organic geochemical signatures of early life on earth

14
12.2 Organic Geochemical Signatures of Early Life on Earth RE Summons, Massachusetts Institute of Technology, Cambridge, MA, USA C Hallmann, Max-Planck-Institute for Biogeochemistry, Jena, Germany ã 2014 Elsevier Ltd. All rights reserved. 12.2.1 Introduction 33 12.2.2 Eoarchean (4.0–3.6 Ga) Biological Remnants? 33 12.2.3 The Post-3.5 Ga Sedimentary Record of Stable Carbon Isotopes 34 12.2.4 The Record of Organic Carbon Burial 35 12.2.5 The Composition of Buried Organic Matter 37 12.2.6 Visible Structures with Organic Affinities 40 12.2.6.1 Organic-Walled Microfossils 40 12.2.6.2 Fossil Microbial Mats, Textures, and Trace Fossils 41 12.2.6.3 Stromatolites 41 12.2.7 Summary and Prospects 42 Acknowledgments 43 References 43 Glossary Archean Eon The geologic eon that extends from c.3.8 Ga to the Proterozoic 2.5 Ga. The Archean Eon is in the process of being redefined chronometrically and subdivided into the eras of Eoarchean (4.0–3.6 Ga), Paleoarchean (3.6–3.2 Ga), Mesoarchean (3.2–2.8 Ga), and Neoarchean (2.8–2.5 Ga). The International Commission on Stratigraphy currently does not recognize the lower boundary of the Eoarchean. Bitumen Sedimentary organic matter that is or was mobile and soluble in organic solvents. Fa Fraction of aromatic hydrogen in kerogen. Hadean Eon An informal designation for the time between the formation of the Earth c.4.5 Ga ago and the oldest known rocks of c.3.8 Ga. Kerogen Insoluble, macromolecular organic matter. Ma/Ga Million/billion years before present. Myr/Gyr Million/billion year. Ro % Vitrinite reflectance, or vitrinite reflectance equivalent – a proxy for degree of thermal alteration of organic matter. VCDT Vienna Canyon Diablo Troilite, the international standard for stable sulfur isotopic measurements. VPDB Vienna Pee Dee Belemnite, the international standard for stable carbon isotopic measurements. 12.2.1 Introduction The timing of life’s appearance on Earth is subject to excep- tionally poor constraints. Geochemical thermometers pre- served in 4.4–4.0-billion-year (Ga)-old zircons recovered from a 3.5-Ga sedimentary rock attest to a watery, clement early Hadean Eon that would have been conducive for life to appear and proliferate (Valley et al., 2002; Watson and Harrison, 2005). Other geochemical evidence is consistent with the hypothesis that there were oceans, some continental crust, and weathering processes in place by 4.3 Ga (Ushikubo et al., 2008). However, any relict of Hadean life that may have been present in sediments deposited in the first c.700 million years (Ma) of our planet’s history appears to have been lost as a result of persistent impacts by asteroids, plate subduction, weathering, or metamorphism (Schopf, 1983). Therefore, in this brief overview we focus mainly on the subsequent Archean Eon (3.8–2.5 Ga) for sedimentary rocks that record clues about the nature and metabolic capacities of Earth’s early denizens. Simultaneously, we must keep in mind that considerable biospheric evolution likely took place during the Hadean Eon. 12.2.2 Eoarchean (4.0–3.6 Ga) Biological Remnants? Graphite occurring in the highly altered terrain of the Isua greenstone belt in southwestern Greenland (Mojzsis et al., 1996; Rosing, 1999) represents the oldest postulated remains of life. The metamorphosed host rocks, which include pillow basalts and possible turbidites, were evidently deposited in deep water and are remnants of an early Archean (>3.75 Ga) seafloor hydrothermal system. The origins of reduced carbon present in apatite crystals in the Isua and Akilia metasediments (Mojzsis et al., 1996), and putative sedimentary graphite par- ticles with d 13 C values in the range 11.4% to 20.2% Vienna Pee Dee Belemnite (VPDB) (Rosing, 1999) were originally proposed to have a biological origin due to their depletion in 13 C relative to carbonates of similar age (Schidlowski, 1988). Biology was implicated because the kinetic isotope effect asso- ciated with the preferential uptake of 12 CO 2 during biological carbon fixation (Des Marais, 2001; O’Leary, 1988) results in organic matter being 13 C-depleted compared to inorganic sub- strates. However, a confounding complication is that CO 2 reduction that takes place by abiological means can be Treatise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975-7.01005-6 33

Upload: vunhan

Post on 14-Feb-2017

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Organic Geochemical Signatures of Early Life on Earth

Tre

12.2 Organic Geochemical Signatures of Early Life on EarthRE Summons, Massachusetts Institute of Technology, Cambridge, MA, USAC Hallmann, Max-Planck-Institute for Biogeochemistry, Jena, Germany

ã 2014 Elsevier Ltd. All rights reserved.

12.2.1 Introduction 3312.2.2 Eoarchean (4.0–3.6 Ga) Biological Remnants? 3312.2.3 The Post-3.5 Ga Sedimentary Record of Stable Carbon Isotopes 3412.2.4 The Record of Organic Carbon Burial 3512.2.5 The Composition of Buried Organic Matter 3712.2.6 Visible Structures with Organic Affinities 4012.2.6.1 Organic-Walled Microfossils 4012.2.6.2 Fossil Microbial Mats, Textures, and Trace Fossils 4112.2.6.3 Stromatolites 4112.2.7 Summary and Prospects 42Acknowledgments 43References 43

GlossaryArchean Eon The geologic eon that extends from c.3.8 Ga to

the Proterozoic 2.5 Ga. The Archean Eon is in the process of

being redefined chronometrically and subdivided into the

eras of Eoarchean (4.0–3.6 Ga), Paleoarchean (3.6–3.2 Ga),

Mesoarchean (3.2–2.8 Ga), and Neoarchean (2.8–2.5 Ga).

The International Commission on Stratigraphy

currently does not recognize the lower boundary of the

Eoarchean.

Bitumen Sedimentary organic matter that is or was mobile

and soluble in organic solvents.

Fa Fraction of aromatic hydrogen in kerogen.

Hadean Eon An informal designation for the time between

the formation of the Earth c.4.5 Ga ago and the oldest

known rocks of c.3.8 Ga.

Kerogen Insoluble, macromolecular organic matter.

Ma/Ga Million/billion years before present.

Myr/Gyr Million/billion year.

Ro% Vitrinite reflectance, or vitrinite reflectance equivalent –

a proxy for degree of thermal alteration of organic matter.

VCDT Vienna Canyon Diablo Troilite, the international

standard for stable sulfur isotopic measurements.

VPDB Vienna Pee Dee Belemnite, the international

standard for stable carbon isotopic measurements.

atise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975

12.2.1 Introduction

The timing of life’s appearance on Earth is subject to excep-

tionally poor constraints. Geochemical thermometers pre-

served in 4.4–4.0-billion-year (Ga)-old zircons recovered

from a 3.5-Ga sedimentary rock attest to a watery, clement

early Hadean Eon that would have been conducive for life to

appear and proliferate (Valley et al., 2002; Watson and

Harrison, 2005). Other geochemical evidence is consistent

with the hypothesis that there were oceans, some continental

crust, and weathering processes in place by 4.3 Ga (Ushikubo

et al., 2008). However, any relict of Hadean life that may

have been present in sediments deposited in the first c.700

million years (Ma) of our planet’s history appears to have

been lost as a result of persistent impacts by asteroids, plate

subduction, weathering, or metamorphism (Schopf, 1983).

Therefore, in this brief overview we focus mainly on the

subsequent Archean Eon (3.8–2.5 Ga) for sedimentary rocks

that record clues about the nature and metabolic capacities

of Earth’s early denizens. Simultaneously, we must keep in

mind that considerable biospheric evolution likely took place

during the Hadean Eon.

12.2.2 Eoarchean (4.0–3.6 Ga) BiologicalRemnants?

Graphite occurring in the highly altered terrain of the Isua

greenstone belt in southwestern Greenland (Mojzsis et al.,

1996; Rosing, 1999) represents the oldest postulated remains

of life. The metamorphosed host rocks, which include pillow

basalts and possible turbidites, were evidently deposited in

deep water and are remnants of an early Archean (>3.75 Ga)

seafloor hydrothermal system. The origins of reduced carbon

present in apatite crystals in the Isua and Akilia metasediments

(Mojzsis et al., 1996), and putative sedimentary graphite par-

ticles with d13C values in the range�11.4% to�20.2% Vienna

Pee Dee Belemnite (VPDB) (Rosing, 1999) were originally

proposed to have a biological origin due to their depletion in13C relative to carbonates of similar age (Schidlowski, 1988).

Biology was implicated because the kinetic isotope effect asso-

ciated with the preferential uptake of 12CO2 during biological

carbon fixation (Des Marais, 2001; O’Leary, 1988) results in

organic matter being 13C-depleted compared to inorganic sub-

strates. However, a confounding complication is that CO2

reduction that takes place by abiological means can be

-7.01005-6 33

Page 2: Organic Geochemical Signatures of Early Life on Earth

34 Organic Geochemical Signatures of Early Life on Earth

accompanied by carbon isotope fractionations of a similar

magnitude (McCollom, 2011). This result, predicted by

theory, has been demonstrated experimentally for hydrocar-

bon gases produced under simulated hydrothermal conditions

(McCollom and Seewald, 2006).

The C-isotope findings from Isua and Akilia have been

extensively debated in light of the great antiquity of this

record and because of their ambiguity. Both the proposed

sedimentary nature of the rocks and origins of the reduced

carbon have been questioned. Recent work proposes that

reduced carbon in the Isua terrain probably arose through

metasomatic decomposition of ferrous carbonates (van

Zuilen et al., 2002, 2003) and that these rocks are of little

or no biogeochemical relevance. Accordingly, additional

lines of evidence must be brought to the table before car-

bon isotopic data for organic matter can be used to infer

biological processes in the world’s oldest sediments.

12.2.3 The Post-3.5 Ga Sedimentary Recordof Stable Carbon Isotopes

It has long been held that the �26% isotopic separation

between the sedimentary inorganic (i.e., carbonate, CCARB)

and organic (reduced, CORG) carbon reservoirs provides evi-

dence of biological carbon fixation (Schidlowski, 1983, 2001).

This hypothesis follows from the observation of 27–31% range

of carbon isotopic fractionations associated with the RuBisCO

proteins at the heart of the Calvin–Benson–Bassham (CBB)

cycle of autotrophic carbon fixation (O’Leary, 1988). This

makes empirical sense in the context of our simplified view

of the carbon-bearing compartments within the global carbon

cycle, where these reservoirs are characterized by distinct car-

bon isotopic compositions conforming to known equilibrium

and kinetic fractionation factors (Figure 1).

Fresh organic matter

Sedimentary organic matter

Metamorphic and ignreduced carbon

-40 -30 -20

d 13C (‰

0–103 years

107–109 years

106–109 years

103–108 years

Biosyn

Decomposition and burial

Pressure and heat

Subd

Figure 1 Biogeochemical carbon cycle (reproduced from Des Marais DJ (2Precambrian. Reviews in Mineralogy and Geochemistry 43: 555–578, with perare shown in correspondence to time spans (left y-axis) needed to traverse eacobserved d13C values.

However, as discussed above, nonbiological processes

could generate reduced carbon with a stable carbon isotopic

signature that is indistinguishable from that formed during

biological carbon fixation. Hydrothermal systems, in particu-

lar, are environments of the early Earth that may have wit-

nessed production of organic matter without biological

intervention (McCollom and Seewald, 2007; Proskurowski

et al., 2008). Therefore, claims of biogenesis based on isotopic

data alone cannot be taken at face value. They must be accom-

panied, for example, by a rigorous evaluation of geological and

petrographic data that specify the stratigraphic context of sam-

ples, metamorphic grades, and the potential for diagenetic and

metasomatic overprinting. Sedimentological, geochemical,

and other features that inform us about the paleoenvironmen-

tal setting are also paramount considerations. The sediments of

the c.3.35 Ga Strelley Pool Formation are a case in point. They

are generally well preserved for rocks of Paleoarchean age,

contain pristine carbonate in places, and include diverse stro-

matolites as well as a suite of geological features that are

consistent with deposition in a shallow coastal marine envi-

ronment (Allwood et al., 2006, 2009, 2010) – an interpreta-

tion supported by the distribution and abundances of rare

earth elements (Allwood et al., 2010). In other words, the

sedimentary setting is one in which we would expect to

encounter photosynthetic carbon fixation if this metabolic

mechanism already existed. Organic matter is preserved in

the laminations of the stromatolites and in stratigraphically

equivalent black chert deposits that represent silicified sedi-

ments. The kerogen occurs as clasts and globules deposited

together with other detrital materials that are finely dissemi-

nated throughout the chert matrix. Bulk d13C values for

kerogen from stromatolites range from �28.3% to �35.8%(Marshall et al., 2007) consistent with carbon fixation via

the CBB cycle. A number of localities within the same forma-

tion host preserved carbonaceous objects with diverse mor-

phologies that are interpreted as microfossils (Sugitani et al.,

Mantlecarbon

Marbleeous

Carbonates

Marine HCO3

-10 0 +10

VPDB)

HydrosphereAtmosphereBiosphere

Sedimentary

Metamorphic

Mantle–crust

thesis

uction

Decomposition

Outgassing

Weathering

Cycle

CO2

(sea, atm.)

001) Isotopic evolution of the biogeochemical carbon cycle during themission from Mineralogical Society of America). Subcycles (right y-axis)h of the subcycles. The x-axis boxes roughly correspond to the ranges of

Page 3: Organic Geochemical Signatures of Early Life on Earth

Organic Geochemical Signatures of Early Life on Earth 35

2010). Recent data reporting microscopic and geochemical

evidence for sulfur-metabolizing microbes in the same forma-

tion (Wacey et al., 2011a,b) add to the accumulating evidence

for a range of biological processes taking place during the

deposition of the Strelley Pool Formation. Wacey et al.

(2011a,b) identified chains and clusters of organic microstruc-

tures which they identified as microfossils based on features

that included hollow cell lumens, nitrogen-containing cell

walls, evidence of taphonomic degradation, and d13C values

in the range of �33% to �46% VPDB. Associated pyrite crys-

tals had D33S values between �1.65% and þ1.43% and d34Svalues from �12% to þ6% Vienna Canyon Diablo Troilite

(VCDT). These observations are consistent with evidence for

the biogenicity of the carbon and sulfur isotopic signals in

other sections of the Strelley Pool Formation (Bontognali

et al., 2012).

The long-term constancy of the average isotopic composi-

tions of inorganic (da) and organic carbon (do), in post-3.5 Ga

sediments, together with their �26% offset, has been cited as

evidence of a continuously active biogeochemical carbon cycle

(Des Marais, 2001; Des Marais et al., 1992; Hayes, 1993; Hayes

et al., 2002; Schidlowski, 1983, 2001; Schidlowski et al., 1983).

A long-term average value of da near 0%, when the crustal

average is ��6%, implies the existence of a 13C-depleted,

crustal organic carbon reservoir, while excursions of da from

the long-term average value are viewed andmodeled as intervals

of enhanced organic carbon burial or weathering (Des Marais,

1997; Des Marais et al., 1992; Hayes, 1993; Hayes

and Waldbauer, 2006; Hayes et al., 1983). This evidence is

largely based on globally distributed sample sets rather than

discrete samples, formations, or sedimentary basins. In addi-

tion, basin-scale C-isotopic data from the Late Neoarchean to

Early Paleoproterozoic also record large positive and negative

shifts in carbonate d13C attributable to perturbations in the

global carbon cycle involving events of enhanced carbon burial

(Aharon, 2005; Baker and Fallick, 1989; Bekker et al., 2008;

Melezhik et al., 1999, 2007) or weathering (Kump, 1991;

Kump and Arthur, 1999). In a recent example, Kump and

colleagues studied the isotopic compositions of the oxidized

and reduced carbon phases in carbonate rocks and organic

carbon-bearing shales from the Zaonega Formation in the

Paleoproterozoic Onega Basin on the southeastern margin of

the Fennoscandian Shield. Here they identified a strong negative

d13C excursion, which they correlated with a probably synchro-

nous anomaly in the Francevillian Basin of Gabon. This

‘Shunga-Francevillian anomaly’ was then attributed it to intense

oxidative weathering of rocks in the aftermath of the ‘Great

Oxidation Event’ (Kump et al., 2011).

In evaluating these concepts, it must be recognized that some

of the C-isotopic data, especially for organic carbon in highly

mature terrains, may be compromised by elevatedmetamorphic

grades and/or metasomatism (Hayes et al., 1983; Schidlowski,

2001). Thermal alteration changes the d13C values (do) of sed-imentary organic matter (kerogen) and in general it can be

assumed that most Archean kerogens have experienced lower

greenschist metamorphism (�300 �C) with concomitant shifts

in d13C values by asmuch as 3% (DesMarais, 1997; Hayes et al.,

1983). Additional processes involving hydrothermal alteration

can influence the d13C value and these include isotope exchange

with CO2-rich fluids (Kitchen and Valley, 1995; Robert, 1988);

exchange of crustal carbon with carbon from the mantle is a

further factor for consideration (Hayes and Waldbauer, 2006).

These processes can shift the d13C of sedimentary organic matter

to significantly higher values and potentially lower the d13C of

carbonate (da) and, as a consequence, complicate the interpre-

tation of the isotopic data since the primary biological and the

carbonate reference signal tend to converge. However, in spite of

the fact that the crustal records of da and do can be affected by

diagenesis, metamorphism, and exchange with the mantle, the

offset of their average values appears to be one of the most

robust proxies for the existence of biological processes on Earth.

In light of the relatively stable long-term apparent isotopic

fractionation (D13C) between da and do, it is logical to infer

that marine primary productivity in the surface waters of the

early ocean represents the prime input of organic matter in

(reasonably) well-preserved Archean and Proterozoic sedimen-

tary rocks. However, we can make no conclusion about the

biota responsible for ancient primary productivity based on

the carbon isotopic record alone. Since no distinct difference

exists in the organic carbon isotopic composition of biomass

produced by oxygenic versus the different modes of anoxygenic

photosynthesis (for a different view, see Nisbet et al., 2007),

the carbon isotopic record obtained from Precambrian sedi-

ments provides no direct evidence for the onset of oxygenic

photosynthesis. Notably, however, in the 2.8–2.5 Ga Fortescue

and Hamersley sedimentary sequences of the Pilbara Craton,

where there are extensive and paleoenvironmentally con-

strained records of organic and inorganic carbon isotopes,

persistent trends are observed (e.g., Eigenbrode and Freeman,

2006; Hayes et al., 1983). In recent work, Eigenbrode and

Freeman (2006) observed a 13C-enrichment of �10% in

organic carbon from shallow-water carbonate rocks relative

to coeval deep-water sediments. In addition, organic carbon

from shallow-water environments has a very wide (�29%)

range in values ranging from �57% to �28%, which is in

marked contrast to the 13C-depleted and more narrow range

of �40% to �45% for organic carbon from deep-

water sediments. Eigenbrode and Freeman (2006) posit that

the deep-water signals reflect assimilation of methane or other13C-depleted substrates like it has been hypothesized earlier

(Hayes, 1983, 1994; Hinrichs, 2002; Schoell and Wellmer,

1981; Watanabe et al., 1997). They also propose that the

progressive 13C-enrichment in organic matter from shallow

settings from 2.8 to 2.5 Ga reflects the expansion of aerobic

ecosystems and oxygen-respiring communities as a conse-

quence of the early advent of oxygenic photosynthesis, which

is discussed in detail below (Hayes, 1993).

12.2.4 The Record of Organic Carbon Burial

Hydrogen escape, either directly as a volcanic output (Kasting,

1993) or after photolysis of methane or water in the upper

atmosphere (Catling et al., 2001), probably played a key role

in changing the oxidation state of the earliest Earth. After the

appearance of oxygenic photosynthesis – the only mechanism

capable of producing O2 in appreciable amounts – O2 sinks that

include respiration, reduced volcanic gases together with ferrous

iron, manganese, sulfide, and hydrogen from subsea weathering

of fresh oceanic crust, first had to be satisfied before O2 could

begin to accumulate in the atmosphere. Burial of a fraction of

the organic carbon that was formed with the O2 – that is, its

Page 4: Organic Geochemical Signatures of Early Life on Earth

36 Organic Geochemical Signatures of Early Life on Earth

sequestration in the crust – is required to prevent consumption

of all oxygen and allows its progressive accumulation in the

atmosphere and ocean system (Broecker, 1970; Holland, 1978,

1984; van Valen, 1971). During most of Earth’s history autotro-

phy most likely was the dominant source of the organic carbon

entering sediments and, therefore, the crustal inventory. Assim-

ilation of CO2 and its reduction into ‘fixed’ organic compounds

requires parallel oxidation of an electron donor. Volcanogenic

H2, Fe2þ, S2�, and simple reduced carbon compounds were

probably the initial redox partners associated with CO2 reduc-

tion by methanogens and acetogens and this would have led to

some accumulation of the corresponding oxidized species

(Hayes and Waldbauer, 2006; Sleep and Bird, 2007, 2008).

However, this process is inefficient. It has been estimated that

nonphotosynthetic ecologies would be hampered by levels of

primary productivity as low as 10�4 of those of a photosynthetic

world (Sleep and Bird, 2008), thereby imposing strict limits to

the rates at which reduced carbon could be buried. Energy

harvested from sunlight, therefore, would have enhanced the

rates of autotrophic carbon fixation, carbon burial, and release

of oxidizing power to surface environments. Still, the rates

would have been significantly lower than today (Figure 2) and

inherently limited by the fluxes of electron donors provided by

surface and subsea volcanism to microbial communities living

at or near the sea surface. It is thought that black shales in

themselves are a biosignature for a photosynthetic biosphere.

Black shales also have special taphonomic significance in that

they can survive deep burial and high-grade metamorphism

(Sleep and Bird, 2007).

The initiation of oxygenic photosynthesis, where water

assumed the role of the electron donor for CO2 reduction,

required the development of complex light-harvesting systems

and appears to have resulted from the combination of two

preexisting anoxygenic photosynthesis pathways via interme-

diate steps (Blankenship, 1992, 2010; Blankenship and

Hartman, 1998). Molecular evidence supports this metabolic

merge and provides evidence identifying the green and purple

sulfur bacteria as the sources of the original biochemical

machinery that now resides as photosystems I and II in the

Mantlecarbon

Fresh organic matter

Marble

Sedimentary organic matter

Metamorphic and igneousreduced carbon

Carbonates

Marine HCO3

-

9000

8990

2

1.60.4

2

9

60

45

10

6

50

10

PModern

CO2

(sea, atm.)

Figure 2 Fluxes in the biogeochemical carbon cycle (reproduced from Desduring the Precambrian. Reviews in Mineralogy and Geochemistry 43: 555–5correspond to those illustrated in Figure 1 and the two schemes are models thphotosynthesis.

thylakoids of cyanobacteria and in their descendants, the chlo-

roplasts of green algae and vascular plants (Xiong et al., 2000).

Once unconstrained by fluxes of electron donors from volca-

nogenic sources, carbon fixation through oxygenic photosyn-

thesis would lead to vastly enhanced rates of primary

productivity. It has been estimated that the onset of oxygenic

photosynthesis would have increased global organic produc-

tivity and carbon burial by at least one (Canfield et al., 2006)

and possibly two to three (Des Marais, 2000) orders of magni-

tude. Resultant environmental oxidation would, however, only

be transient. Stoichiometric reversal readily takes place

through respiration. In the modern ocean typically less than

0.5% of primary organic matter survives transit through the

water column to be buried and preserved (Hedges and Keil,

1995; Wakeham and Canuel, 2006). The proportion of organic

matter that does escape remineralization, however, breaks the

redox balance: burial of organic matter leads to an excess of

oxidized species in the surface environment. Any portion of the

organic matter that has passed through the geological carbon

subcycle and becomes exposed at the surface is again suscepti-

ble to weathering with further consumption of oxygen. Many

factors have ultimately contributed to the present-day oxidized

state of Earth’s surface environment but two of them are para-

mount. Firstly, the initial state of the crust was purely volcanic

and the relative proportion of sedimentary rocks increased

through the Hadean and Early Archean, thereby also increasing

the potential size of the crustal reduced carbon reservoir

(Taylor and McLennan, 1985). Secondly, this process is largely

irreversible. With the growth of continental crust and its sedi-

mentary carbon reservoir, the burial flux of organic matter and

other reduced species can be used as a proxy to partially recon-

struct past atmospheric oxygenation although the details of its

inception and how it progressed remain subject of intense

debate (Bjerrum and Canfield, 2004; Canfield et al., 2000;

Des Marais, 2001; Des Marais et al., 1992; Hayes and

Waldbauer, 2006; Sessions et al., 2009).

The fraction of buried organic carbon can be reconstructed

from the stable carbon isotopic compositions of co-occurring

organic and inorganic carbon so long as these rocks have

Mantlecarbon

Fresh organic matter

Marble

Sedimentary organic matter

Metamorphic and igneousreduced carbon

Carbonates

~20

~13

?

164

20

?

~40

45

~30

?>20

~7

reoxygenic photosynthesis

CO2

(sea, atm.)

Marine HCO3

-

Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle78, with permission from Mineralogical Society of America). Subcyclesat illustrate the comparative fluxes before and after the advent of oxygenic

Page 5: Organic Geochemical Signatures of Early Life on Earth

Organic Geochemical Signatures of Early Life on Earth 37

not been too severely altered. The process of thermal matura-

tion preferentially cleaves 12Cd12C over 12Cd13C bonds in

kerogen, which leads to false, heavier residual organic d13Cvalues – although assessment of thermal maturity and recon-

struction of primary values is possible in certain cases (Des

Marais, 1997; Hayes et al., 1983). Taking this into consider-

ation, simplified models constructed using assumptions of a

carbon cycle operating in steady state, together with da and dodata from the extensive compilations that now exist, have

enabled accounts of carbon burial during the Precambrian

(Des Marais, 1997, 2001; Des Marais et al., 1992; Hayes and

Waldbauer, 2006) and through Phanerozoic time (Berner,

2003; Berner and Raiswell, 1983) that are consistent with

geological observations of progressive accumulation of oxi-

dants at the surface including the atmospheric inventory of

O2. At the same time, there are numerous complexities and

uncertainties that preclude deeper understanding of the incep-

tion and progress of the Archean carbon cycle on Earth

(Bjerrum and Canfield, 2004; Fischer et al., 2009; Hayes and

Waldbauer, 2006; Kump, 2008).

Early Archean isotope data from the 3.2–3.5 Ga volcano-

sedimentary sequences of the Pilbara and Kaapvaal cratons

display average da values of 0�2% (Veizer et al., 1989) and

do values between ��25% and �42%. These values encom-

pass the wide range of discrimination exhibited during

carbon assimilation by CBB autotrophs and would be consis-

tent with – but not compelling evidence for – the existence of

oxygenic photosynthesis, since chemoautotrophic microor-

ganisms such as methanogens and anoxygenic phototrophic

bacteria (Schidlowski et al., 1983) can produce similar frac-

tionations. A significant change in the range of do values

becomes apparent around 2.9 Ga. Values as low as �65%cannot be explained by autotrophy alone, even under high-

CO2 atmospheric concentrations. Extremely depleted biomass

can be produced by the recycling of fermentation-derived CO2

or acetate (Eigenbrode and Freeman, 2006; House et al., 2003)

or by the assimilation of acetate from acetogens that compete

for H2 with organisms such as methanogens and sulfate-

reducing bacteria (Gelwicks et al., 1989; Whiticar, 1999). It is

however unlikely that a microbiosphere engaging in these

metabolisms alone is capable of generating the large abun-

dances of very light organic matter found during this time

period. Another plausible scenario involves an active cycle of

methane oxidation and assimilation (Coleman et al., 1981;

Hayes, 1983, 1994; Hinrichs, 2002; Schoell and Wellmer,

1981), with the sharp drop in sedimentary do values possibly

representing an increase in the availability of oxidized electron

acceptors as a consequence of the advent of oxygenic photo-

synthesis. Molecular support for this hypothesis comes from a

positive correlation between abundances of 3b-methylhopanes

(3-MH), biomarkers for methanotrophic bacteria, and kerogen13C in the same samples (Eigenbrode et al., 2008). While one

would intuitively expect a negative correlation, the observation

makes sense in the way that these 3-MH are biosynthesized

only by type-I methanotrophs, which occupy a specific niche

with methane availability but higher O2 levels (Amaral and

Knowles, 1995; Hanson and Hanson, 1996) than present in

the deep basinal areas that are dominated by type-II methano-

trophs. The 3-MH-producing methanotrophs thus thrived

alongside photoautotrophs, which would have produced bio-

mass in much greater abundances. This explains why a light

isotopic signature of methane assimilation is not evident in the13C-enriched 3-MH samples. Further evidence for this sugges-

tion might be revealed when in situ multielement isotope

analyses of microscopic fossils and kerogen fragments at

small spatial scales become better calibrated, understood, and

more widely applied (e.g., Williford et al., 2011).

12.2.5 The Composition of Buried Organic Matter

All documented occurrences of Archean sedimentary organic

matter take place in terrains that have experienced alteration

through tectonism, hydrothermal activity, and ionizing radiation.

Accordingly, the kerogens that remainhave beenoverprintedwith

considerable loss of the primary characteristics. Preserved bitu-

mens largely consist of carbonaceous globules and seams of

highly reflective (�4.0% Ro) pyrobitumen (Buick et al., 1998;

Gray et al., 1998; Rasmussen, 2005; Rasmussen and Buick, 2000)

together with minute traces of hydrocarbons preserved in shales,

carbonates (Brocks et al., 1999, 2003a; Eigenbrode et al., 2008),

and in the fluid inclusions of psammitic quartz crystals

(Dutkiewicz et al., 1998, 2006; George et al., 2008). While the

C-isotopic data for this material can be useful (see above), it has

proven largely intractable for the application of molecular tech-

niques to trace its primary nature.

Kerogen represents the only solid phase in the sedimentary

organic carbon reservoir that has remained in situ and immobile

since it was first deposited. As mentioned above, all known

Archean rocks and, therefore, kerogens have seen metamorphic

grades to at least lower greenschist (Prehnite–Pumpellyite) facies.

Most kerogens are notoriously difficult to characterize

because of the heterogeneous nature of the components and

their polymeric nature. A primary measure of composition

comprises the elemental abundances, especially in respect to

C, H, O, N, and S. Thermal maturation leads to progressive loss

of H, N, O, and S relative to carbon, which is the end-stage

product in metamorphosed sediments. The ratio of H over C

(H/C) is a measure of the relative proportion of all hydrogen

and carbon remaining in the macromolecular carbonaceous

network at each stage of the thermal trajectory. Fresh biomass

is characterized by H/C values of �1.0–2.0, where algal

and bacterial biomass dominated by lipids have higher values

(H/C �2.0), and organic matter (e.g., plants) that characteris-

tically contains a higher abundance of incorporated oxygen has

lower values (H/C �1.0). Heat-driven release of hydrocarbons,

nitrogen, and CO2 leads to residual kerogens with progres-

sively lower H/C values; this is the same process that involves

generation and migration of petroleum phases from rocks with

high total organic carbon contents. Although the final H/C

value at any given stage of thermal maturity will be a function

of the original value of the carbonaceous matter as well as with

the molecular composition, values below 0.5 are generally

regarded as representing mature organic matter that has lost

most, if not all, of its capacity to generate hydrocarbons. Early

studies using hydrous pyrolysis (e.g., Lewan et al., 1985),

where water is used as a source of hydrogen to enhance kero-

gen cracking and product yields, failed to detect any hydrocar-

bons where kerogens older than 1.6 Ga were heated under

closed system conditions (Hoering and Navale, 1987) and,

for a long time, this result discouraged exploration for molec-

ular biosignatures in the record of Archean rocks.

Page 6: Organic Geochemical Signatures of Early Life on Earth

38 Organic Geochemical Signatures of Early Life on Earth

Solid-state 13C NMR spectroscopy (Smernik et al., 2006),

laser Raman and Fourier transform infrared (FTIR) spectroscopy

(Marshall et al., 2005) reveals that Early Archean kerogens from

a stromatolite in the Strelley Pool Formation are highly aromatic

(fa varying from 0.90 to 0.92) and contain only minor aliphatic

carbon or carbon-oxygenated (C–O) functionalities (Marshall

et al., 2007). The Raman carbon first-order spectra for the iso-

lated kerogens are typical of spectra obtained from disordered

sp2 carbons with low two-dimensional (2D) ordering (biperio-

dic structure). The implications of the Raman data are low 2D

ordering throughout the carbonaceous network, which indicates

the incorrect usage of the term graphite in the literature to

describe the kerogen or carbonaceous material in the Warra-

woona cherts. Hydrocarbons produced during high-temperature

experiments, where these kerogens were pyrolyzed in a streamof

high-pressure hydrogen (hydropyrolysis or HyPy; Love et al.,

1995), contain one-ring to seven-ring polycyclic aromatic hydro-

carbons that were covalently bound to the kerogen, as well as

some alkanes (linear, branched, and cyclic), which were most

probably trapped in the microporous network of the kerogen.

The polycyclic aromatic hydrocarbons have mainly C1- and C2-

alkylation while C3þ-substituted aromatics are low in abun-

dance. This study showed for the first time that correlations

exist between elemental H/C ratios, Raman spectroscopic

parameters (ID1/IG, ID1/(ID1þ IG), and La), and the degree

of alkylation of bound polyaromatic molecular constituents

generated by HyPy (Figure 3). Molecular profiles of the HyPy

products of Strelley Pool Chert kerogens and mature Mesopro-

terozoic kerogen from Roper Group (c.1.45 Ga), which is

undoubtedly microbial in origin, were very similar providing

one line of evidence for biogenicity even though no specific

biomarker structures could be identified. A combination of

Raman spectroscopy, for identifying the best-preserved kero-

gens, used together with HyPy for liberating chemically bound

molecules from these kerogens offers a sound and potentially

productive strategy for evaluating the biological origins of

Earth’s oldest preserved organic matter.

A similar approach, combining chemical analysis,

spectroscopy, and pyrolysis, was used by Derenne and col-

leagues to study kerogen from the chert facies of the Strelley

Pool Formation (Derenne et al., 2008). A measured elemental

H/C of 0.62, together with solid-state 13C nuclear magnetic

resonance spectroscopic signals for a significant fraction of ali-

phatic carbon, suggested a lower level of thermal metamor-

phism compared to the kerogens studied by Marshall et al.

(2007). A curie point pyrolysate was dominated, as would

have been expected, by aromatic hydrocarbons but also con-

tained suites of long-chain hydrocarbons comprising alkanes,

alkenes, and alkyl benzenes, all with pronounced odd-over-even

carbon number preferences. This compound distribution is a

diagnostic feature for organic matter of biological origins

(Summons et al., 2008).

Bitumens preserved in Archean rocks comprise extractable

hydrocarbons as well as hydrocarbons preserved in fluid inclu-

sions, in crystalline minerals and pyrobitumens. There are many

reported instances of pyrobitumens, preserved as globules or

nodules (thucolites) and carbon seams, which likely record

former episodes of petroleum generation and migration

(Rasmussen, 2005; Rasmussen and Buick, 2000). These deposits

very often occur in association with gold or uranium

mineralization and the bitumen can be found coating grains

of detrital uraninite, monazite, xenotime, zircon, and thorite.

Multiple processes can be responsible for trapping this once-

mobile organic matter and would include thermal metamor-

phism of hydrocarbon-bearing porous reservoirs. The bitumi-

nous grain coatings likely result from in situ irradiation from

solid particles containing uranium and thorium (Nagy et al.,

1991; Parnell, 1988). As with younger radiation-altered

organic materials, these bitumens are resistant to molecular

characterization because of their high degree of cross-linking

(Dahl et al., 1988). Migration of bitumen from its source

requires that the original kerogen was concentrated and had

an H/C ratio sufficient to allow a fluid phase to form and

overcome the adsorptive capacity of the rock’s mineral matrix.

It is rather unlikely that petroleum could ever be generated

from sedimentary rocks that formed before the advent of

photoautotrophy.

Solvent-soluble organic compounds (bitumens), mostly

hydrocarbons, have been obtained from rocks of all ages. How-

ever, there are very few examples where their occurrence in

Archean sediments is supported by robust evidence for their

syngenicity. Water-soluble organics, including amino acids, car-

bohydrates, nucleic acids, and other directly biological products,

would never have survived unaltered in the thermal regime of

the Archean greenstone belts. Hydrocarbons are considerably

more stable but it would still be difficult to envisage ways in

which they could be preserved in the oldest (>3 Ga) terrains of

northern Australia and southern Africa where total organic car-

bon contents are low and the surviving kerogens haveH/C ratios

approaching zero. The 2.8–2.4 Ga Fortescue and Hamersley

sequences of the Pilbara Craton, and the Griqualand rocks of

the Kaapvaal Craton however contain an abundance of organic

carbon-rich sediments that would be classed as potential petro-

leum source rocks if they were younger than 500 My old. Black

shales and carbonates from these successions have been studied

intensively for almost two decades. The initial studies by Brocks

and coworkers (Brocks, 2001; Brocks et al., 1999, 2003a,b)

reported traces of hydrocarbons, including triterpenoids diag-

nostic for bacteria and eukaryotes in close association with

organic carbon rich black shales but not in the interbedded

low-total organic carbon content sediments and volcanics. Thor-

ough, for the time, analyses and arguments posited that the

hydrocarbons were ‘likely syngenetic’ but the possibility of con-

tamination from younger sediments could not be completely

ruled out (Brocks et al., 2003a).HyPy experiments conducted on

kerogens isolated from some of these rocks yielded predomi-

nantly aromatic assemblages of hydrocarbons and failed to pro-

duce the saturated steroids and hopanoids that were present in

the solvent extracts. In another study, the distributions of

methylated hopanoids in similarly aged and preserved sedi-

ments could be correlated with the isotopic compositions of

associated kerogens and, for the first time, provided data that

related a mobile organic component to one that was in situ

(Eigenbrode et al., 2008). Subsequent studies by Brocks and

others have cast doubt on the validity of this work. Firstly,

hydrocarbons found in the Pilbara cores include molecules

that can be traced to contamination from plastic and are of

undoubted anthropogenic origin (Brocks et al., 2008). Secondly,

the spatial patterns of hydrocarbons and, especially, their con-

centrations near to the external surfaces of cores are proposed as

Page 7: Organic Geochemical Signatures of Early Life on Earth

1.0

0.8

0.6

0.4

0.2

051 52 53 54 55 56 57 58

1.0

0.8

0.6

0.4

0.2

00 0.1 0.2 0.3 0.4 0.5

1.0

0.8

0.6

0.4

0.2

031 33 35 37 39 41

R2= 0.919

R2= 0.984

R2= 0.967

Met

hylp

hena

nthr

enes

/Phe

nant

hren

e

H/C atomic ratio

ID1/(ID1+ IG) (%)

La (nm)

Figure 3 Parallel changes in the composition and maturation of Archean organic matter as shown by comparison to a molecular maturation parameter(S(methylphenanthrenes)/phenanthrene). Lowering of the H/C atomic ratio is due to progressive cracking of high-H/C molecules, while it appearsthat parameters measured by Raman spectroscopy, which reflect the crystallinity of organic matter, are also robust indicators of thermal overprinting ofkerogen. After from Marshall CP, Love GD, Snape CE, et al. (2007) Structural characterization of kerogen in 3.4 Ga Archaean cherts from the PilbaraCraton, Western Australia. Precambrian Research 155: 1–23.

Organic Geochemical Signatures of Early Life on Earth 39

evidence for petroleum-derived contamination ofmuch younger

age (Brocks, 2011). Thirdly, in situ carbon isotopic analyses of

kerogens and solid bitumen phases in core material from the

Hamersley are proposed to exclude any genetic relationship

between the kerogen and soluble bitumen components of the

organic matter (Rasmussen et al., 2008). Although the approach

is a sound one, the samples utilized for in situ isotope analyses

by Rasmussen et al. (2008) were different (J. Brocks, personal

communication, 2011) from those studied for extractable

hydrocarbons by Brocks et al. (1999, 2003a,b). Accordingly, in

this case, the comparisons are invalid and do not constitute a

robust test of biomarker syngenicity.

Page 8: Organic Geochemical Signatures of Early Life on Earth

40 Organic Geochemical Signatures of Early Life on Earth

In more recent work, improved methods were applied to

the analysis of hydrocarbons present in cores recovered during

the Agouron Griqualand Drilling Project, where over 2500 m

of well-preserved Late Archean to earliest Proterozoic Transvaal

Supergroup sediments, dating from c.2.67 to 2.46 Ga were

recovered (Sherman et al., 2007a; Waldbauer et al., 2009).

New approaches which have been implemented include a

conventional extraction (denoted bitumen 1) after which the

rock was demineralized with hydrochloric and hydrofluoric

acids to afford a mineral-occluded component (denoted bitu-

men II). This fraction has been shown to have a lower apparent

maturity than the freely extractable organics in different aged

sediments as well as subtle differences in biomarker parameters

that are responsive to lithology (Sherman et al., 2007b;

Nabbefeld et al., 2010). These differences suggest that the

mineral-occluded hydrocarbon fraction is distinct and less

prone to external contamination. In another approach, bio-

marker profiles of stratigraphically correlated intervals from

diverse lithofacies in two boreholes, separated by 24 km as

well as across a c.2 Gy unconformity, provided support for

the syngeneity of the extractable hydrocarbons. These analyses

were accompanied by a raft of other geological and isotopic

studies that provide a sound paleoenvironmental context in

which to interpret the biomarker data (Fischer et al., 2009;

Knoll and Beukes, 2009; Ono et al., 2009). Further work on

these cores and a recently completed drilling campaign in the

Pilbara Craton, where samples from three holes were recovered

using clean procedures and only water as lubricant, should

provide additional evidence with which to evaluate the synge-

nicity of the biomarkers isolated from these Neoarchean basins.

Fluid inclusion hydrocarbons comprise a special class of

bitumens in that they are encased in crystalline minerals such

as calcite, quartz, and feldspar (Bhullar et al., 1999; Jensenius

and Burruss, 1990; Munz, 2001). They are visible under the

microscope and form a preserved record of fluid migration th-

rough the sedimentary system in which they are found (George

et al., 2008). In Phanerozoic sediments, hydrocarbon-filled fluid

inclusions in sandstones can be geochemically mapped to epi-

sodes of petroleum migration and entrapment (Dutkiewicz

et al., 2004; George et al., 2004) and have been used to recon-

struct the filling histories of petroleum reservoirs (Dutkiewicz

et al., 1998, 2006). Oil-bearing fluid inclusions have been dis-

covered in Archean successions from the Pilbara and Kaapvaal

cratons (Buick et al., 1998) and in the fluvial-deltaic to marine

Paleoproterozoic Huronian Supergroup in Canada (Dutkiewicz

et al., 2006). In the case of the 2.45 Ga sediments of the

Matinenda Formation at Elliot Lake, Canada, oil – possibly

migrated from the conformably overlying McKim Formation –

was trapped in inclusions within quartz and feldspar crystals

before c.2.2 Ga and was present in quantities sufficient to allow

detailed characterization. The range of compounds detected

included n-alkanes, acyclic isoprenoids, monomethylalkanes,

aromatic hydrocarbons, low-molecular-weight cyclic hydrocar-

bons, and traces of complex polycyclic biomarkers including

steranes and triterpanes. In other words, the hydrocarbons com-

prised a similar distribution to those detected in earlier studies

(e.g., Brocks et al., 1999; Waldbauer et al., 2009). Molecular

maturity parameters showed that the oil was generated in the

oil window; there was no evidence of cracking, an observation

attributed to the fact that such inclusions are closed systems with

high fluid pressures with an absence of minerals that might

catalyze decomposition. The biomarker geochemistry of Mati-

nenda Formation fluid inclusion oils suggests that oxygenic pho-

tosynthesis was extant at the time of source rock deposition at

c.2.2 Ga. The methodology developed in this study, with its low

detection limits and low system blanks, could help to resolve the

controversies surrounding Archean shale-hosted biomarkers

(Dutkiewicz et al., 2006; George et al., 2008).

12.2.6 Visible Structures with Organic Affinities

12.2.6.1 Organic-Walled Microfossils

Microfossils can yield unambiguous insight into the existence of

early life on Earth but their interpretation can be complicated by

a multitude of factors. The classification of organic particles or

inorganic coatings on mineral grains as microfossils attempts to

ascribe taxonomic or metabolic affinity to these objects, and

even their original nature are among the most common topics

of debate and argument.

The oldest putative microfossils are Paleoarchean in age and

were discovered in the Barberton Greenstone Belt of South

Africa (Walsh and Lowe, 1985) and the in Pilbara Craton of

northwestern Australia (Awramik et al., 1983; Schopf and

Packer, 1987). The latter were found in the Towers Formation,

an assemblage of thick chert units alternating with basaltic,

felsic volcanic and clastic sedimentary units, and in a chert

unit of the Apex Basalt, both of which are stratigraphically

located within the c.3.5 Ga Warrawoona group. Some of the

spheroidal and filamentous morphologies of the structures

found at the Chinaman Creek locality (Schopf and Packer,

1987) resemble modern and fossil cyanobacteria, which led

to an interpretation that these might be the earliest biological

remnants and the suggestion that oxygen-producing photoau-

totrophy might have already had developed at that point in

geological history (Schopf, 1993; Schopf and Packer, 1987).

However, the host rock that was initially interpreted as a

shallow marine siliceous deposit has been alternatively inter-

preted as a hydrothermal vein chert (Brasier et al., 2002;

Van Kranendonk, 2006). In the Brasier et al. (2002) study,

Raman data on carbonaceous particles were used to suggest

that these represent amorphous graphite, formed by Fischer–

Tropsch-type abiotic syntheses. Ever since a keen debate has

been waged between critics (Brasier et al., 2002, 2004, 2005,

2006; Marshall et al., 2011; Pinti et al., 2009) and adherents

(De Gregorio et al., 2009; Schopf et al., 2002, 2007) of the

Warrawoona microfossil theory. While some points of criti-

cism, such as issues over the nature of branching, were validly

refuted as artifacts of the automontaging software used to create

the photomicrographs (Schopf, 2004), criticism regarding

the biogenicity of these microfossils continues unabated. Most

recently, Marshall et al. (2011) studied objects in the Apex chert

that superficially resemble those reported earlier by Schopf and

Packer (1987) and claimed erroneously that they were fractures

filled with quartz and hematite. Notably, they studied material

that was unrelated to the original discoveries. However, Schopf

and colleagues have shown through confocal laser microscopy

and Raman imagery that the Apex carbonaceousmatter is struc-

turally and chemically complex and that the Apex microbe-like

features represent ‘authentic biogenic organic matter’ (Schopf

Page 9: Organic Geochemical Signatures of Early Life on Earth

Organic Geochemical Signatures of Early Life on Earth 41

andKudryavtsev, 2011). Although someApex chert objectsmay

be pseudo-fossils, there is sound evidence for biology in this

and other units of the Warrawoona and overlying Sulfur

Springs successions. Filamentous microfossils were found in

c.3.2 Ga deep-sea massive volcanogenic sulfide deposits

(Rasmussen, 2000) and amore recent finding of 3.4 Ga organic

microfossils has been heralded even by former skeptics (Wacey

et al., 2011a,b). In the latter study, organicmicrostructures were

associated with pyrite crystals that were interpreted as primary

metabolic by-products of the microbes. The stable carbon and

sulfur isotopic signature of the fossil cell walls and pyrite crys-

tals were taken as an indicator of a sulfur-based metabolism.

This suggestion is in line with previous studies that presented

Paleoarchean sulfur isotopic data and documented the antiq-

uity of bacterial sulfur metabolism (Bontognali et al., 2012;

Philippot et al., 2007; Shen et al., 2001, 2009; Ueno et al.,

2008; Wacey et al., 2011a,b).

The assignment of a metabolic or even taxonomic affinity to

microfossils of Archean age is laden with complications

because of poor preservation, the prevalence of ambiguous

characteristics, and lines of evidence that frequently are circum-

stantial. Photosynthetic metabolism was ascribed to organic

particles interpreted to represent microfossils in the c.3.4 Ga

Buck Reef chert, but this interpretation was primarily based on

a stratigraphic distribution that is limited to shallow marine

sedimentary settings (Tice and Lowe, 2004). Similarly, the

existence of oxygenic photosynthesis has been ascribed to fos-

sil microorganisms whose morphologies resembled those of

modern cyanobacteria (Altermann and Schopf, 1995; Schopf,

1993; Schopf and Packer, 1987). Such identifications are facil-

itated in younger deposits: the oldest microfossils that are

classified with a certain degree of confidence as cyanobacterial

on the basis of high morphological similarities to modern

cyanobacteria (Hofmann, 1976; Knoll, 2002) are of Paleopro-

terozoic age. Similarly, the oldest certainly eukaryotic micro-

fossils are found in Mesoproterozoic strata (Han and

Runnegar, 1992; Javaux et al., 2001, 2003; Knoll et al., 2006;

Walter et al., 1990; Yan and Zhu, 1992; Yin, 1997). The ques-

tion of eukaryotic life during the Archean is debated (see

Chapter 6.5) and microfossils are inconclusive in providing

an answer. Javaux et al. (2010) reported structures that would

by all means deserve a eukaryotic classification by their large

size, but in the absence of further distinguishing criteria (Knoll

et al., 2006) such an interpretation remains inconclusive.

12.2.6.2 Fossil Microbial Mats, Textures, andTrace Fossils

Regions dominated by siliciclastic sedimentation are typically

not prime localities in the search for Archean fossil life due to a

very low level of in situ mineral formation and a generally poor

preservation potential for biomass – particulate organic matter

but also organic microfossils (but see Javaux et al. (2010) for

an interesting exception). However, benthic microbiota may

still influence sedimentary structures, even if none of the

organic matter of the mat is preserved over time. Extracellular

polymeric substances aid in a surficial consolidation of both

clastic and carbonate sediment piles (Decho et al., 2005;

Dupraz et al., 2009), which leads not only to an increased

erosional resistance but also to the formation of characteristic

textures upon further sedimentary burial or desiccation

(Noffke et al., 2001). Of such microbially induced sedimentary

structures (MISSs), the most prominent are wrinkle structures,

also termed elephant-skin texture (Gehling, 1999; Runnegar

and Fedonkin, 1992), desiccation cracks, and roll-up struc-

tures. While they can be a life-marker, information on taxon-

omy or metabolism is absent unless specific microfossils have a

taphonomic niche provided by the mat. Even the biological

source of perceived MISSs cannot always be certain as it can be

hard to distinguish true MISSs from irregularities on bedding

surfaces that arise from purely physical processes such as

impressions from moving foam, or small-scale load structures

among many others (Porada and Bouougri, 2007). Several

MISSs in Archean sedimentary rocks have however been criti-

cally evaluated and thought to be remnants of microbial mat

growth. Sandstones of the 2.9 Ga Mozaan Group contain wrin-

kle structures that host filamentous textural features on a

microscale (Noffke et al., 2003) and similar textural remnants

of presumably bacterial mats are found in the 300-My-older

Moodies Group (Noffke et al., 2006). Although incapable of

pinpointing taxonomy or metabolism with certainty, MISSs in

Archean rocks provide supportive evidence for the existence of

life during the Paleoarchean (Noffke, 2008).

12.2.6.3 Stromatolites

Stromatolites are generally accepted to be organosedimentary

structures produced by sediment trapping, binding, and/or pre-

cipitation as a result of the growth and metabolic activity of

microorganisms (Walter et al., 1976). Several details of their

formation are however debated. Foremost, the aforementioned

definition places them into the realm of biogenic structure,

which might not always be the case. Semikhatov et al. (1979)

provided an alternative definition of Stromatolites that does not

involve the action of biology: “. . . attached, laminated, lithified

sedimentary growth structures, accretionary away from a point

or limited surface of initiation.” Abiological formation of stro-

matolitic structures is indeed possible by chemical precipitation

(Grotzinger and Rothman, 1996). The absence of microstruc-

tures indicative of detrital trapping and binding – promoted by

bacterial extracellular polymeric substance, or EPS – in many

Precambrian stromatolites (Knoll, 2002) has led to the idea that

some of these structures could, in theory, have formed abioti-

cally. A second point of debate in the formation of stromatolites

involves the nature of the biological component. While

assumed principally cyanobacterial in an early definition by

Walter (1976), this is not necessarily the case as a variety of

mat-building microbes could engage in the formation of

stromatiform-lithified mats. Attempts to prove a cyanobacterial

involvement, which would lend credibility to fossil stromato-

lites as indicators for photosynthetic oxygen production, have

been pursued on the basis of modern observations (Burns et al.,

2004; Golubic, 1976; Neilan et al., 2002; Reid et al., 2000;

Walter et al., 1972, 1976), as well as analogies in cone spacing

(Petroff et al., 2010) and trapped crestal bubbles (Bosak et al.,

2009) betweenmodern and ancient coniform stromatolites. For

a more detailed analysis, the reader is referred to Chapter 6.5.

The oldest known stromatolites have been reported from

the 3.49 Ga Dresser Formation in the North Pole area of

the Pilbara Craton in Western Australia (Walter, 1983; Walter

Page 10: Organic Geochemical Signatures of Early Life on Earth

42 Organic Geochemical Signatures of Early Life on Earth

et al., 1980). Here, a bed of laminated domical stromatolites

(Buick et al., 1981, 1995; Groves et al., 1981; Walter, 1983;

Walter et al., 1980) has been argued to represent the oldest

morphological trace of life on Earth. Somewhat younger rocks

at 3.35 Ga from the same region host the next oldest diverse

assembly of stromatolitic buildups. Carbonate units intercalated

in the Strelley Pool Formation contain stromatolites that have

been first reported and discussed by Lowe (1980, 1983, 1994).

It was, however, the reexamination of a locality that was first

discovered by Alec Trendall in 1984 (the ‘Trendall locality’) –

exhibiting exceptional morphological preservation over only a

few square meters – that revived the study of early Archean

stromatolites (Hofmann et al., 1999). Following that, a system-

atic study of diverse morphotypes occurring across >10 km of

the outcropping Strelley Pool Formation revealed the existence

of multiple discrete stromatolitic facies (Allwood et al., 2006)

that appear to occupy different paleoenvironmental settings

across an Archean peritidal platform. Apart from these morpho-

logical and contextual clues, a further argument for biogenicity

was based on observed differences between the laminae situated

on stromatolitic cones and those between them. The observa-

tions suggest a mainly mechanical deposition of grains in the

cone interspaces, whereas different processes – most plausibly

explained by microbial influence – must have acted on the cone

crests (Allwood et al., 2006). The question of biogenicity was

studied in greater detail by additional microscale analyses of

sedimentary fabrics (Allwood et al., 2009). An additional sign

of biological origins comes from the observation that cohesive

layers of organic material formed at regular intervals at the

surface of domal stromatolites and that those laminae adhered

to the steep stromatolite margins without exhibiting a prefe-

rential thickening in topographic lows. Furthermore, matches

between changing depositional modes of laminae and their

” C. Hallmann

” C. Hallmann

1.

3. 4.

2.

Figure 4 The earliest remnants of life on Earth. Stromatolites from the TrenWarrawoona Group in Northwestern Australia. Stratigraphy modified from Makerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia.Hallmann and Roger Summons.

thickness suggest a transition from microbial accretion by

trapping and binding toward accretion by precipitation, indicat-

ing the adaptation of stromatolitic systems to changing envir-

onments. In combination, all these observations make a strong

case for the existence of microbial mat communities by

3.45 Ga – a hypothesis that seems to have now found general

acceptance in the scientific community (Figure 4).

12.2.7 Summary and Prospects

Early life studies will always be subject to debates about what

constitutes a genuine fossil and what does not. Early life was

entirely microbial and comprised of interdependent commu-

nities of organisms that fed on each other and, thereby,

recycled most of the material that they processed. The isotopic

records of carbon, sulfur, and, potentially, other elements are

our best clues to the fact that life was present and driving

biogeochemical cycles at a global scale. Inevitably, however,

the oldest visible objects and chemical remnants of life in the

sedimentary record constitute an imperfect record (Knoll,

2012). They tend to be corrupted by the ravages of time and

temperature and reflect only those biological processes that

have preservable remains. Evidence of biogenicity of any puta-

tive fossil must include establishing a robust environmental

context based on sound geological and geochemical under-

standing as well as a preservation mechanism that is consistent

with that environmental setting (Summons et al., 2011).

Despite the problems of metamorphism and contamination

inherent in the Archean sedimentary record, there is still a

substantial legacy of past biological activity to explore, dissect,

and catalog, especially with the number of recent and pro-

posed boreholes being drilled into unweathered and,

Wyman Fm

Euro Basalt

Strelley Pool Chert

Panorama Fm

Apex Basalt

Mt Ada Basalt / Duffer Fm

Dresser Fm

North Star Basalt

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

Trendall locality

3.33 Ga

3.35 Ga

3.47 Ga

3.47 Ga

3.49 Ga

3.52 Ga

3.43−3.46 Ga

Schopf locality

Awramik locality

North pole stromatolites

(Antarctic Chert Member)

Basalt

Felsic volcanics

Chert

Conical stromatolites

Domal stromatolites

V VV

*

*

* *

dall locality (1 and 3) and the Dresser Formation (2 and 4) of thershall CP, Love GD, Snape CE, et al. (2007) Structural characterization ofPrecambrian Research 155: 1–23. Copyright of photographs by Christian

Page 11: Organic Geochemical Signatures of Early Life on Earth

Organic Geochemical Signatures of Early Life on Earth 43

therefore, better-preserved sedimentary sequences (Garvin

et al., 2009; Kaufman et al., 2007; Knoll and Beukes, 2009).

A new paradigm to search for early life should be based

on the application of sound sedimentological principles and

combinations of emergent instrumental techniques. In situ

screening of organic matter using laser Raman imagery will

help identify the best-preserved materials for further study

while, at the same time, providing nonintrusive visible and

chemical data on microscopic object of interest. Systematic

evaluation of morphologies and multielement isotopic data

for the preserved organic matter at small spatial scales (House

et al., 2000; Rasmussen et al., 2008; Williford et al., 2011) can

enable the recognition of heterogeneities, which typically

characterize biological systems. Such information is largely

invisible in bulk sample analyses. Hydrocarbon analyses on

individual preserved fluid inclusions promise to reveal new

insights into molecular fossil distributions that carry signals

diagnostic for specific biological processes, including oxygenic

and anoxygenic photosynthesis, respiration, and methane

cycling (e.g., Dutkiewicz et al., 2006).

There are very likely archives of Earth’s early life that remain

to be discovered. Remote as they may be, meteorites on the

Moon and Mars could record early terrestrial crust that was not

destroyed by subsequent resurfacing. It is also possible that

some mantle rocks preserve isotopic records of organic carbon

that was once processed by living organisms. Our most acces-

sible prospects, however, are the vast expanses of Earth’s

Archean greenstone belts. Outcrops of, and cores drilled

into, these rocks may yet reveal zones of exceptional preserva-

tion of organic matter that contain valuable chemical and

microscopic fossils. Recent discoveries of large and complex

microfossils suggest that there is much undiscovered material

ripe for detailed microchemical and isotopic analyses (e.g.,

Sugitani et al., 2010). Claims of remnant Hadean crust

(Adam et al., 2012; O’Neil et al., 2008), although controver-

sial, indicate that much remains to be learned about early

Earth’s rock record.

Acknowledgments

The authors gratefully acknowledge the Agouron Institute and

the NASA Astrobiology Institute for support during the prepa-

ration of this review. Christian Hallmann thanks the Max-

Planck-Society for support. Malcolm Walter provided many

invaluable suggestions that improved the manuscript and we

thank Kliti Grice for her review of the submitted version.

References

Adam J, Rushmer T, O’Neil J, and Francis D (2012) Hadean greenstones from theNuvvuagittuq fold belt and the origin of the Earth’s early continental crust. Geology40: 363–366.

Aharon P (2005) Redox stratification and anoxia of the early Precambrian oceans:Implications for carbon isotope excursions and oxidation events.Precambrian Research 137: 207–222.

Allwood AC, Grotzinger JP, Knoll AH, et al. (2009) Controls on development anddiversity of Early Archean stromatolites. Proceedings of the National Academy ofSciences of the United States of America 106: 9548–9555.

Allwood AC, Kamber BS, Walter MR, Burch IW, and Kanik I (2010) Trace elementsrecord depositional history of an Early Archean stromatolitic carbonate platform.Chemical Geology 270: 148–163.

Allwood AC, Walter MR, Kamber BS, Marshall CP, and Burch IW (2006) Stromatolitereef from the Early Archaean era of Australia. Nature 441: 714–718.

Altermann W and Schopf JW (1995) Microfossils from the Neoarchean CampbellGroup, Griqualand West Sequence of the Transvaal Supergroup, and theirpaleoenvironmental and evolutionary implications. Precambrian Research75: 65–90.

Amaral JA and Knowles R (1995) Growth of methanotrophs in methane and oxygencounter gradients. FEMS Microbiology Letters 126: 215–220.

Awramik SM, Schopf JW, and Walter MR (1983) Filamentous fossil bacteria from theArchean of Western Australia. Precambrian Research 20: 357–374.

Baker AJ and Fallick AE (1989) Evidence from Lewisian limestones forisotopically heavy carbon in two-thousand-million-year-old sea water. Nature337: 352–354.

Bekker A, Holmden C, Beukes NJ, et al. (2008) Fractionation betweeninorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbonisotope excursion. Earth and Planetary Science Letters 271:278–291.

Berner RA (2003) The long-term carbon cycle, fossil fuels and atmosphericcomposition. Nature 426: 323–326.

Berner RA and Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sedimentsover phanerozoic time: A new theory. Geochimica et Cosmochimica Acta47: 855–862.

Bhullar AG, Karlsen DA, Backer-Owe K, Seland RT, and Le Tran K (1999) Datingreservoir filling—A case history from the North Sea.Marine and Petroleum Geology16: 581–603.

Bjerrum CJ and Canfield DE (2004) New insights into the burial history of organiccarbon on the early Earth. Geochemistry, Geophysics, Geosystems 5: 1–9.

Blankenship RE (1992) Origin and early evolution of photosynthesis. PhotosynthesisResearch 33: 91–111.

Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiology154: 434–438.

Blankenship RE and Hartman H (1998) The origin and evolution of oxygenicphotosynthesis. Trends in Biochemical Sciences 23: 94–97.

Bontognali TRR, Sessions AL, Allwood AC, et al. (2012) Sulfur isotopes of organicmatter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism.Proceedings of the National Academy of Sciences of the United States of America109: 15146–15151.

Bosak T, Liang B, Sim MS, and Petroff AP (2009) Morphological record ofoxygenic photosynthesis in conical stromatolites. Proceedings of the NationalAcademy of Sciences 106: 10939–10943.

Brasier MD, Green OR, and Jephcoat AP (2002) Questioning the evidence for Earth’soldest fossils. Nature 416: 76–81.

Brasier M, Green O, Lindsay J, and Steele A (2004) Earth’s oldest (3.5 Ga) fossils andthe ‘Early Eden hypothesis’: Questioning the evidence. Origins of Life andEvolution of the Biosphere 34: 257–269.

Brasier MD, Green OR, Lindsay JF, et al. (2005) Critical testing of Earth’s oldestputative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, WesternAustralia. Precambrian Research 140: 55–102.

Brasier M, McLoughlin N, Green O, and Wacey D (2006) A fresh look at the fossilevidence for early Archaean cellular life. Philosophical Transactions of the RoyalSociety, B: Biological Sciences 361: 887–902.

Brocks JJ (2001) Molecular Fossils in Archean Rocks. Doctoral Thesis, SydneyUniversity, Sydney.

Brocks JJ (2011) Millimeter-scale concentration gradients of hydrocarbons in Archeanshales: Live-oil escape or fingerprint of contamination? Geochimica etCosmochimica Acta 75: 3196–3213.

Brocks JJ, Buick R, Logan GA, and Summons RE (2003a) Composition and syngeneityof molecular fossils from the 2.78 to 2.45 billion-year-old Mount BruceSupergroup, Pilbara Craton, Western Australia. Geochimica et Cosmochimica Acta67: 4289–4319.

Brocks JJ, Buick R, Summons RE, and Logan GA (2003b) A reconstruction ofArchean biological diversity based on molecular fossils from the 2.78 to 2.45billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia.Geochimica et Cosmochimica Acta 67: 4321.

Brocks JJ, Grosjean E, and Logan GA (2008) Assessing biomarker syngeneity usingbranched alkanes with quaternary carbon (BAQCs) and other plastic contaminants.Geochimica et Cosmochimica Acta 72: 871–888.

Brocks JJ, Logan GA, Buick R, and Summons RE (1999) Archean molecular fossils andthe early rise of eukaryotes. Science 285: 1033–1036.

Broecker WS (1970) A boundary condition on the evolution of atmospheric oxygen.Journal of Geophysical Research 75: 3553–3557.

Buick R, Dunlop JSR, and Groves DI (1981) Stromatolite recognition in ancient rocks:An appraisal of irregularly laminated structures in an Early Archean chert-bariteunit from North Pole, Western Australia. Alcheringa 5: 161–181.

Page 12: Organic Geochemical Signatures of Early Life on Earth

44 Organic Geochemical Signatures of Early Life on Earth

Buick R, Groves DI, and Dunlop JSR (1995) Abiological origin of describedstromatolites older than 3.2 Ga: Comment and reply. Geology 23: 191.

Buick R, Rasmussen B, and Krapez B (1998) Archean oil: Evidence for extensivehydrocarbon generation and migration 2.5–3.5 Ga. AAPG Bulletin 82: 50–69.

Burns BP, Goh F, Allen M, and Neilan BA (2004) Microbial diversity of extantstromatolites in the hypersaline marine environment of Shark Bay, Australia.Environmental Microbiology 6: 1096–1101.

Canfield DE, Habicht KS, and Thamdrup B (2000) The Archean sulfur cycle and the earlyhistory of atmospheric oxygen. Science 288: 658–661.

Canfield DE, Rosing MT, and Bjerrum C (2006) Early anaerobic metabolisms.Philosophical Transactions of the Royal Society, B: Biological Sciences361: 1819–1836.

Catling D, Zahnle K, and McKay C (2001) Biogenic methane, hydrogen escape, and theirreversible oxidation of early Earth. Science 293: 839–843.

Coleman DD, Risatti JB, and Schoell M (1981) Fractionation of carbon and hydrogenisotopes by methane-oxidizing bacteria. Geochimica et Cosmochimica Acta45: 1033–1037.

Dahl J, Hallberg R, and Kaplan IR (1988) The effects of radioactive decay of uranium onelemental and isotopic ratios of Alum shale kerogen. Applied Geochemistry3: 583–589.

De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, and Hervig RL (2009) Biogenic originfor Earth’s oldest putative microfossils. Geology 37: 631–634.

Decho AW, Visscher PT, and Reid RP (2005) Production and cycling of naturalmicrobialexopolymers (EPS) within a marine stromatolite. Palaeogeography,Palaeoclimatology, Palaeoecology 219: 71–86.

Derenne S, Robert F, Skrzypczak-Bonduelle A, Gourier D, Binet L, and Rouzaud J-N(2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert.Earth and Planetary Science Letters 272: 476–480.

Des Marais DJ (1997) Isotopic evolution of the biogeochemical carbon cycle during theProterozoic Eon. Organic Geochemistry 27: 185–193.

Des Marais DJ (2000) When did photosynthesis emerge on Earth? Science289: 1703–1705.

Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during thePrecambrian. Reviews in Mineralogy and Geochemistry 43: 555–578.

Des Marais DJ, Strauss H, Summons RE, and Hayes JM (1992) Carbon isotope evidencefor the stepwise oxidation of the Proterozoic environment. Nature 359: 605–609.

Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, and Visscher PT (2009)Processes of carbonate precipitation in modern microbial mats.Earth-Science Reviews 96: 141–162.

Dutkiewicz A, Rasmussen B, and Buick R (1998) Oil preserved in fluid inclusions inArchaean sandstones. Nature 395: 885–888.

Dutkiewicz A, Volk H, George SC, Ridley J, and Buick R (2006) Biomarkers fromHuronian oil-bearing fluid inclusions: An uncontaminated record of life before theGreat Oxidation Event. Geology 34: 437–440.

Dutkiewicz A, Volk H, Ridley J, and George SC (2004) Geochemistry of oil in fluidinclusions in a middle Proterozoic igneous intrusion: Implications for the source ofhydrocarbons in crystalline rocks. Organic Geochemistry 35: 937–957.

Eigenbrode JL and Freeman KH (2006) Late Archean rise of aerobic microbialecosystems. Proceedings of the National Academy of Sciences 103: 15759–15764.

Eigenbrode J, Summons RE, and Freeman KH (2008) Methylhopanes in Archeansediments. Earth and Planetary Science Letters 273: 323–331.

Fischer WW, Schroeder S, Lacassie JP, et al. (2009) Isotopic constraints on the LateArchean carbon cycle from the Transvaal Supergroup along the western margin ofthe Kaapvaal Craton, South Africa. Precambrian Research 169: 15–27.

Garvin J, Buick R, Anbar AD, Arnold GL, and Kaufman AJ (2009) Isotopic evidence foran aerobic nitrogen cycle in the latest Archean. Science 323: 1045–1048.

Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics; Ediacaran deathmasks. Palaios 14: 40–57.

Gelwicks JT, Risatti JB, and Hayes JM (1989) Carbon isotope effects associated withautotrophic acetogenesis. Organic Geochemistry 14: 441–446.

George SC, Lisk M, and Eadington PJ (2004) Fluid inclusion evidence for an early,marine-sourced oil charge prior to gas-condensate migration, Bayu-1, Timor Sea,Australia. Marine and Petroleum Geology 21: 1107–1128.

George SC, Volk H, Dutkiewicz A, Ridley J, and Buick R (2008) Preservation ofhydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billionyears. Geochimica et Cosmochimica Acta 72: 844–870.

Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed.) Stromatolites,pp. 113–126. Amsterdam: Elsevier.

Gray GJ, Lawrence SR, Kenyon K, and Corn-ford C (1998) Nature and origin of“carbon” in the Archaean Witwatersrand Basin, South Africa. Geological Society ofLondon Journal 155: 39–59.

Grotzinger JP and Rothman DH (1996) An abiotic model for stromatolitemorphogenesis. Nature 383: 423–425.

Groves D, Dunlop J, and Buick R (1981) An early habitat of life. Scientific American245: 64–73.

Han TM and Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257: 232–235.

Hanson RS and Hanson TE (1996) Methanotrophic bacteria. Microbiology andMolecular Biology Reviews 60: 439–471.

Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis,a speculative hypothesis. In: Schopf JW (ed.) Earth’s Earliest Biosphere: Its Originand Evolution, pp. 291–301. Princeton, NJ: Princeton University Press.

Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds:Principles and evidence. Marine Geology 113: 111–125.

Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition.In: Bengston S (ed.) Early Life on Earth. Nobel Symposium No. 84, pp. 220–236.New York, NY: Columbia University Press.

Hayes JM, Des Marais DJ, Lambert IA, Strauss H, and Summons RE (2002) Proterozoicbiogeochemistry. In: Schopf JW and Klein C (eds.) The Proterozoic Biosphere; AMultidisciplinary Study, pp. 81–134. New York, NY: Cambridge University Press.

Hayes JM and Waldbauer JR (2006) The carbon cycle and associated redox processesthrough time. Philosophical Transactions of the Royal Society, B: BiologicalSciences 361: 931–950.

Hayes JM, Wedeking KW, and Kaplan IR (1983) Precambrian organic geochemistry –Preservation of the record. In: Schopf JW (ed.) Earth’s Earliest Biosphere: Its Originand Evolution, pp. 93–134. Princeton, NJ: Princeton University Press.

Hedges JI and Keil RG (1995) Sedimentary organic matter preservation: An assessmentand speculative synthesis. Marine Chemistry 49: 81–115.

Hinrichs K-U (2002) Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobicmechanism possible? Geochemistry, Geophysics, Geosystems 3: 1042.

Hoering TC and Navale V (1987) A search for molecular fossils in the kerogen ofPrecambrian sedimentary rocks. Precambrian Research 34: 247–267.

Hofmann H (1976) Precambrian microflora, Belcher Islands, Canada – Significance andsystematics. Journal of Paleontology 50: 1040–1073.

Hofmann H, Grey K, Hickman AH, and Thorpe RI (1999) Origin of 3.45 Ga coniformstromatolites in Warrawoona Group, Western Australia. Geological Society ofAmerica Bulletin 111: 1256–1262.

Holland HD (1978) The Chemistry of the Atmosphere and Oceans.New York: Wiley.

Holland HD (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton,NJ: Princeton University Press.

House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, and Stetter KO (2000)Carbon isotopic composition of individual Precambrian microfossils. Geology28: 707–710.

House CH, Schopf JW, and Stetter KO (2003) Carbon isotopic fractionation byArchaeans and other thermophilic prokaryotes. Organic Geochemistry 34:345–356.

Javaux E, Knoll A, and Walter M (2001) Morphological and ecological complexity inearly eukaryotic ecosystems. Nature 412: 66–69.

Javaux E, Knoll A, and Walter M (2003) TEM evidence for eukaryotic diversity inmid-Proterozoic oceans. Geobiology 2: 121–132.

Javaux EJ, Marshall CP, and Bekker A (2010) Organic-walled microfossilsin 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature463: 934–938.

Jensenius J and Burruss RC (1990) Hydrocarbon–water interactions during brinemigration: Evidence from hydrocarbon inclusions in calcite cements from DanishNorth Sea oil fields. Geochimica et Cosmochimica Acta 54: 705–713.

Kasting J (1993) Earth’s early atmosphere. Science 259: 920–926.Kaufman AJ, Johnston DT, Farquhar J, et al. (2007) Late archean biospheric

oxygenation and atmospheric evolution. Science 317: 1900–1903.Kitchen NE and Valley JW (1995) Carbon isotope thermometry in marbles of the

Adirondack Mountains, New York. Journal of Metamorphic Geology 13: 577–594.Knoll AH (2002) The geological consequences of evolution. Geobiology 1: 3–14.Knoll AH (2012) The Fossil Record of Microbial Life. Fundamentals of Geobiology,

pp. 297–314. New York: Wiley.Knoll AH and Beukes NJ (2009) Introduction: Initial investigations of a Neoarchean shelf

margin-basin transition (Transvaal Supergroup, South Africa). PrecambrianResearch 169: 1–14.

Knoll AH, Javaux EJ, Hewitt D, and Cohen P (2006) Eukaryotic organisms in Proterozoicoceans. Philosophical Transactions of the Royal Society, B: Biological Sciences361: 1023–1038.

Kump LR (1991) Interpreting carbon-isotope excursions: Strangelove oceans. Geology19: 299–302.

Kump LR (2008) The rise of atmospheric oxygen. Nature 451: 277–278.Kump LR and Arthur MA (1999) Interpreting carbon-isotope excursions: Carbonates

and organic matter. Chemical Geology 161: 181–198.

Page 13: Organic Geochemical Signatures of Early Life on Earth

Organic Geochemical Signatures of Early Life on Earth 45

Kump LR, Junium C, Arthur MA, et al. (2011) Isotopic evidence for massive oxidation oforganic matter following the great oxidation event. Science 334: 1694–1696.

Lewan MD, Spiro B, Illich H, et al. (1985) Evaluation of petroleum generation byhydrous pyrolysis experimentation (and discussion). Philosophical Transactions ofthe Royal Society of London, Series A: Mathematical and Physical Sciences315: 123–134.

Love GD, Snape CE, Carr AD, and Houghton RC (1995) Release of covalently-boundalkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. OrganicGeochemistry 23: 981–986.

Lowe D (1980) Stromatolites 3,400-Myr old from the Archean of Western-Australia.Nature 284: 441–443.

Lowe D (1983) Restricted shallow-water sedimentation of early Archean stromatoliticand evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western-Australia.Precambrian Research 19: 239–283.

Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga.Geology 22: 387–390.

Marshall C, Emry J, and Olcott Marshall A (2011) Haematite pseudomicrofossilspresent in the 3.5-billion-year-old Apex Chert. Nature Geoscience 4: 240–243.

Marshall CP, Javaux EJ, Knoll AH, and Walter MR (2005) Combined micro-Fouriertransform infrared (FTIR) spectroscopy and micro-Raman spectroscopy ofProterozoic acritarchs: A new approach to palaeobiology. Precambrian Research138: 208–224.

Marshall CP, Love GD, Snape CE, et al. (2007) Structural characterization of kerogen in3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. PrecambrianResearch 155: 1–23.

McCollom TM (2011) What can carbon isotopes tell us about sources of reducedcarbon in rocks from the early Earth? In: Golding SD and Glikson M (eds.) EarliestLife on Earth: Habitats, Environments and Methods of Detection, pp. 291–311.Netherlands: Springer.

McCollom TM and Seewald JS (2006) Carbon isotope composition of organiccompounds produced by abiotic synthesis under hydrothermal conditions. Earthand Planetary Science Letters 243: 74–84.

McCollom TM and Seewald JS (2007) Abiotic synthesis of organic compounds indeep-sea hydrothermal environments. Chemical Reviews (Washington, DC, UnitedStates) 107: 382–401.

Melezhik VA, Fallick AE, Medvedev PV, and Makarikhin VV (1999) Extreme 13Ccarbenrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–‘red beds’ associationin a global context: A case for the world-wide signal enhanced by a localenvironment. Earth-Science Reviews 48: 71–120.

Melezhik VA, Huhma H, Condon DJ, et al. (2007) Temporal constraints on thePaleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35: 655–657.

Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, and Friend CRL(1996) Evidence for life on Earth before 3,800 million years ago. Nature 384: 55–59.

Munz IA (2001) Petroleum inclusions in sedimentary basins: Systematics, analyticalmethods and applications. Lithos 55: 195–212.

Nabbefeld B, Grice K, Schimmelmann A, Summons RE, Troitzsch A, and Twitchett RJ(2010) A comparison of thermal maturity parameters between freely extractedhydrocarbons (Bitumen I) and a second extract (Bitumen II) from within the Kerogenmatrix of Permian and Triassic sedimentary rocks. Organic Geochemistry 41: 78–87.

Nagy B, Gauthier-Lafaye F, Holliger P, et al. (1991) Organic matter andcontainment of uranium and fissiogenic isotopes at the Oklo natural reactors. Nature354: 472–475.

Neilan BA, Burns BP, Relman DA, and Lowe DR (2002) Molecular identification ofcyanobacteria associated with stromatolites from distinct geographical locations.Astrobiology 2: 271–280.

Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, and Nisbet RER (2007) Theage of Rubisco: The evolution of oxygenic photosynthesis. Geobiology 5: 311–335.

Noffke N (2008) Turbulent lifestyle: Microbial mats on Earth’s sandy beaches—Todayand 3 billion years ago. GSA Today 18: 4–9.

Noffke N, Eriksson KA, Hazen RM, and Simpson EL (2006) A new window into EarlyArchean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 GaMoodies Group, South Africa). Geology 34: 253–256.

Noffke N, Gerdes G, Klenke T, and Krumbein WE (2001) Microbially inducedsedimentary structures: A new category within the classification ofprimary sedimentary structures. Journal of Sedimentary Research 71: 649–656.

Noffke N, Hazen R, and Nhleko N (2003) Earth’s earliest microbial mats in a siliciclasticmarine environment (2.9 Ga Mozaan Group, South Africa). Geology 31: 673–676.

O’Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38: 328–336.O’Neil J, Carlson RW, Francis D, and Stevenson RK (2008) Neodymium-142 evidence

for Hadean mafic crust. Science 321: 1828–1831.Ono S, Beukes NJ, and Rumble D (2009) Origin of two distinct multiple-sulfur isotope

compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin,South Africa. Precambrian Research 169: 48–57.

Parnell J (1988) Metal enrichments in solid bitumens: A review. Mineralium Deposita23: 191–199.

Petroff AP, Sim MS, Maslov A, et al. (2010) Biophysical basis for the geometry ofconical stromatolites. Proceedings of the National Academy of Sciences107: 9956–9961.

Philippot P, van Zuilen M, Lepot K, et al. (2007) Early Archaean microorganismspreferred elemental sulfur, not sulfate. Science 317: 1534–1537.

Pinti DL, Mineau R, and Clement V (2009) Hydrothermal alteration and microfossilartefacts of the 3,465-million-year-old Apex chert. Nature Geoscience 2:640–643.

Porada H and Bouougri EH (2007) Wrinkle structures—A critical review. Earth-ScienceReviews 81: 199–215.

Proskurowski G, Lilley MD, Seewald JS, et al. (2008) Abiogenic hydrocarbonproduction at lost city hydrothermal field. Science 319: 604–607.

Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-oldvolcanogenic massive sulphide deposit. Nature 405: 676–679.

Rasmussen B (2005) Evidence for pervasive petroleum generation and migration in 3.2and 2.63 Ga shales. Geology 33: 497–500.

Rasmussen B and Buick R (2000) Oily old ores: Evidence for hydrothermal petroleumgeneration in an Archean volcanogenic massive sulfide deposit. Geology28: 731–734.

Rasmussen B, Fletcher IR, Brocks JJ, and Kilburn MR (2008) Reassessing the firstappearance of eukaryotes and cyanobacteria. Nature 455: 1101–1104.

Reid RP, Visscher PT, Decho AW, et al. (2000) The role of microbes in accretion,lamination and early lithification of modern marine stromatolites. Nature406: 989–992.

Robert F (1988) Carbon and oxygen isotope variations in precambrian cherts.Geochimica et Cosmochimica Acta 52: 1473–1478.

Rosing MT (1999) 13C-depleted carbon microparticles in >3700-ma sea-floorsedimentary rocks from West Greenland. Science 283: 674–676.

Runnegar BN and Fedonkin MA (1992) Proterozoic metazoan body fossils.In: Schopf JW and Klein C (eds.) The Proterozoic Biosphere, A MultidisciplinaryStudy, pp. 369–387. New York: Cambridge University Press.

Schidlowski M (1983) Evolution of photoautotrophy and early atmospheric oxygenlevels. Precambrian Research 20: 319–335.

Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon insedimentary-rocks. Nature 333: 313–318.

Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Gaof Earth history: Evolution of a concept. Precambrian Research 106: 117–134.

Schidlowski M, Hayes JM, and Kaplan IR (1983) Isotopic inferences of ancientbiochemistries – Carbon, sulfur, hydrogen, and nitrogen. In: Schopf JW (ed.)Earth’s Earliest Biosphere: Its Origin and Evolution, pp. 149–186. Princeton, NJ:Princeton University Press.

Schoell M and Wellmer FW (1981) Anomalous 13C depletion in early Precambriangraphites from Superior Province, Canada. Nature 290: 696–699.

Schopf JW (ed.) (1983) Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton,NJ: Princeton University Press.

Schopf JW (1993) Microfossils of the Early Archean Apex Chert – New evidence of theantiquity of life. Science 260: 640–646.

Schopf JW (2004) Tempos and events. In: Eriksson PG, Altermann W, Nelson DR,Mueller WU, and Cateneanu O (eds.) Developments in Precambrian Geology,vol. 12, pp. 516–539. Amsterdam: Elsevier.

Schopf JW and Kudryavtsev AB (2011) Biogenicity of Apex Chert microstructures.Nature Geoscience 4: 346–347.

Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, and Czaja AD (2002)Laser�Raman imagery of Earth’s earliest fossils. Nature 416: 73–76.

Schopf JW, Kudryavtsev AB, Czaja AD, and Tripathi AB (2007) Evidence of Archean life:Stromatolites and microfossils. Precambrian Research 158: 141–155.

Schopf JW and Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old)microfossils from Warrawoona Group, Australia. Science 237: 70–73.

Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, and Benmore WC (1979)Stromatolite morphogenesis—Progress and problems. Canadian Journal of EarthSciences 19: 992–1015.

Sessions AL, Doughty DM, Welander PV, Summons RE, and Newman DK (2009) Thecontinuing puzzle of the great oxidation event. Current Biology 19: R567–R574.

Shen Y, Buick R, and Canfield DE (2001) Isotopic evidence for microbial sulphatereduction in the early Archean era. Nature 410: 77–81.

Shen Y, Farquhar J, Masterson A, Kaufman AJ, and Buick R (2009) Evaluating the roleof microbial sulfate reduction in the early Archean using quadruple isotopesystematics. Earth and Planetary Science Letters 279: 383–391.

Sherman LS, Walbauer JR, and Summons RE (2007a) Methods for biomarkeranalyses of high maturity Precambrian rocks. Organic Geochemistry38: 1987–2000.

Page 14: Organic Geochemical Signatures of Early Life on Earth

46 Organic Geochemical Signatures of Early Life on Earth

Sherman LS, Waldbauer JR, and Summons RE (2007b) Improved methods for isolatingand validating indigenous biomarkers in Precambrian rocks. Organic Geochemistry38: 1987–2000.

Sleep NH and Bird DK (2007) Niches of the pre-photosynthetic biosphere and geologicpreservation of Earth’s earliest ecology. Geobiology 5: 101–117.

Sleep NH and Bird DK (2008) Evolutionary ecology during the rise of dioxygen inthe Earth’s atmosphere. Philosophical Transactions of the Royal Society,B: Biological Sciences 363: 2651–2664.

Smernik RJ, Schwark L, and Schmidt MWI (2006) Assessing the quantitative reliabilityof solid-state 13C NMR spectra of kerogens across a gradient of thermal maturity.Solid State Nuclear Magnetic Resonance 29: 312–321.

Sugitani K, Lepot K, Nagaoka T, et al. (2010) Biogenicity of morphologically diversecarbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in thePilbara Craton, Western Australia. Astrobiology 10: 899–920.

Summons R, Albrecht P, McDonald G, and Moldowan J (2008) Molecularbiosignatures. Space Science Reviews 135: 133–159.

Summons RE, Amend JP, Bish DL, et al. (2011) Preservation of martian organic andenvironmental records: Final report of the Mars biosignature working group.Astrobiology 11: 157–181.

Taylor SR and McLennan SM (1985) The Continental Crust: Its Composition andEvolution, p. 328. Palo Alto, CA: Blackwell Scientific.

Tice M and Lowe D (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean.Nature 43: 549–552.

Ueno Y, Ono S, Rumble D, and Maruyama S (2008) Quadruple sulfur isotopeanalysis of ca. 3.5 Ga Dresser Formation: New evidence for microbialsulfate reduction in the early Archean. Geochimica et Cosmochimica Acta72: 5675–5691.

Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, and Valley JW (2008) Lithiumin Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust.Earth and Planetary Science Letters 272: 666–676.

Valley JW, Peck WH, King EM, and Wilde SA (2002) A cool early Earth. Geology30: 351–354.

Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and theflourishing of early life on Earth: A review of the evidence from c. 3490–3240 Marocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-ScienceReviews 74: 197–240.

Van Valen L (1971) The history and stability of atmospheric oxygen. Science171: 439–443.

van Zuilen MA, Lepland A, and Arrhenius G (2002) Reassessing the evidence for theearliest traces of life. Nature 418: 627–630.

van Zuilen MA, Lepland A, Teranes J, Finarelli J, Wahlen M, and Arrhenius G (2003)Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern WestGreenland. Precambrian Research 126: 331–348.

Veizer J, Hoefs J, Lowe DR, and Thurston PC (1989) Geochemistry of Precambriancarbonates: II. Archean greenstone belts and Archean sea water. Geochimica etCosmochimica Acta 53: 859–871.

Wacey D, Kilburn MR, Saunders M, Cliff J, and Brasier MD (2011a) Microfossils ofsulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia.Nature Geoscience 4: 698–702.

Wacey D, Saunders M, Brasier MD, and Kilburn MR (2011b) Earliest microbiallymediated pyrite oxidation in 3.4 billion-year-old sediments. Earth and PlanetaryScience Letters 301: 393–402.

Wakeham S and Canuel E (2006) Degradation and preservation of organic matter inmarine sediments. In: Volkman J (ed.) Marine Organic Matter: Biomarkers, Isotopesand DNA, pp. 295–321. Berlin/Heidelberg: Springer.

Waldbauer JR, Sherman LS, Sumner DY, and Summons RE (2009) Late Archeanmolecular fossils from the Transvaal Supergroup record the antiquity of microbialdiversity and aerobiosis. Precambrian Research 169: 28–47.

Walsh M and Lowe D (1985) Filamentous microfossils from the 3,500-Myr-oldOnverwacht Group, Barberton Mountain Land, South-Africa. Nature 314: 530–532.

Walter MR (1976) Introduction. In: Walter MR (ed.) Stromatolites, pp. 1–4. Amsterdam:Elsevier.

Walter MR (1983) Archean stromatolites – Evidence of the earth’s earliest benthos.In: Schopf JW (ed.) Earth’s Earliest Biosphere: Its Origin and Evolution,pp. 187–213. Princeton, NJ: Princeton University Press.

Walter MR, Bauld J, and Brock TD (1972) Silicious algal and bacterial stromatolites inhot spring and geyser effluents of Yellowstone National Park. Science178: 402–405.

Walter MR, Bauld J, and Brock TD (1976) Microbiology and morphogenesisof columnar stromatolites (Conophyton vacerilla) from hot springs inYellowstone National Park. In: Walter MR (ed.) Stromatolites, pp. 273–310.Amsterdam: Elsevier.

Walter MR, Buick R, and Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old fromthe North-Pole area, Western-Australia. Nature 284: 443–445.

Walter MR, Rulin Du, and Horodyski RJ (1990) Coiled carbonaceous megafossils fromthe Middle Proterozoic of Jixian (Tianjin) and Montana. American Journal ofScience 290-A: 133–148.

Watanabe Y, Naraoka H, Wronkiewicz DJ, Condie KC, and Ohmoto H (1997)Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales fromthe Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta61: 3441–3459.

Watson EB and Harrison TM (2005) Zircon thermometer reveals minimum meltingconditions on earliest Earth. Science 308: 841–844.

Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formationand oxidation of methane. Chemical Geology 161: 291–314.

Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, and Valley JW (2011)Constraining atmospheric oxygen and seawater sulfate concentrations duringPaleoproterozoic glaciation: In situ sulfur three-isotope microanalysis of pyrite fromthe Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta75: 5686–5705.

Xiong J, Fischer WM, Inoue K, Nakahara M, and Bauer CE (2000) Molecular evidencefor the early evolution of photosynthesis. Science 289: 1724–1730.

Yan Y and Zhu S (1992) Discovery of acanthomorphic acritarchs from the Baicaopingformation in Yongi, Shanxi, and its geological significance. Acta PalaeontologicaSinica 9: 267–282.

Yin L (1997) Acanthomorphic acritarchs from Meso-Neoproterozoic shales ofthe Ruyang Group, Shanxi, China. Review of Palaeobotany and Palynology98: 15–25.