-diphenyl-phosphinobenzoic acid with various chiral b-aminoalcohols.194,195 Furtherexamples of axially-chiral iminophosphines have been prepared bycondensation of (R)-(-)-2-(diphenylphosphino)-1,1 0-binaphthyl-20-aminewith various aromatic aldehydes.196 Mannich-type reactions involvingprimary or secondary amines with hydroxymethylphosphonium salts,hydroxymethylphosphines or secondary phosphines (in the presence offormaldehyde) have again been used to generate new aminomethylpho-sphines. Among these are the PNBNP pincer ligands (86),197 the P2N4

ligand system (87),198 new PCNCP ligands of the type R2PCH2-NR0CH2PR2,

199 various cyclic aminomethylphosphines, e.g., 1,3-diaza-5-phosphacyclohexanes,200 1,5-diaza-3,7-diphosphacyclooctanes201 and abicyclic 1,5-diaza-3,7-diphosphabicyclo[3.3.1]nonane.202 Also prepared inthis way are bis(phosphinomethyl)aminoalkylether dendrimers203 andunusual cyclic aminomethylphosphine-based cyclophanes having largehydrophobic cavities, of potential interest as precursors for a new kind ofmolecular reactor.204 The thermodynamic parameters for the synthesisof tris(hydroxymethyl)phosphine from PH3 and formaldehyde have beenthe subject of a theoretical study.205 Side-chain functional group

Organophosphorus Chem., 2011, 40, 1–51 | 15

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 16: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

transformations of metallocenes and phosphinometallocenes have alsofound further application in the synthesis of a variety of new phosphines.Improved routes to the known ferrocenylmethylphosphines FcCH2PH2,(FcCH2)2PH and (FcCH2)3P have been developed, and detailed studies oftheir structure and reactivity reported.206 Among new ferrocenylphosphinesprepared in the past year are chiral 2-phospha[3]ferrocenophanes,207

various phosphinoferrocenylcarboxamides prepared from 10-(diphenylpho-sphino)-1-ferrocenecarboxylic acid,208 and diphosphinoferrocenes bearing animidazole functionality in a side chain.209,210 A stereoselective samarium(II)triflate-mediated pinacol coupling of (Rp)-2-diphenylphosphinoferrocene-carbaldehyde has given a new (R,R)-bis(diphenylphosphinoferrocenyl)-ethanediol, whereas coupling of the related diphenylphosphinylaldehyde gavethe (S,S)-diol as the major isomer.211

2.2 Reactions

2.2.1 Nucleophilic attack at carbon. Once again, the formation ofzwitterionic phosphonium compounds by nucleophilic attack of phos-phorus at unsaturated carbon and the subsequent engagement of such di-polar species in C–C and C–N bond-forming reactions has attracted a greatdeal of attention. As in recent years, a large group of papers in this sectionrelate to the everlasting saga of the reactions of tertiary phosphines andacetylenedicarboxylic acid esters in the presence of a third reactant, aproton source that serves to protonate the initial dipolar species formed, togive a vinylphosphonium salt. The latter then undergoes addition of theanion derived from the proton source to form a new phosphonium ylide. Inmany cases, these are stable, but some undergo intramolecular reactions togive new, non-phosphorus-containing products, often via a Wittig route.Further examples have also appeared of reactions of this type that lead toC–C bond formation with eventual reformation of the phosphine, the latternow assuming a catalytic role. Stable ylides from the reactions of triar-ylphosphines, dialkyl acetylenedicarboxylates and various NH-, SH- andOH-acids have been obtained from 6-azauracil,212 various amides,213,214

phenothiazines and related compounds,215,216 aldehyde phenyl217- andbenzoyl218-hydrazones, 2-methylindole (with a dynamic 1H NMR study ofthe ylidic geometrical isomers),219 3,6-dibromocarbazole,220 a variety ofthiols and thioamides221 and 2,20-dihydroxybiphenyl, the latter ylidesundergoing conversion to dibenzodioxepines on heating with magnesiumoxide under microwave conditions.222 Stable ylides have also been isolatedfrom a diastereoselective four-component reaction between triphenylpho-sphine, dialkyl acetylenedicarboxylates, primary amines and diketene.223

Products arising from intramolecular Wittig reactions of so-formed stabil-ised ylides include tetrasubstituted furans,224 thioesters and vinylsulfides225

and also highly functionalised pyrroles226 and 2,5-dihydropyrroles.227 Re-actions involving a tertiary phosphine, an acetylenic compound and othersubstrates, in which the phosphine may play a catalytic role in the formationof C–C and other bonds, provide routes to substituted imides and furans,228

hydroxycoumarins,229 and also 2-naphthylsulfanylpropenoates.230

Interest has continued in the wider general synthetic applicability oftertiary phosphines in the nucleophilic catalysis of carbon-carbon bond

16 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 17: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

formation as typified by the Morita-Bayliss-Hillman (MBH) and relatedreactions. A frequent strand involves the nucleophilic catalysis by tertiaryphosphines of the addition of allenic compounds to electrophilic reagents.Reactions involving this approach include [3þ 3]-annulations of aziridineswith allenoates to give tetrahydropyridines,231 the [3þ 2]-cycloaddition ofethyl 2,3-butadienoate with an enone to give a cis-fused cyclo-penta[c]pyran,232 addition of electron-deficient allenes to aldehydes givingtrisubstituted conjugated dienes,233 the [3þ 2]-cycloaddition of allenoateswith aldehydes to give 2-alkylidenetetrahydrofurans,234 a [2þ 3]-cycload-dition of arylallenones with electron-deficient alkenes, demonstrating thedirecting effect of an a-trimethylsilyl substituent in the allene,235 a phos-phine- and water-cocatalysed [3þ 2]-cycloaddition of methyl 2,3-buta-dienoate with fumarates, giving highly-functionalised cyclopentanes,236 anda [3þ 2]-cycloaddition of 2,3,4-trienoate esters with arylmethylidenemalo-nitriles and N-tosylimines.237 When the electrophilic partner interactingwith the initially formed phosphoniobetaine is an imine, the reaction is oftenclassified as the aza-MBH reaction. The scope of this reaction has recentlybeen reviewed.238 Theoretical methods have been used to gain insights intothe mechanism and role of cocatalysts in the aza-MBH- and MBH-reactions.239 New examples of phosphine-catalysed aza-MBH reactionsreported in the past year include routes to chroman- and cis-2,3-dihy-drobenzofuran-derivatives,240 and new routes to substituted 3-pyrrolinesfrom conjugated dienes and imines241 and also from enantioselectivebinaphthophosphepine-catalysed [3þ 2]-annulations of imines with alleno-ates and 2-butynoates.242 A new family of Brønsted acid-activatedtrifunctional phosphine catalysts for rate-enhanced aza-MBH reactions hasbeen developed, based on the 2-diphenylphosphino-BINAP system but alsobearing an aminomethylphenolic substituent in the 20-position.243 In apreliminary study of the base-catalysed reactions ofN-Boc imines with ethyl2,3-butadienoate, it has been shown that although the normal aza-MBHproducts are obtained in reactions catalysed by DABCO, the use of tertiaryphosphines leads to uncommon rearrangement products.244 The proaza-phosphatrane P(PhCH2NCH2CH2)3N has been shown to be an efficientLewis base catalyst for the synthesis of propargylic alcohols and MBHadducts via aldehyde alkynylation.245 The introduction of an alpha-trimethylsilyl group into arylvinyl ketones has been shown to overcomedimerisation problems in the phosphine-catalysed MBH reactions of aryl-vinyl ketones with aldehydes.246

Among a host of other phosphine-catalysed reactions in which the initialstep is the formation of a reactive phosphoniobetaine intermediate byaddition to a carbon-carbon double or triple bond are intramolecularcyclisations leading to benzobicyclo[4,3,0]-compounds,247 cyclic ethers248

and lactones,249 and a great many intermolecular reactions, e.g., a [3þ 3]-annulation of modified t-butyl allylic carbonates and alkylidenemalonitrilesto give cyclohexenes,250 phosphine- (and fluoride)- catalysed routes to 1,4-benzothiazepines from cyclic sulfenamides and alkynes,251 a [4þ 3]-annu-lation of allylic carbonates with methyl coumalate to give functionalisedbicyclo[3.2.2]nonadienes,252 the a-carbon addition of cyanide ion, generatedin situ from cyanohydrins, to activated alkynes,253 and a stereoselective

Organophosphorus Chem., 2011, 40, 1–51 | 17

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 18: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

route to polysubstituted alkenes via a three component reaction of alde-hydes, a-halocarbonyl compounds and terminal alkenes.254 Also reported isthe use of a phosphine-catalysed umpolung g-addition of phosphorus pro-nucleophiles on alkynes bearing phosphinoyl (PQO) or phosphinothioyl(PQS) moieties, leading to unsymmetrical 1,3-bis- and tris-phosphorusligands,255 a silver triflate-triphenylphosphine co-catalysed synthesis of 1,2-dihydroisoquinolines from 2-alkynylbenzaldehydes, amines and ab-un-saturated ketones256 and the role of a chiral phosphinothiourea as a catalystfor the ring-opening of aziridines in the presence of hydrogen chloride.257

The ring-opening of aziridines with silylated nucleophiles, e.g., Me3SiCN,has been shown to be catalysed efficiently by tris(2,4,6-trimethoxy-phenyl)phosphine.258 This phosphine has also found use as a catalyst forthe cyanosilylation and cyanocarbonation of aldehydes and ketones259 andfor the alkynylation of aldehydes via the activation of the C-Si bond oftrimethylsilylalkynes.260 Other examples of phosphine catalysis include achiral phosphine-catalysed regio- and enantio-selective allylic amination ofMBH-acetates,261 a one-step synthesis of 1,4-dihydropyridines via a three-component Hantzsch reaction under mild conditions,262 the developmentand application in polyfunctional polymer synthesis of sequential, nucleo-philic thiol-ene and radical-mediated thiol-yne reactions,263 and a one-potthree component synthesis of a-aminophosphonates from aldehydes,amines and dialkyl phosphites, under relatively mild conditions.264 Thecatalytic conjugate addition of alcohols to alkyl propiolates has been shownto be very dependent on the choice of catalyst. Whereas trialkylaminescatalyse the expected 1,4-addition of the alcohol to the alkynoate to give theb-alkoxyacrylate derivative, the trialkylphosphine-catalysed reactionaffords heavily-functionalised bicyclic hexahydrofuro[2,3-b]furans.265 Anon-catalytic phosphine-mediated synthesis of pyrroles from acid chloridesand ab-unsaturated imines involves initial nucleophilic attack of phos-phorus at the b-carbon of the imine, followed by an intramolecular Wittigreaction.266

Finally, in coming to more traditional areas of the nucleophilic reactivity ofphosphines at carbon, it is worth noting the synthesis of new water-solublephosphonium salts derived from 1,12-dicarba-closo-dodecaborane(12),267

the preparation and characterisation of the tris(trifluoromethyl)methyl-phosphonium cation,268 a route to heteroaryltriphenylphosphonium iodidesfrom a- and g-iodopyridines, quinolines and related heteroarenes,269 themonoquaternisation of 1,2-bis(diphenylphosphino)ethane with a chloro-methylated polystyrene resin, en route to a supported phosphine-palladiumcomplex for use in catalysis,270 and the formation of a series of alkyl- andaryl-phosphonium salts from para-dimesitylborylphenyl(diphenyl)phosphine,the resulting cationic boranes finding use for the complexation and detectionof low concentrations (o 4 ppm) of fluoride ion in water.271 The 1:1 reactionsof tertiary phosphines with 2- or 4-hydroxybenzyl alcohols in aqueousmedia give initially benzylphosphoniophenolate betaines, which on treatmentwith aqueous hydrochloric acid form the corresponding 2- or 4-hydroxy-benzylphosphonium salts.272 New phosphoniophenolate betaines have beenisolated from the reactions of tertiary phosphines with quinone methidesbearing a dimethylphosphoryl group at the b-methine carbon273 and also

18 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 19: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

from the reaction of triphenylphosphine with dichlorodinitrobenzofur-oxan.274 A kinetic study of the quaternisation of triphenylphosphine witha series of acrylic acids in acetic acid media has demonstrated the operationof a third order process, involving the addition of the phosphine to theb-unsaturated carbon and proton transfer from the solvent.275 Other areas ofphosphorus chemistry that may involve nucleophilic attack bytervalent phosphorus at carbon are the reactions of phosphines withMeldrum acid derivatives276 and the electrochemical oxidation of tertiaryphosphines in the presence of camphene.277 In the presence of tertiaryphosphines, both C–Cl bonds of dichloromethane are readily activatedby CoCl2 and metallic zinc, with the eventual formation of phosphonio-methylmetallo-complexes.278

2.2.2 Nucleophilic attack at halogen. Continuing the pattern of recentyears, little new fundamental work has appeared, although phosphine-positive halogen systems have continued to attract some interest as reagentsin synthesis. On treatment with two moles of bromine, the phosphastiba-triptycene (88) forms the zwitterionic adduct (89), having cationic bromo-phosphonium and hexacoordinate anionic stiborate sites, these featuresremaining stable in solution at room temperature according to 1H and 31PNMR studies.279 Chlorination of the cyclo-tetraphosphine (90) with PhICl2or PCl5 in the presence of Me3SiOTf or GaCl3 results in the stepwiseformation of the cyclo-diphosphinodichlorophosphonium cation (91). Arelated mono-iodophosphonium cation was also prepared from the reactionof the cyclo-tetraphosphine with I2 in the presence of GaCl3. Treatment ofthe dichlorophosphonium cation with trimethylphosphine or 1,2-bis(di-methylphosphino)ethane results in dissociation of the cyclic system with theformation of new cyclic phosphinodiphosphonium cations that can beviewed as phosphine complexes of [PCy]2þ and [P2Cy2]

2þ cationic frag-ments from the dichlorophosphonium cation, indicating the coordinatenature of the phosphinophosphonium bonds in cyclo-phosphino-halopho-sphonium cations.280

P

Sb

P

P

P

P

Cy

Cy

Cy

Cy

P

P

P

P

Cy

Cy

Cy

Cy

Cl

Cl

2Cl

Me3P

PP

PP Cy

Cy

PBr

SbBr3

P

PP Cy

Me3P PCy

PCy

PMe3

(88)

3

(89)

(90)

dmpe

dmpe

(91)

3

Organophosphorus Chem., 2011, 40, 1–51 | 19

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 20: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

Simple adducts are not formed between primary, secondary or tertiaryphosphines with SnI4. With tricyclohexylphosphine, iodotricyclohexylpho-sphonium salts of both [SnI3]

– and [SnI5]– anions are isolated from reactions

involving both reduction at tin and halogen transfer. The related reactionsof diphenylphosphine and cyclohexylphosphine are more complex as aresult of additional elimination of HI and salts of the type[Ph2PH2]

þ6[Sn3I12]

6–, [Ph2PH2]þ2[SnI6]

2– and [CyPH3]þ2[SnI4]

2– have beenisolated and structurally characterised.281 New synthetic applications oftertiary phosphine-positive halogen reagents include the use of triphenyl-phosphine dibromide in the presence of potassium carbonate as a simpleone-pot esterification reagent. With chiral carboxylic acids, the reactionproceeds with little or no racemization and the use of a chiral alcohol givesthe ester with retention of configuration. It is suggested that the reactionproceeds via an acyloxyalkoxyphosphorane intermediate.282 A procedurehas also been developed for the iodination of alcohols using the triphe-nylphosphine-iodine adduct in an ionic liquid, in the absence of any othersolvents.283 Chlorine, bromine and iodine (and other positive halogenreagent) adducts of triphenylphosphine have also found use for thering-opening of activated and non-activated aziridines.284 An easily isolatedsolid adduct of carbon tetrabromide with the sodium salt of triphenyl-phosphine-m-monosulfonate can be used as an easily recoverable catalystfor the selective acetalization of aldehydes and the tetrahydropyranylationof alcohols.285 The triphenylphosphine-CCl4 reagent has now found use in aone-pot synthesis of N-alkylpurine, -pyrimidine and -azole derivatives fromalcohols, as part of a route to carboacyclic nucleosides.286 A reinvestigationof a claim that fluoroalkanes can be prepared from alcohols under mildconditions using triphenylphosphine and potassium fluoride in CCl4-DMFhas been shown to form only the chloroalkanes.287 N-halosuccinimide-triphenylphosphine combinations have found further use for the halogen-ation of propargyl alcohols to haloallenes,288 and also for the synthesis ofthioesters via the simultaneous activation of carboxylic acids and alcoholsin the presence of a quaternary ammonium tetrathiomolybdate as thesulfur transfer reagent.289 The combination of hexabromoacetone withtriphenylphosphine has been applied to the conversion of carboxylic acidsinto amides.290

2.2.3 Nucleophilic attack at other atoms. The chemistry of phosphine-borane adducts has continued to generate interest. Simple borane adductsof primary vinyl-, ethynyl- and allenyl-phosphines have been prepared andstudied by a range of spectroscopic and theoretical techniques.291 The samegroup has also shown that attachment of the BH3 unit to a variety ofprimary phosphines results in a substantial increase in the intrinsic acidityof the system in the gas-phase.292 Group III halide adducts of the typeBut2PH

d EX3 (E=B, Al, Ga or In; X=Cl or Br) are accessible from thereactions of the secondary phosphine with the trihalides at room tempera-ture. The solid state structure and reactivity of these adducts was alsoreported.293 Treatment of 1,8-bis(diphenylphosphino)naphthalene withthe borane-dimethylsulfide complex in ether solvents affords a simplemonoborane adduct of the diphosphine irrespective of the molar ratio of the

20 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 21: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

reagents used. However, when the reaction is caried out in DCM orchloroform, the cyclic dihydroboronium chloride salt (92) is formed viaconcomitant reduction of the solvent by the initially-formed monoboraneadduct. Theoretical work suggests that steric hindrance around the diphe-nylphosphino groups in the diphosphine prevents formation of a bis-boraneadduct.294 It has been shown that a variety of borane-protected secondaryand tertiary phosphines bearing at least one aromatic substituent can bedeprotected simply by refluxing in ethanol, in the absence of any otherreagent or molecular sieve. The free phosphine can be isolated by evapor-ation of the solvent. However, borane complexes of trialkylphosphines (ortrialkylphosphites) cannot be deprotected in this way.295 The phosphine-borane adduct Ph2PH–BH3 has been shown to undergo catalyticdehydrocoupling in the presence of the complex RhCl(PHCy2)3 to affordthe linear dimer Ph2PH–BH2–PPh2–BH3.

296 Work has continued on theformation and reactivity of ‘frustrated Lewis pairs’, (FLP), involvingsterically crowded phosphines and pentafluorophenylboranes. In thesesystems, the normal interaction between donor and acceptor centres isinhibited and alternative reaction pathways are often followed, givingproducts in which the Lewis acid and Lewis base sites may still be availablefor further reactivity. Stephan’s group has now published a full report of thesynthesis and reactivity of FLP systems derived from an extended range ofbulky phosphines and electron-deficient boranes, in relation to phosphinesthat exhibit both THF ring-opening and para-aromatic substitution offluorine on a pentafluorophenyl ring in B(C6F5)3 and related systems.297

The discovery in recent years that crowded phosphine-borane FLP systemsof various types are able to take up molecular hydrogen, reversibly cleavingthe molecule to form zwitterionic phosphonio-hydroborates which then canfunction as reducing agents for the hydrogenation of enamines, imines andother substrates, continues to stimulate new work in this area. New FLPsystems prepared from mono- and bis-phosphinoferrocenes and B(C6F5)3,e.g., (93), have been shown to activate molecular hydrogen to form ferro-cenylphosphonium borates.298 The 1-phosphino-2-borylferrocene (94) hasalso been prepared but structural and NMR studies reveal little evidence ofa PB interaction. Studies of the reactivity of this system are awaited.299 Theacid-base strengths of some FLP pairs in relation to the thermodynamicfeasibility of H2 heterolysis have now been analysed by theoretical meth-ods.300 A theoretical treatment of B–H � � �H–P dihydrogen bonding in ionpair complexes of the type [(CF3)3BH]–[HPH3� n(Me)n]

þ and its impli-cation in H2-elimination and -activation reactions has also been reported.301

The ability of FLP systems derived from bulky phosphines (and other Lewisbases) and the boranes ClB(C6F5)2 and HB(C6F5)2 to activate molecularhydrogen has also received detailed study.302 Hydroboration of allyl(di-mesityl)phosphine with HB(C6F5)2 gives the weakly intramolecularly-bonded FLP system (95), characterised by a crystallographic study. Relatedadditions to other alkenyl(dimesityl)phosphines gave the weakly-bondedfour-membered ring systems (96) and (97). Of these, only (96, R=Me)underwent a reaction with dihydrogen under the usual mild conditions i.e.at room temperature and a gas pressure of 1 atmosphere, giving the chiralphosphonio-borate zwitterion (98).303 Studies of the reactivity of such

Organophosphorus Chem., 2011, 40, 1–51 | 21

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 22: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

activated H2-carriers towards unsaturated substrates have broadened inscope. The hydrogenation of imines has been the subject of a theoreticalstudy, indicating the operation of a two-step mechanism in which proto-nation of the imine by the phosphonium part is followed by hydride transferto the carbon centre from the hydroborate part, both transition stateshaving quite low activation energies.304 Among other studies of the re-activity of FLP systems reported in the past year are the activation ofterminal alkynes to give alkynylborates or zwitterionic phosphonioalk-enylborates,305 intramolecular additions to alkenes306 and 1,3-dienes,307 theactivation of titanium catalysts for olefin polymerisation,308 the reversiblebinding of carbon dioxide by (96, R=H),309 irreversible additions to ni-trous oxide to give zwitterions of type (99)310 and the heterolytic cleavage ofdisulfides.311 The ability of bulky phosphinoboranes R2PBR

02 (commonly

formulated as R2PQBR02 in recognition of some degree of intramolecularP3pp-B2pp bonding) to take up molecular hydrogen to form the secondaryphosphine-borane adducts R2PH

d HBR02 has now been the subject of atheoretical study.312 The possibility that bulky phosphinoboranes of theabove type might be able to dehydrogenate alcohols to aldehydes andketones has also been the subject of a theoretical study that concludes thatthis conversion is plausible, inviting the attention of the experimentalists.313

Scheer’s group has reported further work on the reactivity of Lewis acid/Lewis base coordination-stabilised phosphinoboranes and phosphinoalanesof the type [(CO)5W(H2P–EH2)NMe3] (E=B or Al).314,315

The reactivity of phosphines towards oxygen, sulfur and selenium,and their compounds, has also continued to generate interest. A study of the

PR2C6F4BH(C6F5)2 BMes2

PPh2

PPh2B

Ph2P

H H

Cl

PR2

Fe

B(C6F5)3

Fe

Mes2P B(C6F5)2 Mes2P B(C6F5)2

R

Mes2P B(C6F5)2

SiMe3

Mes2PB(C6F5)2

MeH

But3 P N

N OB(C6F5)2R

R

Ph2P

SePh

H

(92) (93) R = But (94)

(95) (96) R = Me or Ph (97)

(98) (99) R =C6F5 lyrarolykla=R)001(hPro

stability of ferrocenylethynylphosphines of the type (FcC�C)nPh3-nP tooxidation in air has shown that the more ferrocenylethynyl moieties that arepresent, the more easily is the phosphine oxidised. Bubbling air through arefluxing solution of the tris(ferrocenylethynyl)phosphine in THF results inthe quantitative formation of the phosphine oxide in one hour.316 The

22 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 23: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

tetraphosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutanehas been shown to undergo regio- and chemo-selective oxidation via cobal-t(II)-mediated dioxygen activation, the outcome depending on the nature ofthe cobalt(II) complex used.317 Further work has been reported on thereduction of saturated endoperoxides using triphenylphosphine, in whichthe initial step is insertion of the phosphine into the peroxy bond to form acyclic dioxaphosphorane.318 Deoxygenation with tertiary phosphines hasfound further use for the conversion of carbohydrate-derived cyclic nitronesto cyclic imines. Tributylphosphine is far more effective for this conversionthan is triphenylphosphine, leading to the suggestion that the mechanism ofthe reaction probably involves nucleophilic addition of the phosphine to theiminyl carbon of the nitrones, rather than an interaction between phosphorusand the nitrone oxygen atom.319 The origin of the chemiluminescenceobserved during the triphenylphosphine-promoted deoxygenation of nitro-sobenzene to form a nitrene intermediate under oxygen-free conditions hasbeen attributed to the triphenylphosphine oxide formed in the reaction.320 Inacidic aqueous solutions, nitric oxide oxidises monosulfonated triphenyl-phosphine to the phosphine oxide, the NO-derived product being N2O. Therate of the reaction is several orders of magnitude greater than that of NOwith triphenylphosphine in non-polar organic solvents, making the water-soluble phosphine a useful analytical reagent for the determination of NO inaqueous solution.321 A study of the reaction of triarylphosphines with thespecies HNO (nitroxyl) has shown that the phosphine oxide and the aza-ylideAr3PQNH are formed, via the probable involvement of a three-memberedring aza-oxa-phosphorane intermediate.322 The analogous reaction of triar-ylphosphines with S-nitrosothiols RSNO, resulting in the formation of thephosphine oxide and aza-ylides of the type Ar3PQNSR, has now been de-veloped using arylphosphines bearing ortho-ester or -thioester substituents,providing a ‘traceless’ reductive ligation of S-nitrosothiols to give sulfena-mides, RSNHCOMe, and also disulfides.323 Attack by phosphorus at oxygenseems likely in the triphenylphosphine-promoted deoxygenation of arylsul-fonyl chlorides to form diaryl disulfides,324 in the reactions of amides of2,3-dibromopropionic and 2-bromoacrylic acids with triphenylphosphine,325

and in a series of reactions involving the triphenylphosphine-2,3-dichloro-5,6-dicyanobenzoquinone system, leading to the synthesis of 2-oxazolines326

and alkyl isocyanates,327 and also for the selective mono- and di-alkylation,and acetylation, of aromatic amines.328 Relatively little new work hasappeared on reactions involving nucleophilic attack at divalent sulfur,selenium or tellurium. Complexes of tertiary phosphines with 1,2,5-selena-and -tellura-diazolium cations, involving coordination of the phosphine tothe chalcogen, have been characterised.329 Several papers report new appli-cations of tertiary phosphine reagents for the cleavage of disulfide bonds forthe synthesis of polymer-protein conjugates330 and various heterocyclic sys-tems.331 The predominant use of phosphines for disulfide-cleavage has nowbeen challenged by a report that alkyl- and arylallyl-disulfides are induced toundergo a desulfurative allylic rearrangement by silver nitrate at ambienttemperature in protic solvents.332 Perhaps the most interesting application ofphosphine-chalcogen systems reported in the past year is the use of a com-bination of (Ph2P)2 and (PhSe)2 for the photochemically-promoted

Organophosphorus Chem., 2011, 40, 1–51 | 23

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 24: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

simultaneous addition of phosphino- and seleno- groups to alkenes, allenesand alkynes, providing access to a wide range of multifunctional compounds.Thus, e.g., with alkynes, the phosphino-selenoalkenes (100) are formed.333

Interest has also continued in the Mitsunobu and Staudinger reactions, inwhich nucleophilic attack by phosphorus at nitrogen is the initial step.Although there have been relatively few papers describing more funda-mental aspects of these reactions, their applications in synthetic chemistryhave continued to develop. Recent work on the mechanism and applicationof the Mitsunobu reaction has been the subject of a comprehensivereview.334 Di-2-methoxyethyl azodicarboxylate (DMEAD) has beenproposed as a new azodicarboxylate reagent for the triphenylphosphine-promoted Mitsunobu reaction. Stereochemical outcomes are similar tothose achieved using the di-isopropyl ester (DIAD), but product isolation ismuch easier with DMEAD because the hydrazine end-product is completelyseparable by a simple aqueous extraction under neutral conditions and canthen be used to regenerate the azoester. The phosphine oxide is also easilyremoved by filtration. A one-step removal of the two by-products was alsoachieved when the trimethylphosphine-DMEAD combination was used.335

An interesting rearrangement involving ester-group migration betweenoxygen and nitrogen atoms occurs in the reactions of acyl cyanides with the‘Huisgen zwitterion’, the initial adduct between a tertiary phosphine and adiazoester with the Ph3P-DIAD system under Mitsunobu conditions.Hydrazones are formed at higher temperatures (901C) and azines at lowertemperatures (201C).336 Recent applications of Mitsunobu proceduresin synthesis include a route to C-glycosides,337 the direct azidation ofunprotected carbohydrates using hydrazoic acid,338 a synthesis of theaza-analogue of diospongin A (of interest for the induction of nitric oxidesynthase),339 an efficient route to enantiomerically-pure (S)-d-azaproline,340

the synthesis of optically-active aa-disubstituted aminoacids,341 the post-functionalisation of fullerene mono- and hexakis- adducts,342 and the use ofa polymer-bound triarylphosphine-DEAD system in the de-racemization of1,2-diol monotosylates.343

Applications of the Staudinger reaction of phosphines with azido com-pounds to give iminophosphorane reagents have also continued to appear.Investigations of the early stages of iminophosphorane formation in thereactions of bulky trialkylphosphines with 1-adamantyl azide have led tothe isolation of unusual phosphazides of the type cis-R3PQN–NQNAd(R=Pri or Cy) that do not readily lose N2 to give the iminophosphorane. Incontrast, the reaction of Me3P with N3Ad results in the smooth formationof Me3PQNAd. Calorimetric studies of this reaction provided an estimatedDH of � 40� 3 kcal mol�1 for the loss of N2 from the intermediatephosphazide, and also an estimate of 72� 5 kcal mol�1 for the bond dis-sociation energy of the PQN bond in the iminophosphorane.344 Syntheticapplications of Staudinger procedures reported in the past year include theconversion of azides into diazomethanes,345 a convenient synthesis of newdiamine, aminoalcohol and aminophosphine chiral auxiliaries based onlimonene oxide,346 a route to quinolines from MBH-acetates of 2-azido-benzaldehydes,347and an efficient synthesis of 4-aminocarbonyl-substituted4H-3,1-benzoxazines.348 Other items of interest include the application of

24 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 25: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

Staudinger chemistry for the efficient detection of nucleic acids,349 the useof traceless Staudinger procedures in the synthesis of amidomethyl-glycosides,350 the development of a new reagent, bis(m-N,N-dimethylami-nomethyl)phosphinomethanethiol, for application in traceless Staudingerligation reactions in water,351 and a benzylic rearrangement of O-azido-benzyl thiocarbamates triggered by phosphines in the course of Staudingerimination reactions.352 Also noteworthy is the application of 2,20-dipyridyldiselenide (PySeSePy) as the activator of choice for the directreaction of carboxylic acids with azides and trimethylphosphine at roomtemperature to form peptide bonds. The reaction, termed the catalyticStaudinger-Vilarrasa reaction, is not an aza-Wittig reaction but insteadinvolves interaction of the intermediate iminophosphorane with a seleno-ester of the carboxylic acid.353 Nucleophilic attack by phosphorus atnitrogen is also involved in the reactions of triphenylphosphine withdiazoimides to give fused triazine derivatives.354

2.2.4 Miscellaneous reactions. Interest in the electronic and otherphysicochemical properties of phosphines has continued. The variousattempts to build a knowledge-base relating to the influence of structure onthe donor properties of phosphine ligands towards metal ions have beenreviewed.355 This area has been addresssed further by theoretical methodsthat have set out to explore aryl and other pendant group effects onthe tuning of phosphine ligands356 and also for a quantifying thedonor-acceptor properties of phosphine and N-heterocyclic carbeneligands in Grubbs’ catalysts.357 The molecular structure and conformationalproperties of a range of unsaturated, aryl, benzyl and alkyl primary phos-phines have been determined by gas-phase electron-diffraction, enabling a

PR

PhP Ga

S

S

R

P

P

Mes*Mes*

But

But

P

P

Mes*Mes*

H

H But

Me

uBroH=R)201(

PR

uBroH=R)101(

PR

(103) R = H or Bu

P

P PP

PP

ButBut

But

But

(104) (105) R = Me or But

OE

O

O

O

PPh2 Ph2P

(106) E = B, SnCl2, GaCl or BiCl

(107) (108)

PPh2

NH

O

N

O

HN

Ph2PFe Fe

(109)

Organophosphorus Chem., 2011, 40, 1–51 | 25

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 26: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

comparison with the analogous amines. The structural data obtained ex-perimentally have also been compared with those obtained by theoreticalmethods.358 Theoretical methods have also been applied to a conforma-tional analysis of vinylphosphine and its chalcogenides.359 Other physico-chemical and theoretical work reported includes a study of the effect oftemperature and co-solvents on the complexation of bulky arylphosphineligands with peracetylated-b-cyclodextrin in supercritical carbon dioxide,360

an NMR investigation of atropisomerism in phosphepins and azepines,361

theoretical studies of phosphine valence tautomerism in 1H-phosphepins,362

and a theoretical comparison of diphosphinocarbenes with related diamino-and dialkyl-carbenes.363

Recent results on the formation of P–P bonds by the dehydrocouplingreactions of P–H compounds, mediated by transition metal and main groupreagents, have been reviewed.364 The large-scale (50-100g) separation,diastereoselective synthesis and reactivity of the three phobane isomers(101)–(103) has now been the subject of a detailed study.365 Interest in thechemistry of cage-like phosphines has also been maintained, with new workon the reactivity at nitrogen of P-coordinated 1,3,5-triaza-7-phosphaada-mantane,366 cage-opening reactions of the hexaphosphapentaprismane(104),367 theoretical approaches to the design of cage-silaphosphines ofthe type XSi(–L–)3P having the potential for P-Si coordination inside thecage,368 and the ability of the phosphasiloxane cage [P2{(SiMe2)2O}3] toencapsulate lithium ions by coordination to oxygen atoms.369 The phosphi-nobisthiol ligand PhP(2-HSC6H4)2 has been shown to react with a range ofgallium(III) reagents to form pincer complexes, e.g., (105).370 The template-controlled self-assembly of monophosphines bearing a catechol group hasundergone further development, with the synthesis of new diphosphine as-semblies, e.g., (106), and a study of their ability to coordinate transition metalions.371 Treatment of the cyclic P2C2 diradical (107) with lithium aluminiumhydride, followed by protonation with methanol, results in the formation ofthe cyclic diylide (108). These authors also report a preliminary finding thatan uncatalysed addition of H2 under high pressure to the diradical also givesthe cyclic ylide.372 The electrochemical oxidation of 1-diphenylphosphino-10-(di-t-butylphosphino)ferrocene, and various dichalcogen derivatives, has beeninvestigated. The study was made more complex as a result of the occurrenceof post-oxidation reactions of the radical cationic species formed, necessi-tating further study.373 The bis(phosphinoferrocenyl)pyridyl diamide (109)has been shown to undergo an unusual oxidative dealkylation on treatmentwith copper(II) perchlorate with cleavage of a monophosphinoferrocenyla-mide and the formation of 2-vinyl-(1-diphenylphosphino)-ferrocene.374

Treatment of 6-bromo-1,2-naphthoquinone with tris(2-cyanoethyl)phosphineor tricyclohexylphosphine in the presence of water leads to an unusualcoupling of the naphthyl units at the 4-positions, with concomitant reductionof the quinone carbonyls to give a dibromo(tetrahydroxy)binaphthyl.375

3 pp-Bonded phosphorus compounds

Activity in this area has remained at a similar level to that reported for 2008.Once again, well-established topics such as the chemistry of diphosphenes,

26 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 27: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

phosphaalkenes and phosphaalkynes has continued to attract attention, asalso has work on the less-developed classes of low coordination numberphosphorus compounds, in particular phosphenium ions and phosphini-denes, and their metal complexes. A brief ‘highlighting’ overview of newlydeveloping aspects of the chemistry of low coordinate pp-bonded phos-phorus compounds is of interest.376 Two groups have addressed barriers torotation about the P–Ph and PQP bonds in trans-diphenyldiphosphene,using theoretical methods.377,378 The kinetically-stabilised diphosphene(110) has been shown to undergo cycloaddition reactions with electron-deficient alkenes and 2,3-dimethyl-1,3-butadiene. However, addition to thePQP bond only occurs with the butadiene to give (111) whereas maleicanhydride and N-phenylmaleimide add to the anthracene system, giving thenew diphosphenes (112).379 Also reported by this group is the formation ofthe triphosphirane (113) when diphosphene (110) is heated in a sealed tubein the presence of (n-Bu)3PQTe, which appears to have a catalytic role. Onthe basis of earlier studies of related reactions of the diphosphene Bbt–PQP–Bbt, it is suggested that the formation of the triphosphirane proceedsvia the intermediacy of a reactive telluradiphosphirane.380 Other studies ofdiphosphene reactivity have shown that on coordination of gold(I) chlorideto the PQP bond of Mes* PQP Mes*, the PQP bond becomes shorter andincreases in strength,381 and that exposure of the ferrocenylbis(dipho-sphene) (114) to only a small amount of water results in the formation of theair-and light-stable ferrocenophane (115), rather than in the usual cleavageof the PQP bond that occurs in the presence of larger amounts of water.382

The unusual pp-bonded species Pri3Si–PQP: has been characterised in theform of a phosphinidene-like metal complex which gradually decomposesin solution to form cyclic phosphinidene trimers, e.g., (Pri3SiP)3, that arebelieved to arise from the intermediate formation of the diphosphenePri3Si–PQP–SiPri3. Evidence in support of the formation of the latter wasobtained by trapping it with 1,3-dienes.383 Compounds involving PQPbonds have also been isolated from the reactions of phosphinidene-complexes with phosphaalkynes, giving, e.g., the Z3-diphosphavinyl-carbenes, (116), isolated as metal complexes,384 and also from the reactionsof white phosphorus with metal silanides of the type M[SiBut3] (M=Li, Naor K), from which the tetraphosphenediide salts (117) were isolated.385

Theoretical methods have been applied to a study of the tautomerism,structure and vibrational frequencies of phosphaalkenes of the typeXPQCMe2 (X=H, F, Cl, Br, OH or ArF (ArF=2,6-(CF3)2C6H3)).

386

Routes to new phosphaalkene systems include the hydrolytic cleavage ofthe P-chlorophosphaalkenes (RMe2Si)2CQPCl (R=Me or Pri) to givethe diphosphavinyl ethers [(RMe2Si)2CQP]2O,387 the reaction ofMes*PQC(Cl)Li with tBuPCl2 at low temperatures to give the vic-dichlorophosphapropene (118),388 treatment of t-butylcyclopentadienyl-chlorophosphine diastereoisomers with base to give sterically crowdedisomeric 6-phosphafulvenes (119)389 and the synthesis of C,C-diacetylenicphosphaalkenes, e.g., (120), from the reactions of 1-chloro-3-ethynyl-1,2-allenes with Mes*PCl2 in the presence of LDA390 A study of the reactionsof electrophilic carbenes with white phosphorus has led to the isolationof unusual phosphaalkenes (121), (122) and (123).391 The N-heterocyclic

Organophosphorus Chem., 2011, 40, 1–51 | 27

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 28: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

PP Tbt

PP

PHTbt

PHTbtO

PP

CH(SiMe3)2

CH(SiMe3)2

(Me3Si)3CP

PBbt

(Me3Si)2CH

(Me3Si)2CH

C(SiMe3)3

X

O

O P PBbt

P P

P

Bbt

R RP

P Tbt

Fe Fe

(Me3Si)2CH

(Me3Si)2CH

CH(SiMe3)2

RP

P Mes*But

3Si PM

P PMP SiBut

3

Mes*P C

Cl

PBut

Cl

PMes*

But

P

Ph

Me3Si

Mes* Cy2NP

But

PP

P NCy2

But

Ndipp

PPN

PP

N

dipp

dipp NN MesMes

P CHPh2

Mes

(110) (111)Bbt =

(112) X = O or NPh

)411(lyrhtnA-9 = R )311( (115)Tbt =

(116) R = Mes* or But (117) (118)

)021()911( (121)

3

(122) )421()321(

carbene 1,3-dimesitylimidazol-2-ylidene has been shown to react with thephosphaalkene MesPQCPh2 to give the 4-phosphino-2-carbene (124).392

Interest in the synthesis and characterisation of phosphorus analoguesof bis(Z4-cyclobutadiene)iron(0) has continued. The bis(Z4-dipho-sphacyclobutadiene)iron(0) complex (125) has been isolated and structur-ally characterised393 and the triphosphacyclobutadiene species (126)is believed to be a transient intermediate in the formation of polycyclicdimerisation products involving one or more PQC bonds. Support forthe existence of the triphosphacyclobutadiene was obtained from trapp-ing experiments, the phosphaalkyne AdC�P giving the Dewar isomer of

28 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 29: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

But

ButP

Ph

(128)

ON

P

NO

But

(RO)2P(O)

(RO)2P(O)

(129)

C

But

But

P

(130)

PAs

(132)

P

PP

P

PP

Ph Ph

Ph Ph

Ph

Ph

Ph

Ph

(133)

NP

NP

R6

R5

R4

R3

R2

R2

R1

R1

(134)

(125)

But

But

P

P

FeBut

ButP

P

(126)

P

P P

R(OC)5W

W(CO)5

(127)

W(CO)5

PP

PP

Ad

Ad

(OC)5W

(131)

P

P

Mes**Mes

Bus

Li

tetraphosphabenzene (127).394 Other studies of the reactivity of stablephosphaalkenes include addition reactions of sulfur- and selenium-bridgedbis(phosphaalkenes) with cyclopentadiene and with tetrachloro-o-benzo-quinone,395 a nickel(0)- and platinum(0)-promoted intramolecular additionof a C–H bond onto the PQC bond of E-Mes*PQCHPh to give thephospholane (128),396 and the insertion of the phosphaalkene phosphorusof (Me3Si)2CQPNRPPh2 into palladium- and platinum-chlorine bonds.397

Also characterised are a metal complex-stabilised triphosphaallyl radical,cation and anion family, the radical being derived from the reaction ofMes*PQPMes* with a complexed Cp* phosphinidine and subsequentlysubjected to redox transformations,398 and lithium-, potassium- and thal-lium(I)-complexes of an azaphosphaallyl anion.399 Further examples ofstable phosphasilene (PQSi) and phosphagermene (PQGe) systems havealso been characterised.400,401 Theoretical methods have been applied to astudy of the structure of model germaphosphaallenes of the typeR2GeQCQPR0,402 and the reactions of heavier chalcogens with the ger-maphosphaallene Mes*PQCQGe(tBu)(Tip) have been shown to proceedwith additions to the CQGe bond to give 3-phosphanylidene-1,2-chalco-genagermiranes, having an exocyclic PQC double bond.403

Relatively little work has appeared on compounds involving the phos-phaalkyne (P�C) unit in the past year. Kinetically stabilised phosphaalk-enes RC�P (R=e.g., But or Ad) have been shown to undergocycloadditions to phosphonyl nitrile oxides (RO)2P(O)CþQNO� to givethe bicyclic structure (129)404 and also to five coordinate b-diiminato-Pt(IV)complexes to give a phosphaalkenyl complex, in which the phosphoruscoordinates to the metal and the phosphaalkynyl carbon becomes bound tothe central carbon of the diiminate ligand, in an apparent reversal of the

Organophosphorus Chem., 2011, 40, 1–51 | 29

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 30: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

usual polarity of the phosphaalkyne.405 The in situ generation of the highlyunsaturated vinylphosphaalkyne (130), (from the CsF-catalysed reaction oftris(trimethylsilyl)phosphine with Z-2-But-4,4-dimethylpent-2-enoyl chlor-ide), has resulted in the isolation of seven products derived from cycload-dition reactions involving both the vinyl and C�P centres.406 Full detailshave now appeared of the synthesis of catenated 1,3-diphosphacyclobutane-2,4-diyl diradical systems, starting from the reaction of Mes*C�P with0.5 mol. equiv. of BusLi to give the ring system (131).407 The highly reactivemolecule As�P has been generated by the reaction of a Nb�As complex(derived from the unstable allotrope of arsenic, As4), with an iminopho-sphaalkene, and subsequent thermolysis of the resulting complex, followedby trapping with dienes to give bicyclic phosphinoarsines, e.g., (132).408

Once again there has been considerable activity in relation to the chemistryof phosphenium ions (R2P:

þ and RP:2þ ) and phosphinidenes (RP:). Thestabilisation of phosphenium cations by coordination from donor moleculeshas continued to attract interest. Burford’s group has now demonstrated thestabilisation of phosphenium ions derived from R2PCl or RPCl2 with tertiaryarsines and tertiary stibines.409 An equimolar mixture of Ph2PCl and GaCl3at room temperature results in the formation of a melt consisting of thecomplex Ph2PCl- GaCl3 and salts involving the cation [Ph2PCl-PPh2]

þ

and various polyhalogallate anions. The melt provides an easily accessiblesource of the diphenylphosphenium cation that has been shown to insert into(PhP)5 to give the cyclic dication (133),410 and also into P4 to give a range ofcationic polyphosphorus cluster cations.411 Among new stabilised phosphe-nium species described in the past year are carbene-stabilised salts, derivedfrom dichlorophosphines and 1,3-dialkylimidazolium-2-carboxylates,412

N-heterocyclic phosphenium salts, derived from a-diimines413,414 andaminotroponiminate or aminotroponates,415 and N-phosphinoformamidine-stabilised salts.416 Structural and spectroscopic studies of a series of theP-phospholyl-substituted N-heterocyclic phosphines (134) reveal unusuallylong P–P bonds, consistent with the view that this bond has significantphospholide-phosphenium character, consistent with the chemical reactiv-ity of this type of molecule.417,418 Other studies of the reactivity of phos-phenium ions include an apparent phosphonium-phosphenium equivalencein the abnormal course of hydrolysis of a 7-phosphanorbornenium salt,419

their addition to N-phosphinoiminopyridines to form conjugated cyclicdialkylaminodiazaphospholium salts,420 and the involvement of phosphe-nium species as ligands in various metal-catalysed reactions.421 Phosphine-stabilised arsenium cations have also been characterised.422

Interest has again continued in studies of the generation and reactivity ofphosphinidene species (RP:), phosphorus analogues of carbenes, and thisarea has been reviewed.423 A review has also appeared of the use of terminalphosphinidene complexes in the formation of phosphorus-element bonds.424

Further studies of phosphanylidene-s4-phosphoranes, RP=PR3, (regardedas phosphine-complexed phosphinidenes, i.e., ArP’PR3), have shown thatthe species Me3PQPAr (Ar=Mes* or 2,6-Mes2C6H3) are good vehicles forthe delivery of the terminal phosphinidene moiety ArP: to zirconium andvanadium sites.425 Terminal phosphinidene complexes of cobalt,426

ruthenium, rhodium and osmium,427,428 and iridium,429 have also been

30 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 31: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

characterised and their reactivity studied. Full details of a route to platinumcomplexes of phosphanylphosphinidenes, R2P

þQP:� (R=alkyl or dialky-lamino), that bind side-on to the metal have also appeared.430 The Mathey431

and Lammertsma432 groups have reported further studies of the generationand subsequent trapping of electrophilic phosphinidene complexes from thedecomposition of metal complexed phosphole-Diels Alder cycloadducts.Mathey has also shown that uncomplexed phosphole-N-phenylmaleimide[4þ 2] cycloadducts behave as synthetic equivalents of nucleophilic phos-phinidenes, developing a route to P-chiral phosphinite esters.433 The re-activity of lithium phosphinidenoid complexes of the type RPXLi[W(CO)5](X=halogen) has received further attention from Streubel’s group.434

Theoretical work on the structural and thermodynamic characteristics ofstable CH3PO2 isomers has led to a prediction of unimoleculardecomposition mechanisms of the phosphinidene oxide CH3O–PQO and thel5pp-bonded species CH3P(QO)2 and CH2QP(QO)OH.435 A theoreticaltreatment, together with a consideration of experimental bond lengthand related data, of the nature of PQO bonds in phosphates also includesdiscussion of bonding in the trivalent species MeO–PQO, supporting thepresence of a PQO p-bond.436 Tertiary phosphine-stabilised P-P bondedadducts of l5pp-bonded transient phosphoranimine cations of the type[R2PQNSiMe3]

þ have also been characterised and their reactivity studied.437

4 Phosphirenes, phospholes and phosphinines

Interest in potentially aromatic heterocyclic systems has continued, withmost work again relating to the chemistry of phospholes. However, activityin the phosphirene area has resumed with the appearance of several paperson the chemistry of both the parent phosphirene and related azapho-sphirene systems. The reaction of the crowded ynamine PhC�CNiPr2 withthe terminal phosphinidene complexes [RP-W(CO)5] provides a route tothe 2-aminophosphirenes (135) for R=Ph and OMe and a diphosphetenefor R=Me. The structure of the 1-phenyl-phosphirene shows elongatedP–C(N) and CQC ring bonds. With dimethyl acetylenedicarboxylate, thisphosphirene gives the aminophosphole (136) via insertion of the alkyne intothe P–C(N) bond.438 Streubel’s group has reported a series of investigationsof ring expansion reactions undergone by 2H-azaphosphirene complexes(137), on treatment with a variety of reagents, to give azaphosphole andother P,N-heterocyclic systems.439

P

PhPri2N

R W(CO)5 PhPPh

Pri2N CO2Me

CO2MeW(CO)5

RP

NAr

M(CO)5

(136) (137) R = CH(SiMe3)2 or Cy M = Cr, Mo or W

(135) R = Ph or MeO

The electronic structure and aromaticity of the phosphole ring system hascontinued to attract interest. Calculated NMR shielding parameters abovethe ring plane in phosphole and other group 15 conjugated five-membered

Organophosphorus Chem., 2011, 40, 1–51 | 31

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 32: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

heterocyclic compounds correlate reasonably well with other establishedmethods of assessing aromaticity.440 The electronic structures of the series 1-phenyl-indole, -phosphindole, -arsindole, -stibindole and -bismuindole havebeen investigated by various spectroscopic techniques coupled with densityfunctional calculations, and correlated with X-ray structural data.441 Thesynthesis and opto-electronic properties of extended conjugation phospholesystems, including conjugated polymers, often involving other aromaticheterocyclic systems such as thiophene, has continued to generate interest andthis area has again been reviewed.442 Among new thienylphosphole systemsprepared is a series of phospholes and 1,10-biphospholes bearing 2- or 3-thienyl C-substituents, e.g., (138), and the derived fused system (139),443

highly fluorinated fused systems based on (140, Ar=C6F5; X=H),444 thedifunctional system (140, Ar=Ph; X=CHO) from which a series ofdendrimers was also prepared,445 and an electrochromic 2,5-dithienyl-phosphole-ethylenedioxythiophene copolymer.446 Also of interest in terms ofopto-electronic properties is a series of naphthalene-fused phospholes e.g.,(141), and the related phosphole oxides,447 several dendritic phosphole oxidesthat exhibit intense photoluminescent emission in the aggregate and solidstates but not in solution,448 and various monomeric, dimeric and fusedphosphole oxides and sulfides derived from halo-functionalised 2-phe-nylbenzo[b]phospholes.449 Among other unusual phosphole systems reportedin the past year are the phosphole-annulated 1,2-dithiole-3-thione system(142)450 and the hybrid ligand (143).451 The synthesis and chemistry ofphosphole-containing calixpyrroles, calixphyrins and porphyrins has nowbeen reviewed by Matano and Imahori.452 This group has also reportedstudies of meso-substituent effects on the redox properties of the 5,10-por-phodimethene-type P,S,N2-hybrid calixphyrins and their metal complexes453

and the development of a convenient route to a-ethynylphospholes, enabling astudy of substituent effects on themodulation of their p-conjugated systems.454

Other new functionalised, and often chiral, phosphole-based ligands reportedinclude a range of diphosphinites, e.g., (144),455 the phospholylindolederivatives (145),456 and phospholes bearing triazolyl-457 and azahelicene-substituents in the 2-position.458 Recent studies of the reactivity of phospholesinclude the protonation and subsequent intramolecular trapping of aP–H phospholium salt derived from the known bis-(2,5-diphenylpho-spholyl)xantphos ligand. Protonation initially takes place at the phosphorusatom of one phosphole unit, the transient P–H phospholium salt protonatingthe CQC double bond of the second phosphole, giving a cyclic phospholiumdihydrophospholene structure.459 Le Floch’s group has also characterisedvarious gold(I) complexes of the bis-(2,5-diphenylphospholyl)xantphossystem.460 Further studies of the coordination chemistry of a 2,5-bis(2-pyridyl)-1-phenylphosphole system have also appeared.461 Chiral complex-promotedDiels-Alder cycloadditions to3,4-dimethyl-1-phenylphosphole havecontinued to attract attention, recent papers from Leung et al.describing the additionof phosphine-functionalised terminal alkenols462 and3-diphenylphosphinofuran463 to give new, enantiomerically pure, functionalisedbicyclic diphosphines. Leung’s group has also described relatedasymmetric cycloadditions of diphenylvinylphosphine and its oxide to3,4-dimethyl-1-phenylarsole.464

32 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 33: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

P

Ph2P

N

P Pri

Pri

PAr

SS XX

BH3

P P

O O

PPh

PhPh

O

O

P N

P R1R1

R2R2

PS

S

S

PhS

(140)

(141)(142) (143)

(144) (145) R1 = H or Ph; R2 = H or Me (146)

PPh

R

R R

RP

S

SS

S

PhY

(138) R = 2- or 3- thienyl(139) Y = O or S

Phospholes bearing additional heteroatoms as part of a potentially aro-matic five-membered ring system have continued to generate interest. Newcycloaddition reactions have been reported involving 1,2-diphospholes,465

1,2-thiaphospholes466 and 1,2,4-triphospholes.467 Transient 1,2,3-triphosp-holes and 2-arsa-1,3-diphospholes have been characterised as reactiveintermediates that dimerise to form polycyclic phosphorus- and arsenic-containing cage compounds.468 Theoretical methods have been used toexplore electronic structure and bonding in neutral and dianionic bor-adiphospholes R0BC2P2R2 (R=H, or But, R0=H or Ph).469 The chemistryof azaphospholes has also remained active and work on 1,3-azaphospholeshas been reviewed.470 Routes to 1,2,3-diazaphospholes bearing a sulfo-nylmethyloxazolinyl substituent at the 4-position471 and the first stable 2-phospha-2H-isoindole (146)472 have been developed. The potential energysurface for the formation of the 1,2,4,3,5-triazadiphosphole ring systemfrom the reaction of the diaminodichlorophosphine (Me3Si)2NN(Si-Me3)PCl2 with GaCl3 has been studied by theoretical methods.473 Furtherwork has appeared from Bansal’s group on the dienophilicity of the CQPbond in 2-phosphaindolizines.474 Ruthenium and iridium complexes of1,2,3-diaza- and 1,2,4,3-triaza-phospholes have also been characterised, anoticeable feature being the addition of the solvent ethanol to a PQN bondduring the complex formation sequence.475

The chemistry of phospholide and related anions and their metallocenecomplexes has continued to attract interest but at a much lower level thanin the previous year. Monophosphaferrocenes bearing pyrazolylmethyl

Organophosphorus Chem., 2011, 40, 1–51 | 33

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 34: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

or imidazolylmethyl substituents on the phospholide ring have beenprepared476 and routes to new C-functionalised 1,1-diphosphaferroceneshave also been developed.,477,478 Scheer’s group has reported the synthesisof two new pentaphosphaferrocenes containing the Z5-P5 pentaphospholideligand479 and also a hexaphosphaferrocene involving two 1,2,4-tripho-spholyl anions that acts as a bridging ligand in a variety of oligomericand polymeric copper complexes.480 Among other phospholide systemscharacterised are potassium, calcium and strontium salts of the 2,5-diphenylphospholide anion,481 dysprosium salts of sterically crowdedmonophospholides,482 zirconium complexes of 1,3-diphospholides and1,2,4-triphospholides,483 and titanium and zirconium complexes of 1,3,5-triphospholides.484 The reaction of the monophospholide complex2,5-diphenylphosphacymantrene with solid KOH in the presence of crownethers has been shown to proceed via nucleophilic attack by hydroxide ionat phosphorus, resulting in the formation of an anionic Z4-phosphorylmanganese complex.485 A simple route to the sodium salt of the3,5-diphenyl-1,2,4-diazaphospholide anion has been developed from thereaction of an easily accessible sodium phosphide reagent with 1,4-dichloro-2,3-diazabutadienes.486 A study of the reactions of lithium 1,3-benzaza-phospholides with diorganochlorophosphines has shown that either N- orP-phosphanylation can occur, depending on the steric bulk of the chlor-ophosphine.487 A simple route has been developed to the benzo-1,3,2-diazaphospholide anion and the benzo-1,3,2-diazaphospholium cation,these existing as stable isoelectronic aromatic species.488 Tin(II) complexesof the 3,5-di-tBu-1,2,4-diazaphospholide ion have been prepared andstructurally characterised.489

PP

XX

I ro rB ,lC ,F = X )841()741(

Relatively little has appeared in the past year on the synthesis and re-activity of the six membered, potentially aromatic, phosphinine ring system.A route to the first C2-asymmetric phosphinine (147), derived from (þ )-camphor, has been developed from the reaction of a pyrylium salt precursorwith P(TMS)3. The chiral phosphinine is a crystalline, air-stable solid andforms complexes with metal ions, therefore having some potential as aligand in homogeneous catalysis.490 A pyrylium salt-P(TMS)3 final step wasalso used in the synthesis of a series of 2-(2 0-halo)triarylphosphinines (148),subsequently shown to form a series of tungsten(0) and rhodium(I) com-plexes involving coordination of the phosphorus sp2 lone pair to themetal.491 Interest has continued in studies of the coordination chemistry ofphosphabarrelenes, derived from the established reactions of phosphinines

34 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 35: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

with benzyne.492,493 Further studies have appeared of the coordinationchemistry of an anionic l5-phosphinine-based SPS pincer ligand.494 Thesynthesis of a l5-phosphinoline, having a delocalised ylidic structure, hasalso been reported.495

References

1 A. Pascariu, S. Iliescu, A. Popa and G. Ilia, J. Organomet. Chem., 2009, 694,

3982.

2 (a) Z. Freixa and P. W. N. M. van Leeuwen, Coord. Chem. Rev., 2008, 252,

1755; and (b) L. Poorters, M. Lejeune, D. Armspach and D. Matt, Actualite

Chimique, 2009, 326, 15.

3 G. C. Hargaden and P. J. Guiry, Chem. Rev., 2009, 109, 2505.

4 D. Lorcy, N. Bellec, M. Fourmigue and N. Avarvari, Coord. Chem. Rev., 2009,

253, 1398.

5 (a) T. Benincori, A. Marchesi, P. R. Mussini, T. Pilati, A. Ponti, S. Rizzo and

F. Sannicolo, Chem. Eur. J., 2009, 15, 86; and (b) T. Benincori, A. Marchesi,

T. Pilati, A. Ponti, S. Rizzo and F. Sannicolo, Chem. Eur. J., 2009, 15, 94.

6 T. Korenaga, K. Osaki, R. Maenishi and T. Sakai, Org. Lett., 2009, 11, 2325.

7 B. Buster, A. A. Diaz, T. Graham, R. Khan, M. A. Khan, D. R. Powell and

R. J. Wehmschulte, Inorg. Chim. Acta, 2009, 362, 3465.

8 S. Vuoti, J. Autio, M. Haukka and J. Pursiainen, Inorg. Chim. Acta, 2009, 362,

4685.

9 J. Ruan, L. Shearer, J. Mo, J. Bacsa, A. Zanotti-Gerosa, F. Hancock, X. Wu

and J. Xiao, Org. Biomol. Chem., 2009, 7, 3236.

10 R. Pratap, D. Parrish, P. Gunda, D. Venkataraman and M. K. Lakshman,

J. Am. Chem. Soc., 2009, 131, 12240.

11 J. D. Hicks, A. M. Hyde, A. M. Cuezva and S. L. Buchwald, J. Am. Chem.

Soc., 2009, 131, 16720.

12 X. Sun, W. Li, G. Hou, L. Zhou and X. Zhang, Adv. Synth. Catal., 2009, 351,

2553.

13 F. Aloui and B. B. Hassine, Tetrahedron Lett., 2009, 50, 4321.

14 S. Shirakawa, T. Kimura, S. Murata and S. Shimizu, J. Org. Chem., 2009, 74,

1288.

15 R. Kadyrov, R. M. Koenigs, C. Brinkmann, D. Voigtlaender and M. Rueping,

Angew. Chem. Int. Ed., 2009, 48, 7556.

16 G. Menard, H. Jong and M. D. Fryzuk, Organometallics, 2009, 28, 5253.

17 P. Wawrzyniak, A. M. Z. Slavin, A. L. Fuller, J. D. Woollins and P. Kilian,

Dalton Trans., 2009, 7883.

18 P. Wawrzyniak, A. L. Fuller, A. M. Z. Slavin and P. Kilian, Inorg. Chem.,

2009, 48, 2500.

19 Y. Ren, T. Linder and T. Baumgartner, Can. J. Chem., 2009, 87, 1222.

20 T. Agou, M. Sekine, J. Kobayashi and T. Kawashima, Chem. Eur. J., 2009,

15, 5056.

21 S. O. Jeon, K. S. Yook, C. W. Joo and J. Y. Lee, J. Mater. Chem., 2009,

19, 5940.

22 J. Yin, Y. Lin, X. Cao, G-A. Yu, H. Tu and S. H. Liu, Dyes and Pigments,

2009, 81, 152.

23 M. H. Garcia, P. Florindo, M. F. M. Piedade and M. T. Duarte, Polyhedron,

2009, 28, 239.

24 T. Schulz, C. Torborg, B. Schaffner, J. Huang, A. Zapf, R. Kadyrov,

A. Borner and M. Beller, Angew. Chem. Int. Ed., 2009, 48, 918.

Organophosphorus Chem., 2011, 40, 1–51 | 35

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 36: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

25 Y. Canac, N. Debono, L. Vendier and R. Chauvin, Inorg. Chem., 2009,

48, 5562.

26 R. Ballesteros-Garrido, L. Bonnafoux, F. R. Leroux, B. Abarca, and

F. Colobert, Dalton Trans., 2009, 5068.

27 V. N. Kalinin, S. N. Lebedev, I. A. Cherepanov, I. A. Godovikov, K. A.

Lyssenko and E. Hey-Hawkins, Polyhedron, 2009, 28, 2411.

28 J. D. Huang, X. P. Hu and Z. Zheng, Chin. Chem. Lett., 2008, 19, 261.

29 X. Meng, X. Li and D. Xu, Tetrahedron: Asymmetry, 2009, 20, 1402.

30 L. J. Hounjet, M. Bierenstiel, M. J. Ferguson, R. McDonald and M. Cowie,

Dalton Trans., 2009, 4213.

31 D. B. G. Williams, S. J. Evans, H. de Bod, M. S. Mokhadinyana and

T. Hughes, Synthesis, 2009, 3106.

32 (a) A. Hamada and P. Braunstein, Inorg. Chem., 2009, 48, 1624; and (b)

A. Hamada and P. Braunstein, Organometallics, 2009, 28, 1688.

33 C. Ferrer, A. Riera and X. Verdaguer, Organometallics, 2009, 28, 4571.

34 A.A. Tyutyunov, S. E. Lyubimov, E.G.Rys, T. A. Verbitskaya, P. V. Petrovskii,

V. A. Davankov and V. N. Kalinin, Russ. Chem. Bull. Int. Ed., 2008, 57, 2307.

35 K. Spannhoff, N. Kuhl, G. Kehr, R. Frolich and G. Erker, J. Am. Chem. Soc.,

2009, 131, 17836.

36 (a) G. Lubbe, C. Nilewski, G. Kehr, R. Frohlich and G. Erker,Z. Naturforsch.,

2009, 64b, 1413; and (b) R. Sebesta and A. Skvorcova, J. Organomet. Chem.,

2009, 694, 1898.

37 (a) M.Kato, H. Oki, K. Ogata and S. Fukuzawa, Synlett, 2009, 1299; (b) H. Oki,

I. Oura, T. Nakamura, K. Ogata and S. Fukuzawa, Tetrahedron: Asymmetry,

2009, 20, 2185; and (c)M. Kato, T. Nakamura, K. Ogata and S. Fukuzawa, Eur.

J. Org. Chem., 2009, 5232.

38 M. Thimmaiah, R. L. Luck and S. Fang, The Open Org. Chem. J., 2008, 2, 1.

39 M. Lamac, I. Cısarova and P. Stepnicka, New J. Chem., 2009, 33, 1549.

40 B. Gschwend, B. Pugin, A. Bertogg and A. Pfaltz,Chem. Eur. J., 2009, 15, 12993.

41 X. Feng, B. Pugin, B. Gschwend, F. Spindler, M. Paas and H-U. Blaser,

ChemCatChem., 2009, 1, 85.

42 G. Espino, L. Xiao, M. Puchberger, K. Mereiter, F. Spindler, B. R. Manzano,

F. A. Jalon, and W. Weissensteiner Dalton Trans. 2009, 2751.

43 A. Connell, P. J. Holliman, I. R. Butler, L. Male, S. J. Coles, P. N. Horton,

M. B. Hursthouse, W. Clegg and L. Russo, J. Organomet. Chem., 2009

694, 2020.

44 R. V. Smaliy, M. Beauperin, H. Cattey, P. Meunier, J-C. Hierso, J. Roger, H.

Doucet and Y. Coppel, Organometallics, 2009, 28, 3152.

45 S. K. Mohapatra, S. Buschel, C. Daniliuc, P. G. Jones and M. Tamm, J. Am.

Chem. Soc., 2009, 131, 17014.

46 D. Cetiner, B. Jacques, E. Payet, M. Chavarot-Kerlidou, F. Rose-Munch, E.

Rose, J-P. Tranchier and P. Herson, Dalton Trans., 2009, 27.

47 J. Jackson and A. Xia, Tetrahedron Lett., 2009, 50, 7217.

48 G. Pet +ocz, G. Rangits, M. Shaw, H. de Bod, D. B. G. Williams and L. Kollar,

J. Organomet. Chem., 2009, 694, 219.

49 K. Velauthamurty, S. J. Higgins, R. M. G. Rajapakse, J. Bacsa, H. van

Zalinge, R. J. Nichols and W. Haiss, J. Mater. Chem., 2009, 19, 1850.

50 K. M. Allan and J. L. Spencer, Tetrahedron Lett., 2009, 50, 834.

51 L. D. Field, B. A. Messerle, K. Q. Vuong and P. Turner, Dalton Trans., 2009,

3599.

52 W. Jia, X. Chen, R. Guo, C. Sui-Seng, D. Amoroso, A. J. Lough and K.

Abdur-Rashid, Dalton Trans., 2009, 8301.

53 A. R. Shaffer and J. A. R. Schmidt, Chem. Eur. J., 2009, 15, 2662.

36 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 37: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

54 J. J. R. Frew, K. Damian, H. Van Rensburg, A. M. Z. Slawin, R. P. Tooze and

M. L. Clarke, Chem. Eur. J., 2009, 15, 10504.

55 G. Hogarth and J. Kilmartin, Transition Met. Chem., 2008, 33, 569.

56 G. Jin, C. Jones, P. C. Junk, K-A. Lippert, R. P. Rose and A. Stasch, New J.

Chem., 2009, 33, 64.

57 C. Hegedus, H. Gulyas, A. Szoll +osy and J. Bakos, Inorg. Chim. Acta, 2009,

362, 1650.

58 M. Hussain, S. Kohser, K. Janssen, R. Wartchow and H. Butenschon,

Organometallics, 2009, 28, 5212.

59 A. M. Gonzalez-Nogal, P. Cuadrado and M. A. Sarmentero Eur. J. Org.

Chem., 2009, 850.

60 A. Dzambasky, J. Baumgartner and K. Hassler, J. Organomet. Chem., 2009,

694, 757.

61 S. Traut, C. von Hanisch and H-J. Kathagen, Eur. J. Inorg. Chem., 2009, 777.

62 C. von Hanisch and S. Stahl, Z. Anorg. Allg. Chem., 2009, 635, 2230.

63 R. J. Less, V. Naseri and D. S. Wright, Organometallics, 2009, 28, 1995.

64 V. A. Stepanova, V. V. Dunina and I. P. Smoliakova, Organometallics, 2009,

28, 6546.

65 J. E. Nycz, Phosphorus Sulfur, Silicon, 2009, 184, 2605.

66 A-M. Fuller, A. J. Mountford, M. L. Scott, S. J. Coles, P. N. Horton, D. L.

Hughes, M. B. Hursthouse and S. J. Lancaster, Inorg. Chem., 2009, 48, 11474.

67 B. A. Trofimov and N. K. Gusarova, Mendeleev Commun., 2009, 19, 295.

68 P. Nandi, J. L. Dye, P. Bentley and J. E. Jackson, Org. Lett., 2009, 11, 1689.

69 C. Reynaud, Y. Fall, M. Feuerstein, H. Doucet and M. Santelli, Tetrahedron,

2009, 65, 7440.

70 M. G. Schrems and A. Pfaltz, Chem. Commun., 2009, 6210.

71 X. Hao, M. Kuriyama, Q. Chen, Y. Yamamoto, K. Yamada and K. Tomioka,

Org. Lett., 2009, 11, 4470.

72 H. Grutzmacher, J. Geir, D. Stein, T. Ott, H. Schonberg, R. H. Sommerlade,

S. Boulmaaz, J. P. Wolf, P. Murer and T. Ulrich, Chimia, 2008, 62, 18.

73 L. Hintermann, T. T. Dang, A. Labonne, T. Kribber, L. Xiao and P. Naumov,

Chem. Eur. J., 2009, 15, 7167.

74 C-C. Ho, S. Chatterjee, T-L. Wu, K-T. Chan, Y-W. Chang, T-H. Hsiao and

H. M. Lee, Organometallics, 2009, 28, 2837.

75 E. Belanger, M-F. Pouliot and J-F. Paquin, Org. Lett., 2009, 11, 2201.

76 M. Ranocchiari and A. Mezzetti, Organometallics, 2009, 28, 1286.

77 K. Damian, M. L. Clarke and C. J. Cobley, Appl. Organometal. Chem., 2009,

23, 272.

78 M. Westerhausen, Z. Anorg. Allg. Chem., 2009, 635, 13.

79 T. M. A. Al-Shboul, G. Volland, H. Gorls and M. Westerhausen, Z. Anorg.

Allg. Chem., 2009, 635, 1568.

80 (a) P. Henke and H. Schnockel, Chem. Eur. J., 2009, 15, 13391; (b) P. Henke,

T. Pankewitz, W. Klopper, F. Breher and H. Schnockel, Angew. Chem. Int.

Ed., 2009, 48, 8141; and (c) P. Henke, M. Huber, J. Steiner, K. Bowen, B.

Eichhorn and H. Schnockel, J. Am. Chem. Soc., 2009, 131, 5698.

81 A. Y. Timoshkin, I. V. Kazakov and C. von Hanesch, Russ. J. Gen. Chem.,

2009, 79, 1067.

82 S. N. Konchenko, N. A. Pushkarevsky, M. T. Gamer, R. Koppe, H.

Schnockel and P. W. Roesky, J. Am. Chem. Soc., 2009, 131, 5740.

83 K. Izod, J. Stewart, E. R. Clark, W. McFarlane, B. Allen, W. Clegg and R. W.

Harrington, Organometallics, 2009, 28, 3327.

84 S. Gomez-Ruiz, B. Gallego and E. Hey-Hawkins, Dalton Trans., 2009, 2915.

85 V. T. Trepohl, R. Frolich and M. Oestreich, Tetrahedron, 2009, 65, 6510.

Organophosphorus Chem., 2011, 40, 1–51 | 37

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 38: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

86 V. S. Chan, M. Chiu, R. G. Bergman and F. D. Toste, J. Am. Chem. Soc.,

2009, 131, 6021.

87 J-D. Lee, T. T. Co, T-J. Kim and S. O. Kang, Synlett, 2009, 771.

88 S. J. Canipa, P. O’Brien and S. Taylor,Tetrahedron: Asymmetry, 2009, 20, 2407.

89 J. Granander, F. Secci, P. O’Brien and B. Kelly, Tetrahedron: Asymmetry,

2009, 20, 2432.

90 J. J. Gammon, P. O’Brien and B. Kelly, Org. Lett., 2009, 11, 5022.

91 L. I. Rodrıguez, O. Rossell, M. Seco and G. Muller, J. Organomet. Chem.,

2009, 694, 1938.

92 Y. Morisaki, H. Imoto, K. Tsurui and Y. Chujo, Org. Lett., 2009, 11, 2241.

93 K. Izod, L. J. Bowman, C. Wills, W. Clegg and R. W. Harrington., Dalton

Trans., 2009, 3340.

94 J. Konu, H. M. Tuononen and T. Chivers, Inorg. Chem., 2009, 48, 11788.

95 C. Wills, K. Izod, J. Young, W. Clegg and R. W. Harrington, Dalton Trans.,

2009, 6159.

96 J. Langer, K. Wimmer, H. Gorls and M. Westerhausen, Dalton Trans., 2009,

2951.

97 L. Orzechowski, G. Jansen, M. Lutz and S. Harder, Dalton Trans., 2009,

2958.

98 M. Blug, D. Grunstein, G. Alcaraz, S. Sabo-Etienne, X-F. Le Goff, P. Le

Floch and N. Mezailles, Chem. Commun., 2009, 4432.

99 R. Beck, H. Sun, X. Li and H-F. Klein, Z. Anorg. Allg. Chem., 2009

635, 99.

100 P. Gualco, T-P. Lin, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, L. M.

Perez, A. Amgoune, L. Maron, F. P. Gabbaı and D. Bourissou, Angew. Chem.

Int. Ed., 2009, 48, 9892.

101 M. Sircoglou, M. Mercy, N. Saffon, Y. Coppel, G. Bouhadir, L. Maron and

D. Bourissou, Angew. Chem. Int. Ed., 2009, 48, 3454.

102 T. Cantat, B. L. Scott, D. E. Morris and J. L. Kiplinger, Inorg. Chem., 2009,

48, 2114.

103 J. Wassenaar and J. N. H. Reek, J. Org. Chem., 2009, 74, 8403.

104 D. G. Yakhvarov, K. R. Basvani, M. K. Kindermann, A. B. Dobrynin, I. A.

Litvinov, O. G. Sinyashin, P. G. Jones and J. Heinicke, Eur. J. Inorg. Chem.,

2009, 1234.

105 L. A. Oparina, S. F. Malysheva, N. K. Gusarova, N. A. Belogorlova, O. V.

Vysotskaya, A. V. Stepanov, A. I. Albanov and B. A. Trofimov, Synthesis,

2009, 3427.

106 B. A. Trofimov, S. F. Malysheva, N. A. Belogorlova, V. A. Kuimov, A. I.

Albanov and N. K. Gusarova, Eur. J. Org. Chem., 2009, 3427.

107 N. K. Gusarova, S. F. Malysheva, L. A. Oparina, N. A. Belogorlova, A. P.

Tantsyrev, L. N. Parshina, B. G. Sukhov, R. T. Tlegenov and B. A. Trofimov,

ARKIVOC, 2009, viii, 260.

108 M. Sunjuk, M. Al-Noaimi, G. A. Sheikha, E. Lindner, B. El-Eswed and K.

Sweidan, Polyhedron, 2009, 28, 1393.

109 M. Okazaki, K. Yoshimura, M. Takano and F. Ozawa, Organometallics, 2009,

28, 7055.

110 J. Flapper, P. W. N. M. van Leeuwen, C. J. Elsevier and P. C. J. Kamer,

Organometallics, 2009, 28, 3264.

111 (a) S. Greenberg, G. L. Gibson and D. W. Stephan, Chem. Commun., 2009,

304; and (b) S. Greenberg and D. W. Stephan, Inorg. Chem., 2009, 48, 8623.

112 C. A. Busacca, E. Farber, J. DeYoung, S. Campbell, N. C. Gonnella,

N. Grinberg, N. Haddad, H. Lee, S. Ma, D. Reeves, S. Shen and

C. H. Senanayake, Org. Lett., 2009, 11, 5594.

38 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 39: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

113 G. Kumaraswamy, G. V. Rao, A. N. Murthy and B. Sridhar, Synlett, 2009,

1180.

114 (a) Y. Zhang, S. A. Pullarkat, Y. Li and P-H. Leung, Inorg. Chem., 2009, 48,

5535; (b) Y. Zhang, L. Tang, S. A. Pullarkat, F. Liu, Y. Li and P-H. Leung,

J. Organomet. Chem., 2009, 694, 3500; and (c) M. Yuan, S. A. Pullarkat,

M. Ma, Y. Zhang, Y. Huang, Y. Li, A. Goel and P-H. Leung, Organome-

tallics, 2009, 28, 780.

115 F. Liu, S. A. Pullarkat, Y. Li, S. Chen, M. Yuan, Z. Y. Lee and P-H. Leung,

Organometallics, 2009, 28, 3941.

116 M. Mercy and L. Maron, Dalton Trans., 2009, 3014.

117 D. V. Moiseev, P. Marcazzan and B. R. James, Can. J. Chem., 2009, 87,

582.

118 Y. Guo, H. Fu, H. Chen and X. Li, Catalysis Commun., 2008, 9, 1842.

119 H. Mahdavi and J. Amani, Tetrahedron Lett., 2009, 50, 5923.

120 F. Tian, D. Yao, Y. J. Zhang and W. Zhang, Tetrahedron, 2009, 65, 9609.

121 H-P. Deng, Y. Wei and M. Shi, Adv. Synth. Catal., 2009, 351, 2897.

122 C. May, Y. Sun, G. Wolmershauser and W. R. Thiel, Z. Naturforsch., 2009,

64b, 1438.

123 S-M. Lu and C. Bolm, Adv. Synth. Catal., 2008, 350, 1101.

124 K. Barta, G. Francio, W. Leitner, G. C. Lloyd-Jones and I. R. Shepperson,

Adv. Synth. Catal., 2008, 350, 2013.

125 E. G. Tennyson and R. C. Smith, Inorg. Chem., 2009, 48, 11483.

126 S. Doherty, C. H. Smyth, R. W. Harrington and W. Clegg, Organometallics,

2009, 28, 5273.

127 C-J. Wang, C-B. Wang, D. Chen, G. Yang, Z. Wu and X. Zhang, Tetrahedron

Lett., 2009, 50, 1038.

128 D. A. Rankic, J. M. Hopkins, M. Parvez and B. A. Keay, Synlett, 2009, 2513.

129 T. Mino, Y. Naruse, S. Kobayashi, S. Oishi, M. Sakamoto and T. Fujita,

Tetrahedron Lett., 2009, 50, 2239.

130 F. Dabritz, G. Theumer, M. Gruner and I. Bauer, Tetrahedron, 2009, 65, 2995.

131 P. Wang, X. Liu, J. Yang, Y. Yang, L. Zhang, Q. Yang and C. Li, J. Mater.

Chem., 2009, 19, 8009.

132 S. Doherty, C. H. Smyth, A. Harriman, R. W. Harrington and W. Clegg,

Organometallics, 2009, 28, 888.

133 C. E. Hamilton and A. R. Barron, Main Group Chemistry, 2009, 8, 275.

134 T. Fujihara, S. Yoshida, J. Terao and Y. Tsuji, Org. Lett., 2009, 11, 2121.

135 (a) S. Sameni, C. Jeunesse, D. Matt and L. Toupet, Chem. Eur. J., 2009, 15,

10446; and (b) S. Sameni, M. Lejeune, C. Jeunesse, D. Matt and R. Welter,

Dalton Trans., 2009, 7912.

136 T. Fujihara, S. Kubouchi, Y. Obora, M. Tokunaga, K. Takenaka and

Y. Tsuji, Bull. Chem. Soc. Jpn., 2009, 82, 1187.

137 H. El Moll, D. Semeril, D. Matt, M-T. Youinou and L. Toupet, Org. Biomol.

Chem., 2009, 7, 495.

138 M. F. Haddow, A. J. Middleton, A. G. Orpen, P. G. Pringle and R. Papp,

Dalton Trans., 2009, 202.

139 C. Petit, A. Favre-Reguillon, B. Albela, L. Bonneviot, G. Mignani and

M. Lemaire, Organometallics, 2009, 28, 6379.

140 L. M. Broomfield, D. Boschert, J. A. Wright, D. L. Hughes and M. Boch-

mann, J. Organomet. Chem., 2009, 694, 4084.

141 C. A. Busacca, T. Bartholomeyzik, S. Cheekoori, R. Raju, M. Eriksson,

S. Kapadia, A. Saha, X. Zeng and C. H. Senanayake, Synlett, 2009, 287.

142 H. Mollendal, A. Konovalov and J-C. Guillemin, J. Phys. Chem. A, 2009, 113,

12904.

Organophosphorus Chem., 2011, 40, 1–51 | 39

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 40: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

143 (a) H. Tanaka, M. Kuroboshi, T. Yano, M. Hoshino and H. Kawakubo, PCT

Int. Appl., WO 2009, 139, 436; and (b) Chem. Abstr., 2009, 151, 571203.

144 M. Stankevic and K. M. Pietrusiewicz, Tetrahedron Lett., 2009, 50, 7093.

145 (a) K. Lux and K. Karaghiosoff, Phosphorus, Sulfur, Silicon, 2009, 184, 1091;

and (b) see also K. Lux, O. Schon and K. Karaghiosoff, Z. Anorg. Allg. Chem.,

2009, 635, 2465.

146 T. Steinke, B. K. Shaw, H. Jong, B. O. Patrick and M. D. Fryzuk, Organo-

metallics, 2009, 28, 2830.

147 Y. Miyake, K. Nakajima, K. Sasaki, R. Saito, H. Nakanishi and Y. Nishi-

bayashi, Organometallics, 2009, 28, 5240.

148 K. H. Shaughnessy, Chem. Rev., 2009, 109, 643.

149 L. T. Mika, L. Orha, N. Farkas and I. T. Horvath, Organometallics, 2009, 28,

1593.

150 M. J. Wiester and C. A. Mirkin, Inorg. Chem., 2009, 48, 8054.

151 J. I. van der Vlugt and J. N. H. Reek, Angew. Chem. Int. Ed., 2009, 48, 8832.

152 F. Leca, F. Fernandez, G. Muller, C. Lescop, R. Reau and M. Gomez, Eur. J.

Inorg. Chem., 2009, 5583.

153 O. Oms, T. Jarrosson, L. H. Tong, A. Vaccaro, G. Bernardinelli and A. F.

Williams, Chem. Eur. J., 2009, 15, 5012.

154 E. M. Schuster, G. Nisnevich, M. Botoshansky and M. Gandelman, Orga-

nometallics, 2009, 28, 5025.

155 A. D. Miller, S. A. Johnson, K. A. Tupper, J. L. McBee and T. D. Tilley,

Organometallics, 2009, 28, 1252.

156 G. Baccolini, G. Micheletti and C. Boga, J. Org. Chem., 2009, 74, 6812.

157 G. Baccolini, C. Boga, M. Mazzacurati and G. Micheletti, Chem. Eur. J., 2009,

15, 597.

158 F. Liu, S. A. Pullarkat, K. W. Tan, Y. Li and P-H. Leung, Inorg. Chem., 2009,

48, 11394.

159 M. Yuan, S. A. Pullarkat, C. H. Yeong, Y. Li, D. Krishnan and P-H. Leung,

Dalton Trans., 2009, 3668.

160 B. Zupancic, B. Mohar and M. Stephan, Tetrahedron Lett., 2009, 50, 7382.

161 R. A. Aitken, G. Dawson, N. S. Keddie, H. Kraus, A. M. Z. Slawin. J.

Wheatley and J. D. Woollins, Chem. Commun., 2009, 7381.

162 M. V. Jimenez, J. J. Perez-Torrente, M. I. Bartolome and L. A. Oro, Synthesis,

2009, 1916.

163 M. Ito, A. Osaku, C. Kobayashi, A. Shiibashi and T. Ikariya,Organometallics,

2009, 28, 390.

164 S. Burck, I. Hajd’ok, M. Nieger, D. Bubrin, S. Schulze and D. Gudat,

Z. Naturforsch., 2009, 64b, 63.

165 M. Hayashi, T. Yamasaki, Y. Kobayashi, Y. Imai and Y. Watanabe, Eur. J.

Org. Chem., 2009, 4956.

166 A. K. Brisdon and C. J. Herbert, Chem. Commun., 2009, 6658.

167 L. I. Goryunov, J. Grobe and V. D. Shteingarts, Coll. Czech. Chem. Commun.,

2008, 73, 1612.

168 M. Janssen, C. Muller and D. Vogt, Adv. Synth. Catal., 2009, 351, 313.

169 K. Fujita, M. Kujime and T. Muraki, Bull. Chem. Soc. Jpn., 2009, 82, 261.

170 P. Servin, R. Laurent, L. Gonsalvi, M. Tristany, M. Peruzzini, J-P. Majoral

and A-M. Caminade, Dalton Trans., 2009, 4432.

171 D. A. Krogstad, K. E. Gohmann, T. L. Sunderland, A. L. Geis, P. Bergamini,

L. Marvelli and V. G. Young Jr., Inorg. Chim. Acta, 2009, 362, 3049.

172 J. S. J. McCahill and D. W. Stephan, Can. J. Chem., 2009, 87, 1620.

173 B. Drahos, Z. Rohlık, J. Kotek, I. Cısarova and P. Hermann, Dalton Trans.,

2009, 4942.

40 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 41: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

174 H. Lai, Z. Huang, Q. Wu and Y. Qin, J. Org. Chem., 2009, 74, 283.

175 Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem. Int. Ed., 2009, 48,

5345.

176 D. Julienne, O. Delacroix and A-C. Gaumont, Phosphorus, Sulfur, Silicon,

2009, 184, 846.

177 M. N. Lanteri, R. A. Rossi and S. E. Martın, J. Organomet. Chem., 2009, 694,

3425.

178 W. J. Fleming, H. Muller-Bunz, V. Lillo, E. Fernandez and P. J. Guiry, Org.

Biomol. Chem., 2009, 7, 2520.

179 B. Di Credico, F. F de Biani, L. Gonsalvi, A. Guerri, A. Ienco, F. Laschi,

M. Peruzzini, G. Reginato, A. Rossin and P. Zanello, Chem. Eur. J., 2009, 15,

11985.

180 E. Ullah, J. McNulty and A. Robertson, Tetrahedron Lett., 2009, 50,

5599.

181 X. Sun, W. Li, L. Zhou and X. Zhang, Chem. Eur. J., 2009, 15, 7302.

182 S. Burck, S. G. A. van Assema, B. Lastdrager, J. C. Slootweg, A. W. Ehlers,

J. M. Otero, B. Dacunha-Marinho, A. L. Llamas-Saiz, M. Overhand,

M. J. van Raaij and K. Lammertsma, Chem. Eur. J., 2009, 15, 8134.

183 G. Gachot, P. Pellon, T. Roisnel and D. Lorcy, J. Organomet. Chem., 2009,

694, 2531.

184 K. Sakakibara and K. Nozaki, Bull. Chem. Soc. Jpn., 2009, 82, 1006.

185 J. Meeuwissen, M. Kuil, A. M. van der Burg, A. J. Sandee and J. N. H. Reek,

Chem. Eur. J., 2009, 15, 10272.

186 J-J. Gong, K. Yuan and X-Y. Wu, Tetrahedron: Asymmetry, 2009

20, 2117.

187 M. R. Eberhard, B. van Vliet, L. D. Pachon, G. Rothenburg, G. Eastham,

H. Kooijman, A. L. Spek and C. J. Elsevier, Eur. J. Inorg. Chem., 2009, 1313.

188 M. Eggenstein, A. Thomas, J. Theuerkauf, G. Francio and W. Leitner, Adv.

Synth. Catal., 2009, 351, 725.

189 M-H. Thibault, B. E. G. Lucier, R. W. Schurko and F-G. Fontaine, Dalton

Trans., 2009, 7701.

190 A. Barandov and U. Abram, Polyhedron, 2009, 28, 1155.

191 X-F. Guo and G-J. Kim, React. Kinet. Catal. Lett., 2008, 93, 325.

192 Y. Uozumi, Y. Matsuura, T. Arakawa and Y. M. A. Yamada, Angew. Chem.

Int. Ed., 2009, 48, 2708.

193 L. Wang, A. Reis, A. Seifert, T. Philippi, S. Ernst, M. Jia and W. R. Thiel,

Dalton Trans., ,2009, 3315.

194 (a) G. S. Mahadik, S. A. Knott, L. F. Szczepura, S. J. Peters, J. M. Standard

and S. R. Hitchcock, J. Org. Chem.,2009, 748164; and (b) G. S. Mahadik,

S. A. Knott, L. F. Szczepura and S. R. Hitchcock, Tetrahedron: Asymmetry

2009, 20, 1132.

195 K. Glegola, C. Midrier, E. Framery and K. M. Pietrusiewicz, Phosphorus,

Sulfur, Silicon, 2009, 184, 1065.

196 Z-L. Yuan, J-J. Jiang and M. Shi, Tetrahedron, 2009, 65, 6001.

197 (a) Y. Segawa, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009, 131,

9201; and (b) Y. Segawa, M. Yamashita and K. Nozaki, Organometallics,

2009, 28, 6234.

198 P. W. Miller, N. J. Long and A. J. P. White, Dalton Trans., 2009, 5284.

199 C. Klemps, E. Payet, L. Magna, L. Saussine, X. F. Le Goff and P. Le Floch,

Chem. Eur. J., 2009, 15, 8259.

200 A. T. Ekubo, M. R. J. Elsegood, A. J. Lake and M. B. Smith, Inorg. Chem.,

2009, 48, 2633.

201 D. H. Pool and D. L. DuBois, J. Organomet. Chem., 2009, 694, 2858.

Organophosphorus Chem., 2011, 40, 1–51 | 41

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 42: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

202 A. D. Burrows, R. W. Harrington, A. S. Kirk, M. F. Mahon, F. Marken, J. E.

Warren and M. K. Whittlesey, Inorg. Chem., 2009, 48, 9924.

203 C. Jayamurugan, C. P. Umesh and N. Jayaraman, J. Mol. Catal. A: Chem.,

2009, 307, 142.

204 A. A. Karasik, D. V. Kulikov, A. S. Balueva, S. N. Ignat’eva, O. N. Kataeva,

P. Lonnecke, A. V. Kozlov, S. K. Latypov, E. Hey-Hawkins and O. G.

Sinyashin, Dalton Trans., 2009, 490.

205 L. I. Grekov and A. O. Litinskii, Russ. J. Gen. Chem., 2009, 79, 905.

206 M. A. Pet, M. F. Cain, R. P. Hughes, D. S. Glueck, J. A. Golen and A. L.

Rheingold, J. Organomet. Chem., 2009, 694, 2279.

207 A. Voituriez, A. Panossian, N. Fleury-Bregeot, P. Retailleau and A. Marinetti,

Adv. Synth. Catal., 2009, 351, 1968.

208 (a) J. Tauchman, I. Cısarova and P. Stepnicka, Organometallics, 2009, 28,

3288; (b) J. Schulz, I. Cısarova and P. Stepnicka, J. Organomet. Chem., 2009,

694, 2519; and (c) P. Stepnicka, M. Krupa, M. Lamac and I. Cısarova, J.

Organomet. Chem., 2009, 694, 2987.

209 R. Sebesta and F. Bilcık, Tetrahedron: Asymmetry, 2009, 20, 1892.

210 D-Y. Wang, X-P. Hu, C-J. Hou, J. Deng, S-B. Yu, Z-C. Duan, J-D. Huang

and Z. Zheng, Org. Lett., 2009, 11, 3226.

211 S. Fukuzawa, I. Oura, K. Shimizu, M. Kato and K. Ogata, Eur. J. Org. Chem.,

2009, 716.

212 S. M. Habibi-Khorassani, M. T. Maghsoodlou, A. Ebrahimi, M. A. Kazemian

and M. Zakarianejad, Phosphorus, Sulfur, Silicon, 2009, 184, 2959.

213 M. R. Islami, M. A. Amrollahi and M. Iranmanesh, ARKIVOC, 2009, (x), 35.

214 N. Zabarjad-Shiraz, I. Yavari, A. Biglari, S. A. Izadiar and H-R. Bijanzadeh,

Phosphorus, Sulfur, Silicon, 2009, 184, 3023.

215 M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorassani, H. M. Moghaddam,

M. Nassiri and J. Salehzadeh, Phosphorus, Sulfur, Silicon, 2009, 184, 1713.

216 A. Ramazani and F. Sadri, Phosphorus, Sulfur, Silicon, 2009, 184, 3126.

217 R. Heydari, N. Hazeri, M. T. Maghsoodlou, S. M. Habibi-Khorassani,

F. Barahuie and G. Marandi, ARKIVOC, 2009 (vii), 86.

218 A. Hassanabadi, M. Anary-Abbasinejad and A. Dehghan, Synth. Commun.,

2009, 39, 132.

219 S. M. Habibi-Khorassani, M. T. Maghsoodlou, A. Ebrahimi, F. V. Farahani,

E. Mosaddeg and M. A. Kazemian, Tetrahedron Lett., 2009, 50, 3621.

220 S. M. Habibi-Khorassani, M. T. Maghsoodlou, M. Zakarianezhad, M. Nas-

siri, M. A. Kazemian and P. Karimi, Heteroatom Chem., 2008, 7, 723.

221 Z. Hassani, M. R. Islami, A. Moradi and M. Y. Rouh-Alamini, Phosphorus,

Sulfur, Silicon, 2009, 184, 568.

222 A. Ramazani, Phosphorus, Sulfur, Silicon, 2009, 184, 536.

223 A. Alizadeh, N. Zohreh and L-G. Zhu, Synthesis, 2009, 464.

224 F. Nasiri, M. Bidar and B. Atashkar, Monatsh. Chem., 2009, 140, 463.

225 M. H. Mosslemin, M. Anary-Abbasinejad, A. Hassanabadi, M. Mohebat and

M. R. Nateghi, Synth. Commun., 2009, 39, 3482.

226 M. Anary-Abbasinejad, K. Charkhati and H. Anaraki-Ardakani, Synlett,

2009, 1115.

227 M. Anary-Abbasinejad, E. Poorhassan and A. Hassanabadi, Synlett, 2009,

1929.

228 A. Ramazani and M.V. Holagh, Phosphorus, Sulfur, Silicon, 2009, 184, 171.

229 R. Baharfar, S. M. Vahdat and F. G. Hakimabadi, Monatsh. Chem., 2009,

140, 489.

230 A. Ramazani, S. Salmanpour and I. Amini, Phosphorus, Sulfur, Silicon, 2009,

184, 699.

42 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 43: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

231 H. Guo, Q. Xu and O. Kwon, J. Am. Chem. Soc., 2009, 131, 6318.

232 R. A. Jones and M. J. Krische, Org. Lett., 2009, 11, 1849.

233 S. Xu, L. Zhou, S. Zeng, R. Ma, Z. Wang and Z. He, Org. Lett., 2009, 11,

3498.

234 S. Xu, L. Zhou, R. Ma, H. Song and Z. He, Chem. Eur. J., 2009, 15, 8698.

235 M. Sampath and T-P. Loh, Chem. Commun., 2009, 1568.

236 Y. Liang, S. Liu and Z-X. Yu, Synlett, 2009, 905.

237 X-Y. Guan and M. Shi, J. Org. Chem., 2009, 74, 1977.

238 V. Declerck, J. Martinez and F. Lamaty, Chem. Rev., 2009, 109, 1.

239 D. Roy, C. Patel and R. B. Sunoj, J. Org. Chem., 2009, 74, 6936.

240 (a) X. Meng, Y. Huang, H. Zhao, P. Xie, J. Ma and R. Chen, Org. Lett., 2009,

11, 991; and (b) X. Meng, Y. Huang and R. Chen, Org. Lett., 2009, 11, 137.

241 M. Schuler, D. Duvvuru, P. Retailleau, J-F. Betzer and A. Marinetti, Org.

Lett., 2009, 11, 4406.

242 N. Pinto, N. Fleury-Bregeot and A. Marinetti, Eur. J. Org. Chem., 2009, 146.

243 J-M. Garnier, C. Anstiss and F. Liu, Adv. Synth. Catal., 2009, 351, 331.

244 X-Y. Guan, Y. Wei and M. Shi, J. Org. Chem., 2009, 74, 6343.

245 K. Wadhwa, V. R. Chintareddy and J. G. Verkade, J. Org. Chem., 2009

74, 6681.

246 A. Trofimov and V. Gevorgyan, Org. Lett., 2009, 11, 253.

247 X. Han, L-W. Ye, X-L. Sun and Y. Tang, J. Org. Chem., 2009, 74, 3394.

248 Y. K. Chung and G. C. Fu, Angew. Chem. Int. Ed., 2009, 48, 2225.

249 M. Schuler, A. Monney and V. Gouverneur, Synlett, 2009, 1733.

250 S. Zheng and X. Lu, Tetrahedron Lett., 2009, 50, 4532.

251 C. Spitz, J-F. Lohier, J. S. -de Oliveira Sanos, V. Reboul and P. Metzner,

J. Org. Chem., 2009, 74, 3936.

252 S. Zheng and X. Lu, Org. Lett., 2009, 11, 3978.

253 A. Siby, O. Loreau and F. Taran, Synthesis, 2009, 2365.

254 D-N. Liu and S-K. Tian, Chem. Eur. J., 2009, 15, 4538.

255 Y. Lin, D. Bernardi, E. Doris and F. Taran, Synlett, 2009, 1466.

256 S. Ye and J. Wu, Tetrahedron Lett., 2009, 50, 6273.

257 T. Mita and E. N. Jacobsen, Synlett, 2009, 1680.

258 S. Matsukawa and K. Tsukamoto, Org. Biomol. Chem., 2009, 7, 3792.

259 S. Matsukawa, I. Sekine and A. Iitsuka, Molecules, 2009, 14, 3353.

260 S. Matsukawa and I. Sekine, Synth. Commun., 2009, 39, 1718.

261 G-N. Ma, S-H. Cao and M. Shi, Tetrahedron: Asymmetry, 2009, 20, 1086.

262 A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati and

B. Carboni, Tetrahedron Lett., 2009, 50, 5248.

263 (a) J. W. Chan, C. E. Hoyle and A. B. Lowe, J. Am. Chem. Soc., 2009, 131,

5751; and (b) J. W. Chan, B. Yu, C. E. Hoyle and A. B. Lowe, Polymer, 2009,

50, 3158.

264 Y-P. Tian, F. Xu, Y. Wang, J-J. Wang and H-L. Li, J. Chem. Res., 2009, 78.

265 D. Tejedor, A. Santos-Exposito, G. Mendez-Abt, C. Ruiz-Perez and

F. Garcıa-Tellado, Synlett, 2009, 1223.

266 Y. Lu and B. A. Arndtsen, Org. Lett., 2009, 11, 1369.

267 J. A. Iopollo, M. Kassiou and L. M. Rendina, Tetrahedron Lett., 2009, 50,

6457.

268 O. Shyshkov, U. Dieckbreder, T. Drews, A. Kolomeitsev, G-V. Roschenthaler

and K. Seppelt, Inorg. Chem., 2009, 48, 6083.

269 A. Saito, O. Sugimoto and K. Tanji, Heterocycles, 2009, 78, 2735.

270 M. Bakherad, A. Keivanloo, B. Bahramian and S. Mihanparast, Tetrahedron

Lett., 2009, 50, 6418.

271 Y. Kim and F. P. Gabbai, J. Am. Chem. Soc., 2009, 131, 3363.

Organophosphorus Chem., 2011, 40, 1–51 | 43

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 44: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

272 D. M. Moiseev, B. O. Patrick and B. R. James, Inorg. Chem., 2009

48, 239.

273 Y. V. Bakhtiyarova, M. S. Bondar, V. V. Andriyashin, O. N. Kataeva, I. V.

Galkina and V. I. Galkin, Mendeleev Commun., 2009, 19, 37.

274 I. V. Galkina, E. V. Tudriy, O. N. Kataeva, L. M. Yusupova, H. Luftmann

and V. I. Galkin, Phosphorus, Sulfur, Silicon, 2009, 184, 987.

275 V. I. Galkin, A. V. Salin, Y. V. Bakhtiyarova and A. A. Sobanov, Russ. J. Gen.

Chem., 2009, 79, 919.

276 A. Al-Sheikh, K. Sweidan, C. Maichle-Mossmer, M. Steimann and N. Kuhn,

Z. Naturforsch., 2009, 64b, 101.

277 V. V. Zagumennov, N. A. Sizova and E. V. Nikitin, Russ. J. Gen. Chem., 2009,

79.

278 R. Pattacini, S. Jie and P. Braunstein, Chem. Commun., 2009, 890.

279 Y. Uchiyama, J. Sugimoto, M. Shibata, G. Yamamoto and Y. Mazaki, Bull.

Chem. Soc. Jpn., 2009, 82, 819.

280 J. J. Weigand, N. Burford, R. J. Davidson, T. S. Cameron and P. Seelheim,

J. Am. Chem. Soc., 2009, 131, 17943.

281 L. Apostolico, G. Kociok-Kohn, K. C. Molloy, C. S. Blackman, C. J. Carmalt

and I. P. Parkin, Dalton Trans., 2009, 10486.

282 C. Salome and H. Kohn, Tetrahedron, 2009, 65, 456.

283 A. R. Hajipour, M. Mostafavi and A. E. Ruoho, Org. Prep. Proc. Int., 2009,

41, 87.

284 M. Kumar, S. K. Pandey, S. Gandhi and V. K. Singh, Tetrahedron Lett., 2009,

50, 363.

285 C. Huo and T. H. Chan, Adv. Synth. Catal., 2009, 351, 1933.

286 M. N. S. Rad, A. Khalafi-Nezhad, S. Behrouz, Z. Asrari, M. Behrouz and Z.

Amini, Synthesis, 2009, 3067.

287 M. Rupprich, C. Decristoforo and B. Matuszczak,Monatsh. Chem., 2009, 140,

405.

288 X. Du, Y. Dai, R. He, S. Lu and M. Bao, Synth. Commun., 2009, 39, 3940.

289 P. Gopinath, R. S. Vidyarini and S. Chandrasekaran, Eur. J. Org. Chem.,

2009, 6043.

290 F. G. Menezes, R. Kolling, A. J. Bortoluzzi, H. Gallardo and C. Zucco,

Tetrahedron Lett., 2009, 50, 2559.

291 (a) B. Khater, J-C. Guillemin, A. Benidar, D. Begue and C. Pouchan, J. Chem.

Phys., 2008, 129, 224308; and (b) B. Nemeth, B. Khater, T. Veszpremi and

J-C. Guillemin, Dalton Trans., 2009, 3526.

292 M. Hurtado, M. Yanez, R. Herrero, A. Guerrero, J. Z. Davalos, J-L. M.

Abboud, B. Khater and J-C. Guillemin, Chem. Eur. J., 2009, 15, 4622.

293 F. Dornhaus, S. Scholz, I. Sanger, M. Bolte, M. Wagner, H-W. Lerner and

Z. Anorg, Allg. Chem., 2009, 635, 2263.

294 K. Owsianik, R. Chauvin, A. Balinska, M. Wieczorek, M. Cypryk and M.

Miko"ajczyk, Organometallics, 2009, 28, 4929.

295 M. Van Overschelde, E. Vervecken, S. G. Modha, S. Cogen, E. Van der

Eycken and J. Van der Eycken, Tetrahedron, 2009, 65, 6410.

296 M. E. Sloan, T. J. Clark and I. Manners, Inorg. Chem., 2009, 48, 2429.

297 G. C. Welch, R. Prieto, M. A. Dureen, A. J. Lough, O. A. Labeodan, T.

Holtrichter-Rossmann and D. W. Stephan, Dalton Trans., 2009, 1559.

298 A. Ramos, A. J. Lough and D. W. Stephan, Chem. Commun., 2009, 1118.

299 I. R. Morgan, A. Di Paolo, D. Vidovic, I. A. Fallis and S. Aldridge, Chem.

Commun., 2009, 7288.

300 T. A. Rokob, A. Hamza and I. Papai, J. Am. Chem. Soc., 2009, 131, 10701.

301 S. Gao, W. Wu and Y. Mo, J. Phys. Chem. A, 2009, 113, 8108.

44 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 45: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

302 C. Jiang, O. Blacque and H. Berke, Organometallics, 2009, 28, 5233.

303 P. Spies, G. Kehr, K. Bergander, B. Wibbeling, R. Frohlich and G. Erker,

Dalton Trans., 2009, 1534.

304 T. Privalov, Dalton Trans., 2009, 1321.

305 M. A. Dureen and D. W. Stephan, J. Am. Chem. Soc., 2009, 131, 8396.

306 C. M. Momming, S. Fromel, G. Kehr, R. Frolich, S. Grimme and G. Erker,

J. Am. Chem. Soc., 2009, 131, 12280.

307 M. Ullrich, K. S.-H. Seto, A. J. Lough and D. W. Stephan, Chem. Commun.,

2009, 2335.

308 J. S. J. McCahill, G. C. Welch and D. W. Stephan, Dalton Trans., 2009, 8555.

309 C. M. Momming, E. Otten, G. Kehr, R. Frolich, S. Grimme, D. W. Stephan

and G. Erker, Angew. Chem. Int. Ed., 2009, 48, 6643.

310 E. Otten, R. C. Neu and D. W. Stephan, J. Am. Chem. Soc., 2009, 131,

9918.

311 M. A. Dureen, G. C. Welch, T. M. Gilbert and D. W. Stephan, Inorg. Chem.,

2009, 48, 9910.

312 J. Nyhlen and T. Privalov, Eur. J. Inorg. Chem., 2009, 2759.

313 T. Privalov, Chem. Eur. J., 2009, 15, 1825.

314 K-C. Schwan, U. Vogel, A. Adolf, M. Zabel and M. Scheer, J. Organomet.

Chem., 2009, 694, 1189.

315 M. Bodensteiner, U. Vogel, A. Y. Timoshkin and M. Scheer, Angew. Chem.

Int. Ed., 2009, 48, 4629.

316 A. Jakob, P. Ecorchard, M. Linseis, R. F. Winter and H. Lang, J. Organomet.

Chem., 2009, 694, 655.

317 M. Fessler, S. Eller, C. Bachmann, R. Gutmann, B. Trettenbrein, H. Kopacka,

T. Mueller and P. Brueggeller, Dalton Trans., 2009, 1383.

318 I. Erden, C. Gartner and M. S. Azimi, Org. Lett., 2009, 11, 3986.

319 P. Cividino, M. L. Dheu-Andries, J. Ou, A. Milet, S. Py and P. H. Toy,

Tetrahedron Lett., 2009, 50, 7038.

320 E. M. Chainikova, A. N. Teregulova, V. A. Shamukaev and R. L. Safiullin,

High Energy Chem., 2009, 43, 147.

321 A. Bakac, M. Schouten, A. Johnson, W. Song, O. Pestovsky and E. Szajna-

Fuller, Inorg. Chem., 2009, 48, 6979.

322 J. A. Reisz, E. B. Klorig, M. W. Wright and S. B. King, Org. Lett., 2009, 11,

2719.

323 (a) J. Zhang, H. Wang and M. Xian, Org. Lett., 2009, 11, 477; and (b) J.

Zhang, H. Wang and M. Xian, J. Am. Chem. Soc., 2009, 131, 3854.

324 G. W. Kabalka, M. S. Reddy and M. L. Yao, Tetrahedron Lett., 2009, 50,

7340.

325 R. D. Khachikyan, N. V. Tovmasyan and M. G. Indzhikyan, Russ. J. Gen.

Chem., 2009, 79, 759.

326 Q. Xu and Z. Li, Tetrahedron Lett., 2009, 50, 6838.

327 B. Akhlaghinia and S. Samiei, Phosphorus, Sulfur, Silicon, 2009, 184, 2525.

328 N. Iranpoor, H. Firouzabadi, N. Nowrouzi and D. Khalili, Tetrahedron, 2009,

65, 3893.

329 J. L. Dutton and P. J. Ragogna, Inorg. Chem., 2009, 48, 1722.

330 M. W. Jones, G. Mantovani, S. M. Ryan, X. Wang, D. J. Brayden and D. M.

Haddleton, Chem. Commun., 2009, 5272.

331 (a) S. S. Michaelidou and P. A. Koutentis, Tetrahedron, 2009, 65, 8428; and

(b) I. C. Christoforou, A. S. Kalogirou and P. A. Koutentis, Tetrahedron,

2009, 65, 9967.

332 D. Crich, V. Subramanian and M. Karatholuvhu, J. Org. Chem., 2009, 74,

9422.

Organophosphorus Chem., 2011, 40, 1–51 | 45

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 46: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

333 S. Kawaguchi, T. Shirai, T. Ohe, A. Nomoto, M. Sonoda and A. Ogawa,

J. Org. Chem., 2009, 74, 1751.

334 K. C. K. Swamy, N. N. B. Khumar, E. Balaraman and K. V. P. P. Kumar,

Chem. Rev., 2009, 109, 2551.

335 K. Hagiya, N. Muramoto, T. Misaki and T. Sugimura, Tetrahedron, 2009, 65,

6109.

336 X-G. Liu, Y. Wei and M. Shi, Org. Biomol. Chem., 2009, 7, 4708.

337 P. Pasetto and M. C. Walczak, Tetrahedron, 2009, 65, 8468.

338 C. Besset, S. Chambert, B. Fenet and Y. Queneau, Tetrahedron Lett., 2009, 50,

7043.

339 S. Chandrasekar, G. S. K. Babu and C. R. Reddy, Tetrahedron: Asymmetry,

2009, 20, 2216.

340 E. Voss, A. Arrault, J. Bodiguel and B. Jamart-Gregoire, Tetrahedron:

Asymmetry, 2009, 20, 1809.

341 J. E. Green, D. M. Bender, S. Jackson, M. J. O’Donnell and J. R. McCarthy,

Org. Lett., 2009, 11, 807.

342 P. Pierrat, C. Rethore, T. Muller and S. Brase, Chem. Eur. J., 2009, 15, 11458.

343 Y. Shimada, K. Usuda, H. Okabe, T. Suzuki and K. Matsumoto, Tetrahedron:

Asymmetry, 2009, 20, 2802.

344 G. C. Fortman, B. Captain and C. D. Hoff, Inorg. Chem., 2009, 48, 1808.

345 E. L. Meyers and R. T. Raines, Angew. Chem. Int. Ed., 2009, 48, 2359.

346 C. Cimarelli, D. Fratoni and G. Palmieri, Tetrahedron: Asymmetry, 2009, 20,

2234.

347 E-G. Han, H. J. Kim and K-J. Lee, Tetrahedron, 2009, 65, 9616.

348 P. He, J. Wu, Y-B. Nie and M-W. Ding, Tetrahedron, 2009, 65, 8563.

349 R. M. Franzini and E. T. Kool, J. Am. Chem. Soc., 2009, 131, 16021.

350 D. Crich and F. Yang, Angew. Chem. Int. Ed., 2009, 48, 8896.

351 A. Tam and R. T. Raines, Bioorg. Med. Chem., 2009, 17, 1055.

352 M. Alajarin, M. Marin-Luna, M-M. Ortin, P. Sanchez-Andrada and A. Vidal,

Tetrahedron, 2009, 65, 2579.

353 J. Bures, M. Martın, F. Urpı and J. Vilarrasa, J. Org. Chem., 2009, 74, 2203.

354 S. Muthusamy and P. Srinivasan, Tetrahedron Lett., 2009, 50, 1331.

355 N. Fey, A. G. Orpen and J. N. Harvey, Coord. Chem. Rev., 2009, 253, 704.

356 A. J. Poe, Dalton Trans., 2009, 1999.

357 N. S. Antonova, J. J. Carbo and J. M. Poblet, Organometallics, 2009, 28,

4283.

358 R. Noble-Eddy, S. L. Masters, D. W. H. Rankin, D. A. Wann, H. E.

Robertson, B. Khater and J-C. Guillemin, Inorg. Chem., 2009, 48, 8603.

359 S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, N. V. Istomina, S. N.

Arbuzova and S. F. Malysheva, Russ. J. Org. Chem., 2009, 45, 667.

360 A. Galia, E. C. Navarre, O. Scialdone, G. Filardo and E. Monflier, J.

Supercritical Fluids, 2009, 49, 154.

361 E. Fjellander, Z. Szabo and C. Moberg, J. Org. Chem., 2009, 74, 9120.

362 M. Z. Kassaee, A. Cheshmehkani, S. M. Musavi, M. Majdi and E. Motamedi,

J. Mol. Struct.:THEOCHEM, 2008, 865, 73.

363 M. Z. Kassaee, M. Ghambarian, S. M. Musavi, F. A. Shakib and M. R.

Momeni, J. Phys. Org. Chem., 2009, 22, 919.

364 R. J. Less, R. L. Melen, V. Naseri and D. S. Wright, Chem. Commun., 2009,

4929.

365 M. Carreira, M. Charernsuk, M. Eberhard, N. Fey, R. van Ginkel, A.

Hamilton, W. P. Mul, A. G. Orpen, H. Phetmung and P. G. Pringle, J. Am.

Chem. Soc., 2009, 131, 3078.

46 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 47: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

366 (a) A. M. Kirillov, P. Smolenski, M. Haukka, M. F. C. Guedes da Silva and A.

J. L. Pombeiro, Organometallics, 2009, 28, 1683; and (b) A. Garcıa-Fernandez,

J. Dıez, M. P. Gamasa and E. Lastra, Inorg. Chem., 2009, 48, 2471.

367 M. M. Al-Ktaifani, M. P. Coles, I. R. Crossley, L. T. J. Evans, P. B. Hitch-

cock, G. A. Lawless and J. F. Nixon, J. Organomet. Chem., 2009, 694, 4223.

368 V. F. Sidorkin and E. P. Doronina, Organometallics, 2009, 28, 5305.

369 C. von Hanisch, F. Weigend, O. Hampe and S. Stahl, Chem. Eur. J., 2009, 15,

9642.

370 A-M. Valean, S. Gomez-Ruiz, P. Lonnecke, I. Silaghi-Dumitrescu, L. Silaghi-

Dumitrescu and E-M. Hey-Hawkins, New J. Chem., 2009, 33, 1771.

371 S. H. Chikkali, D. Gudat, F. Lissner, M. Niemeyer, T. Schleid and M. Nieger,

Chem. Eur. J., 2009, 15, 482.

372 S. Ito, J. Miura, N. Morita, M. Yoshifuji and A. J. Arduenguo III, Inorg.

Chem., 2009, 48, 8063.

373 S. L. Kahn, M. K. Breheney, S. L. Martinak, S. M. Fosbenner, A. R. Seibert,

W. S. Kassel, W. G. Dougherty and C. Nataro, Organometallics, 2009, 28,

2119.

374 S. M. Nasiruzzaman, P. A. N. Reddy and T-J. Kim, Inorg. Chem. Commun.,

2009, 12, 964.

375 A. V. Bogdanov, N. R. Khasiyatullina, V. F. Mironov, D. B. Krivolapov, I. A.

Litvinov and A. I. Konovalov, Mendeleev Commun., 2009, 19, 39.

376 C. A. Russell, Angew. Chem. Int. Ed., 2009, 48, 4895.

377 H-L. Peng, J. L. Payton, J. D. Protasiewicz and M. C. Simpson, J. Phys.

Chem. A, 2009, 113, 7054.

378 Y. Amatatsu, J. Phys. Chem. A, 2009, 113, 9667.

379 A. Tsurusaki, T. Sasamori and N. Tokitoh, Organometallics, 2009, 28, 3604.

380 N. Tokitoh, A. Tsurusaki and T. Sasamori, Phosphorus, Sulfur, Silicon, 2009,

184, 979.

381 D. V. Partyka, M. P. Washington, T. G. Gray, J. B. Updegraff III, J. F. Turner

II and J. D. Protasiewicz, J. Am. Chem. Soc., 2009, 131, 10041.

382 C. Moser, F. Belaj and R. Pietschnig, Chem. Eur. J., 2009, 15, 12589.

383 N. A. Piro and C. C. Cummins, J. Am. Chem. Soc., 2009, 131, 8764.

384 H. Aktas, J. C. Slootweg, A. W. Ehlers, M. Lutz, A. L. Spek and K. Lam-

mertsma, Angew. Chem. Int. Ed., 2009, 48, 3108.

385 A. Lorbach, A. Nadj, S. Tullman, F. Dornhaus, F. Schodel, I. Sanger, G.

Margraf, J. W. Bats, M. Bolte, M. C. Holthausen, M. Wagner and H. W.

Lerner, Inorg. Chem., 2009, 48, 1005.

386 J. D. Watts, D. J. Watts and M-J. Huang, J. Phys. Chem. A, 2009, 113, 1886.

387 R. M. Birzoi, D. Bugnariu, C. Goers, R. G. Gimeno, T. Gust, A. Riecke,

Z. Benko, L. Konczol, L. Nyulaszi, C. Wismach, P. G. Jones, R. Schmutzler,

R. Bartsch and W. W. du Mont, Z. Naturforsch., 2009, 64b, 73.

388 R. Septelean, G. Nemes, J. Escudie, I. Silaghi-Dumitrescu, H. Ranaivonja-

tovo, P. Petrar, H. GornitzkaL. Silaghi-Dumitrescu and N. Saffon, Eur. J.

Inorg. Chem., 2009, 628.

389 S. Ito, H. Miyake and M. Yoshifuji, Phosphorus, Sulfur, Silicon, 2009, 184, 917.

390 (a) X-L. Geng and S. Ott, Chem. Commun., 2009, 7206; and (b) E. Oberg,

B. Schafer, X. L. Geng, J. Pettersson, Q. Hu, M. Kritikos, T. Rasmussen and

S. Ott, J. Org. Chem., 2009, 74, 9265.

391 O. Back, G. Kuchenbeiser, B. Donnadieu and G. Bertrand, Angew. Chem. Int.

Ed., 2009, 48, 5530.

392 J. I. Bates, P. Kennepohl and D. P. Gates, Angew. Chem. Int. Ed., 2009, 48,

9844.

Organophosphorus Chem., 2011, 40, 1–51 | 47

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 48: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

393 R. Wolf, J. C. Slootweg, A. W. Ehlers, F. Hartl, B. de Bruin, M. Lutz,

A. L. Spek and K. Lammertsma, Angew. Chem. Int. Ed., 2009, 48, 3104.

394 N. A. Piro and C. C. Cummins, Angew. Chem. Int. Ed., 2009, 48, 934.

395 T. Gust, W-W. du Mont, R. Schmutzler, C. G. Hrib, C. Wismach and

P. G. Jones, Phosphorus, Sulfur, Silicon, 2009, 184, 1599.

396 R. Houdard, N. Mezailles, X-F. Le Goff and P. Le Floch, Organometallics,

2009, 28, 5952.

397 D. Lungu, C. Daniliuc, P. G. Jones, L. Nyulaszi, Z. Benko, R. Bartsch and

W. W. du Mont, Eur. J. Inorg. Chem. 2009, 2901.

398 M. Scheer, C. Kuntz, M. Stubenhofer, M. Linseis, R. F. Winter andM. Sierka,

Angew. Chem. Int. Ed., 2009, 48, 2600.

399 X. Li, H. Song and C. Cui, Dalton Trans., 2009, 9728.

400 V. Y. Lee, M. Kawai, A. Sekiguchi, H. Ranaivonjatovo and J. Escudie,

Organometallics, 2009, 28, 4262.

401 B. Li, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka and K. Tomao, J. Am.

Chem. Soc., 2009, 131, 13222.

402 P. M. Petrar, G. Nemes, I. Silaghi-Dumitrescu, J. Escudie and H. Ranai-

vonjatovo, Mol. Phys., 2009, 107, 1161.

403 F. Ouhsaine, H. Ranivonjatovo, J. Escudie, N. Saffon and M. Lazraq,

Organometallics, 2009, 28, 1973.

404 Y. Ye, Y. Luo, C-F. Wang, D-Q. Wei, L-Z. Liu and Y-F. Zhao, Heteroatom

Chem., 2009, 20, 95.

405 N. M. West, P. S. White, J. L. Templeton and J. F. Nixon, Organometallics,

2009, 28, 1425.

406 A. S. Ionkin, W. J. Marshall, B. M. Fish, M. F. Schiffhauer, F. Davidson and

C. N. McEwen, Organometallics, 2009, 28, 2410.

407 S. Ito, J. Miura, N. Morita, M. Yoshifuji and A. J. Arduengo III, Z. Anorg.

Allg. Chem., 2009, 635, 488.

408 H. A. Spinney, N. A. Piro and C. C. Cummins, J. Am. Chem. Soc., 2009,

131, 16233.

409 E. Conrad, N. Burford, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc.,

2009, 131, 17000.

410 J. J. Weigand, N. Burford and A. Decken, Eur. J. Inorg. Chem., 2009, 4343.

411 J. J. Weigand, M. Holthausen and R. Frolich, Angew. Chem. Int. Ed., 2009

48, 295.

412 (a) M. Azouri, J. Andrieu, M. Picquet and H. Cattey, Inorg. Chem., 2009, 48,

1236; and (b) S. Saleh, E. Fayad, M. Azouri, J. C. Hierso, J. Andrieu and

M. Picquet, Adv. Synth. Catal., 2009, 351, 1621.

413 J. W. Dube, G. J. Farrar, E. L. Norton, K. L. S. Szekely, B. F. T. Cooper and

C. L. B. Macdonald, Organometallics, 2009, 28, 4377.

414 A. B. Powell, J. R. Brown, K. V. Vaudevan and A. H. Cowley, Dalton Trans.,

2009, 2521.

415 L. C. Pop, N. Katir, A. Castel, L. Silaghi-Dumitrescu, F. Delpech, I. Silaghi-

Dumitrescu, H. Gornitzka, D. MacLeod-Carey and N. Saffon, J. Organomet.

Chem., 2009, 694, 1562.

416 T. D. Le, D. Arquier, K. Miqueu, J-M. Sotiropoulos, Y. Coppel, S. Bastin and

A. Igau, J. Organomet. Chem., 2009, 694, 229.

417 S. Burck, K. Gotz, M. Kaupp, M. Nieger, J. Weber, J. Schmedt auf der Gunne

and D. Gudat, J. Am. Chem. Soc., 2009, 131, 10763.

418 S. Burck, D. Gudat and M. Nieger, Organometallics, 2009, 28, 1447.

419 R. Tian, H. Liu, Z. Duan and F. Mathey, J. Am. Chem. Soc., 2009, 131, 16008.

420 D. A. Smith, A. S. Batsanov, M. A. Fox, A. Beeby, D. C. Apperley, J. A. K.

Howard and P. W. Dyer, Angew. Chem. Int. Ed., 2009, 48, 9109.

48 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 49: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

421 (a) C. A. Caputo, M. C. Jennings, H. M. Tuononen and N. D. Jones,

Organometallics, 2009, 28, 990; and (b) C. A. Caputo, A. L. Brazeau,

Z. Hynes, J. T. Price, H. M. Tuononen and N. D. Jones, Organometallics,

2009, 28, 5261.

422 M. L. Weir, I. A. Cade, N. L. Kilah, X. Zhou and S. B. Wild, Inorg. Chem.,

2009, 48, 7482.

423 J. C. Slootweg and K. Lammertsma, ‘Phosphinidenes and terminal phosphini-

dene complexes’, in ‘Science of Synthesis’, vol. 42, (Eds.: B. M. Trost and F.

Mathey), George Thieme Verlag: Stuttgart, 2009, pp15–36.

424 R. Waterman, Dalton Trans.2009, 18.

425 U. J. Kilgore, H. Fan, M. Pink, E. Urnezius, J. D. Protasiewicz and D. J.

Mindiola, Chem. Commun., 2009, 4521.

426 G. Li, Q-S. Li, I. Silaghi-Dumitrescu, R. B. King and H. F. Schaefer III,

Dalton Trans., 2009, 10474.

427 H. Aktas, J. C. Slootweg, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek and

K. Lammertsma, J. Am. Chem. Soc., 2009, 131, 6666.

428 H. Aktas, J. C. Slootweg, A. W. Ehlers, M. Lutz, A. L. Spek and K. Lam-

mertsma, Organometallics, 2009, 28, 5166.

429 H. Aktas, J. Mulder, F. J. J. de Kanter, J. C. Slootweg, M. Schakel, A. W.

Ehlers, M. Lutz, A. L. Spek and K. Lammertsma, J. Am. Chem. Soc., 2009,

131, 13531.

430 W. Domanska-Babul, J. Chojnacki, E. Matern and J. Pikies, Dalton Trans.,

2009, 146.

431 (a) M. P. Duffy and F. Mathey, J. Am. Chem. Soc., 2009, 131, 7534; and (b)

N. H. T. Huy, B. Donnadieu, G. Bertrand and F. Mathey, Chem. Asian J.,

2009, 4, 1225.

432 F. Bertini, J. B. M. Wit, M. Unal, F. J. J. de Kanter, M. Schakel, J. C.

Slootweg, A. W. Ehlers, T. Nijbacker, C. M. D. Komen, M. Lutz, A. L. Spek

and K. Lammertsma, Adv. Synth. Catal., 2009, 351, 1132.

433 R. Tian, Z. Duan, X. Zhou, D. Geng, Y. Wu and F. Mathey, Chem. Commun.,

2009, 2589.

434 (a) M. Bode, J. Daniels and R. Streubel, Organometallics, 2009, 28, 4636; and

(b) R. Streubel, A. Ozbolat-Schon, M. Bode, J. Daniels, G. Schnakenburg,

F. Teixidor, C. Vinas, A. Vaca, A. Pepiol and P. Farras, Organometallics,

2009, 28, 6031.

435 W. Kan, H. Zhong and H-T. Yu, J. Comp. Chem., 2009, 30, 2334.

436 B. Gamoke, D. Neff and J. Simons, J. Phys. Chem. A, 2009, 113, 5677.

437 K. Huynh, A. J. Lough, M. A. M. Forgeron, M. Bendle, A. P. Soto, R. E.

Wasylishen and I. Manners, J. Am. Chem. Soc., 2009, 131, 7905.

438 D. Panichakul and F. Mathey, Organometallics, 2009, 28, 5705.

439 (a) H. Helten, M. Engeser, D. Gudat, R. Schilling, G. Schnakenburg, M.

Nieger and R. Streubel, Chem. Eur. J., 2009, 15, 2602; (b) H. Helten, G. von

Frantzius, G. Schnakenburg, J. Daniels and R. Streubel, Eur. J. Inorg. Chem.,

2009, 2062; (c) R. Streubel, M. Beckmann, C. Neumann, S. Fankel, H. Helten,

O. Feier-Iova, P. G. Jones and M. Nieger, Eur. J. Inorg. Chem., 2009, 2090;

and (d) H. Helten, S. Fankel, O. Feier-Iova, M. Nieger, A. E. Ferao and

R. Streubel, Eur. J. Inorg. Chem., 2009, 3226.

440 N. H. Martin, J. E. Rowe and E. L. Pittman, J. Mol. Graphics and Modelling,

2009, 27, 853.

441 A. Muranaka, S. Yasuike, C-Y. Liu, J. Kurita, N. Kakusawa, T. Tsuchiya, M.

Okuda, N. Kobayashi, Y. Matsumoto, K. Yoshida, D. Hashizume and M.

Uchiyama, J. Phys. Chem. A, 2009, 113, 464.

442 Y. Matano and H. Imahori, Org. Biomol. Chem., 2009, 7, 1258.

Organophosphorus Chem., 2011, 40, 1–51 | 49

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 50: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

443 O. Fadhel, D. Szieberth, V. Deborde, C. Lescop, L. Nyulaszi, M. Hissler and

R. Reau, Chem. Eur. J., 2009, 15, 4914.

444 (a) Y. Dienes, U. Englert and T. Baumgartner, Z. Anorg. Allg. Chem., 2009,

635, 238; and (b) Y. Ren, Y. Dienes, S. Hettel, M. Parvez, B. Hoge and T.

Baumgartner, Organometallics, 2009, 28, 734.

445 C. Romero-Nieto, S. Merino, J. Rodrıguez-Lopez and T. Baumgartner, Chem.

Eur. J., 2009, 15, 4135.

446 P. M. Carrasco, C. Pozo-Gonzalo, H. Grande, J. A. Pomposo, M. Cortazar,

V. Deborde, M. Hissler and R. Reau, Polymer Bull., 2008, 61, 713.

447 A. Saito, T. Miyajima, M. Nakashima, T. Fukushima, H. Kaji, Y. Matano

and H. Imahori, Chem. Eur. J., 2009, 15, 10000.

448 K. Shiraishi, T. Kashiwabara, T. Sanji and M. Tanaka, New J. Chem., 2009,

33, 1680.

449 (a) A. Fukazawa, Y. Ichihashi, Y. Kosaka and S. Yamaguchi, Chem. Asian J.,

2009, 4, 1729; and (b) H. Tsuji, K. Sato, Y. Sato and E. Nakamura, J. Mat.

Chem., 2009, 19, 3364.

450 A. Ciric and F. Mathey, Organometallics, 2009, 28, 4621.

451 D. H. Nguyen, H. Laureano, S. Juge, P. Kalck, J-C. Daran, Y. Coppel, M.

Urrutigoity and M. Gouygou, Organometallics, 2009, 28, 6288.

452 Y. Matano and H. Imahori, Accounts Chem. Res., 2009, 42, 1193.

453 Y. Matano, M. Fujita, T. Miyajima and H. Imahori, Organometallics, 2009,

28, 6213.

454 Y. Matano, M. Nakashima and H. Imahori, Angew. Chem. Int. Ed., 2009, 48,

4002.

455 E. Robe, C. Hegedus, J. Bakos, J. C. Daran and M. Gouygou, Dalton Trans.,

2009, 6528.

456 J. Wassenaar, S. van Zutphen, G. Mora, P. Le Floch, M. A. Siegler, A. L. Spek

and J. N. H. Reek, Organometallics, 2009, 28, 2724.

457 Y. Matano, M. Nakashima, A. Saito and H. Imahori, Org. Lett., 2009, 11,

3338.

458 S. Graule, M. Rudolf, N. Vanthuyne, J. Autschbach, C. Roussel, J. Crassous

and R. Reau, J. Am. Chem. Soc., 2009, 131, 3183.

459 A. Escalle, X. F. Le Goff and P. Le Floch, J. Org. Chem., 2009, 74, 7540.

460 A. Escalle, G. Mora, F. Gagosz, N. Mezailles, X. F. Le Goff, Y. Jean and

P. Le Floch, Inorg. Chem., 2009, 48, 8415.

461 (a) S. Welsch, C. Lescop, R. Reau and M. Scheer, Dalton Trans., 2009, 2683;

and (b) S. Welsch, B. Nohra, E. V. Peresypkina, C. Lescop, M. Scheer and

R. Reau, Chem. Eur. J., 2009, 15, 4685.

462 S. A. Pullarkat, Y. L. Cheow, Y. Li and P-H. Leung, Eur. J. Inorg. Chem.,

2009, 2375.

463 F. Liu, S. A. Pullarkat, K. W. Tan, Y. Li and P-H. Leung, Organometallics,

2009, 28, 6254.

464 (a) M. Ma, S. A. Pullarkat, K. Chen, Y. Li and P-H. Leung, J. Organomet.

Chem., 2009, 694, 1929; and (b) M. Ma, S. A. Pullarkat, M. Yuan, N. Zhang,

Y. Li and P-H. Leung, Organometallics, 2009, 28, 4886.

465 V. Miluykov, I. Bezkishko, A. Zagidullin, O. Sinyashin, P. Lonnecke and

E. Hey-Hawkins, Eur. J. Org. Chem., 2009, 1269.

466 S. Maurer, T. Jikyo and G. Maas, Eur. J. Org. Chem., 2009, 2195.

467 M. Hofmann, C. Hohn, F. W. Heinemann and U. Zenneck, Chem. Eur. J.,

2009, 15, 5998.

468 M. Stubenhofer, C. Kuntz, G. Balazs, M. Zabel and M. Scheer, Chem.

Commun., 2009, 1745.

50 | Organophosphorus Chem., 2011, 40, 1–51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online

Page 51: [Organophosphorus Chemistry] Organophosphorus Chemistry Volume 40 || Phosphines and related P–C-bonded compounds

469 D. Usharani, A. Poduska, J. F. Nixon and E. D. Jemmis, Chem. Eur. J., 2009,

15, 8429.

470 J. Heinicke, B. R. Aluri, M. S. S. Adam and F. Ullah, Phosphorus, Sulfur,

Silicon, 2009, 184, 1627.

471 V. Padmavathi, K. Mahesh, A. V. Nagendra Mohan and A. Padmaja, Chem.

Pharm. Bull., 2009, 57, 561.

472 N. Tokitoh, T. Matsumoto and T. Sasamori, Heterocycles, 2008, 76, 981.

473 A. Schulz and A. Villinger, Struct. Chem., 2009, 20, 59.

474 (a) R. K. Bansal, N. Gupta, G. Dixit and S. K. Kumawat, J. Phys. Org. Chem.,

2009, 22, 125; and (b) R. K. Bansal, N. Gupta, S. K. Kumawat and G. Dixit,

Tetrahedron, 2008, 64, 6395.

475 B. Kohler, S. Kammerer, T. Mayer, B. Neumann and I-P. Lorenz, Z. Anorg.

Allg. Chem., 2009, 635, 1362.

476 H. Willms, W. Frank and C. Ganter, Organometallics, 2009, 28, 3049.

477 Y. Cabon, D. Carmichael and X-F. Le Goff, Organometallics, 2009, 28, 370.

478 B. Mucha, A. K"ys, J. Zakrzewski, A. Makal and K. Wozniak, New J. Chem.,

2009, 33, 807.

479 F. Dielmann, R. Merkle, S. Heinl andM. Scheer, Z. Naturforsch., 2009, 64b, 3.

480 A. Schindler, M. Zabel, J. F. Nixon and M. Scheer, Z. Naturforsch., 2009

64b, 1429.

481 K. Wimmer, C. Birg, R. Kretschmer, T. M. A. Al-Shboul, H. Gorls, S. Krieck

and M. Westerhausen, Z. Naturforsch., 2009, 64b, 1360.

482 F. Jaroschik, F. Nief and X-F. Le Goff, Polyhedron, 2009, 28, 2744.

483 J. Panhans, F. W. Heinemann and U. Zenneck, J. Organomet. Chem., 2009,

694, 1223.

484 S. S. Rodrigues, J. A. Fernandes, S. Fernandes and M. M. Marques, Inorg.

Chim. Acta, 2009, 362, 1275.

485 V. V. Bashilov, A. G. Ginzburg, A. F. Smol’yakov, F. M. Dolguschin, P. V.

Petrovskii and V. I. Sokolov, J. Organomet. Chem., 2009, 694, 4121.

486 D. Stein, T. Ott and H. Grutzmacher, Z. Anorg. Allg. Chem., 2009, 635, 682.

487 B. R. Aluri, S. Burck, D. Gudat, M. Niemeyer, O. Holloczki, L. Nyulaszi,

P. G. Jones and J. Heinicke, Chem. Eur. J., 2009, 15, 12263.

488 D. Schmid, S. Loscher, D. Gudat, D. Bubrin, I. Hartenbach, T. Schleid,

Z. Benk +o and L. Nyulaszi, Chem. Commun., 2009, 830.

489 C. Pi, J. Elguero, L. Wan, I. Alkorta, W. Zheng, L. Weng, Z. Chen and L. Wu,

Chem. Eur. J., 2009, 15, 6581.

490 J. R. Bell, A. Franken and C. M. Garner, Tetrahedron, 2009, 65, 9368.

491 C. Wallis, D. McGuinness, P. D. Newman, R. P. Tooze and P. G. Edwards,

Dalton Trans., 2009, 2178.

492 C. Wallis, P. G. Edwards, M. Hanton, P. D. Newman, A. Stasch, C. Jones and

R. P. Tooze, Dalton Trans., 2009, 2170.

493 (a) M. Blug, C. Guibert, X-F. Le Goff, N. Mezailles and P. Le Floch, Chem.

Commun., 2009, 201; and (b) M. Blug, X-F. Le Goff, N. Mezailles and P. Le

Floch, Organometallics, 2009, 28, 2360.

494 T. Arliguie, P. Thuery, P. Le Floch, N. Mezailles and M. Ephritikhine,

Polyhedron, 2009, 28, 1578.

495 E. D. Matveeva, T. A. Podrugina, A. S. Pavlova, A. V. Mironov, A. A.

Borisenko, R. Gleiter and N. S. Zefirov, J. Org. Chem., 2009, 74, 9428.

Organophosphorus Chem., 2011, 40, 1–51 | 51

Dow

nloa

ded

on 3

1 M

ay 2

012

Publ

ishe

d on

27

Apr

il 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/978

1849

7328

19-0

0001

View Online