ordinary difference eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/m1/5...

84
Ordinary Difference Eq of order r = r-order ode: K[y n , y n-1 , y n-2,... y n-r ; t]=0 y n = y(t 0 +nτ) = y(t 0 +nτ) Solution: y = y(t) , t 0 +nτ, n takes integer values To solve the r-order difference equation means to find solutions y = y(t) such that the sequence y n , y n-1 , y n-2,... y n-r satisfies the given equation The solution of the ode of order r, in general involves r arbitrary constants which must be determined by limit conditions on the y n , y n-1 , y n-2,... y n-r , (initial conditions , boundary conditions) ode like ODE describe processes in terms of local rates of change

Upload: others

Post on 21-Sep-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Ordinary Difference Eq of order r = r-order ode: K[yn, yn-1, yn-2,... yn-r ; t]=0

yn = y(t0+nτ) = y(t0+nτ)

Solution: y = y(t) , t0+nτ, n takes integer values

To solve the r-order difference equation means to find solutions y = y(t) such that the sequence yn, yn-1, yn-2,... yn-r satisfies the given equation The solution of the ode of order r, in general involves r arbitrary constants which must be determined by limit conditions on the yn, yn-1, yn-2,... yn-r, (initial conditions , boundary conditions) ode like ODE describe processes in terms of local rates of change

Page 2: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Ordinary Difference Equation of order r, r=1,2,… as an equation on yt

and its differences .

Βackward Difference Equation = Αναδρομες Εξισωσεις Διαφορων

K[yt, yt-1, yt-2,... yt-r ; t] = 0 ⟺ B[yt ,∇yt , ∇2yt , …∇ryt ; t] =0

∇r are the Backward Difference Operators of order r=1,2,…

∇ yt = yt − yt −1 = (I−V) yt

∇ = (I−V) ,

V=S−1 is the Backward Shift Operator on Sequences V(ψ1, ψ2, ψ3,...)= (0, ψ1, ψ2, ...) (Vψ)ν = ψν−1 , ν=1,2,3,… ψ0 = O

∇2yt = ∇(∇ yt ) = ∇ (yt − yt −1) = ∇yt − ∇yt −1 = (yt − yt −1 )−( yt −1 − yt−2 )

∇2yt = (yt − 2yt −1 + yt−2 ) = (1−V)2 yt

∇3yt = ∇(yt − 2yt −1 + yt−2 ) = (yt − yt −1)−2 (yt −1 − yt−2 )− (yt−2 − yt −3) =

= yt − 3yt −1 + yt−2 + yt −3 = (1−V)3 yt

The r-th Backward Difference Operator ∇r

∇r =(I−V)r

Page 3: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Forward Difference Equation

K[yt+r, yt+r-1, yt+r-2,... yt ; t]=0 ⟺ F[∆ryt , ∆r-1yt , ∆r-2yt , …, yt ; t] =0

yt+r = ∑ (nk) ∆ryt

nk=0

∆r are the Forward Difference Operators of order r=1,2,…

∆ yt = yt+1 − yt = (S−I) yt

∆ = (S−I) ,

S is the Forward Shift Operator on Sequences S(ψ1, ψ2, ψ3,...)=(ψ2, ψ3, ψ4,...) (Sψ)ν = ψν+1 , ν=1,2,3,…

∆2yt = ∆ (∆ yt ) = ∆ (yt+1 − yt) = ∆yt+1 − ∆yt = (yt+2 − yt +1 )−( yt +1− yt)

∆2yt = (yt+2 − 2yt +1 + yt ) = (S+I)2 yt

∆3yt = ∆(yt+2 − 2yt +1 + yt) = (yt+3 − yt +2)−2 (yt +2 − yt+1)− (yt+1 − yt) =

= yt+3 − 3yt +2 + yt+1 + yt = (S+I)3 yt

∆nyt = ∑ (−1)n−k (nk)n

k=0 yt+k = ∑ (−1)n−k (nk)n

k=0 Skyt

∆r =(S−I)r =∑ (−1)n−k (nk)n

k=0 Sk

Page 4: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

EXAMPLE:

3∇2yt + 2∇yt + 7yt =0 ⟺ yt = 2

3yt−1 −

1

4yt−2

Page 5: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Recurrence Equations and DS as de

The time independent ode K[yt, yt-1, yt-2,... yt-r]=0 is an Implicit Function Eq for yt

For solvable ode, the implicit Function S defines the Recurrence Equation of order r

yt =S[yt-1, yt-2,...,yt-r]

The Recurrence Equations of order r define the

r-order Recursive Sequences = Recurrence Sequences

= Aναδρομικες Ακολουθιες r-ταξεως

The solution to the Recurrence Equation is obtained by

iterating the Map S with initial conditions y0, y1,...,yr−1

yt =S[yt-1, yt-2,...,yt-r] is also called Iteration Formula

(Y,S) define a Discrete DS

Page 6: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

3) The Euler ode of the ODE 𝑑𝑦

𝑑𝑡= 𝐹(y(t), 𝑡)

with y0 = y(t0) is the 1st-order RE (Αναδρομικη Ακολουθια) :

yν+1 = yν + τ F(yν , t0+ντ) = S(yν), ν = 0,1,2,…

with: η0 = y0 = y(t0)

η1 = τ F(y0 , t0)

η2 = τ F(y1 , t0+τ)

ην = τ F(yν−1 , t0+(ν−1)τ)

Maps as DS

1-order Recurrence Equation

yt+1 =S[yt] , S is the (Forward) Shift Map

Page 7: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Linear ode

Solutions by Systematic Μethods. The most developed Theory

Analogy with Linear ODE

EXAMPLES Aριθμητικη Προοδος yt+1 = yt + w , t=0,1,2,3,... , yt Πραγματικοι Αριθμοι yt = y0 + tw Γεωμετρικη Προοδος yt+1 = ayt , t=0,1,2,3,... , yt Πραγματικοι Αριθμοι yt = at y0 Γραμμικη Αναδρομικη Ακολουθια 1ης ταξεως yt+1 = ayt + w , t=0,1,2,3,... , yt Πραγματικοι Αριθμοι a≠1

yt = at y0 + w1−at

1−a

Page 8: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Euler ode Reduction to Linear

yt+32 + αyt+2

2 + βyt+12 + γyt

2 = 0 ⟺ xt+3 +αxt+2 + βxt+1 +γxt = 0 with xt = yt

2

Fibonacci Sequence

Ft = Ft−1 + Ft−2

F0 = 0 , F1 =1

Solution Binet 1843

Ft = 𝝋𝒕−(−𝝋)−𝒕

√𝟓=

(𝟏+√𝟓)𝒕−(𝟏−√𝟓)𝒕

𝟐𝒕√𝟓 Aσκ 0,02

0.3 ευρεση της λυσης

𝝋 =𝟏+√𝟓

𝟐 the Golden Number

Page 9: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Nοn Linear ode

Explicit solutions are known only for Some isolated special classes of ΝL RR and for specific parameters.

Solutions for general parameter values are not known.

In such ode: we use computers to calculate large numbers of terms we study qualitative questions: -the behaviour of the solutions as n→∞, -Stability (Dynamical Structural), which on the whole is analogous to the stability theory for ordinary differential equations -Statistical Properties

Page 10: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Aρμονικη Προοδος

𝒚𝒕+𝟏 =𝒚𝒕

𝟏−𝒘𝒚𝒕 t=0,1,2,3,... , yt Πραγματικοι Αριθμοι

𝟏

𝒚𝒕 , t=0,1,2,3,... Aριθμητικη Προοδος

Generalization to Riccati, Oμογραφικες,

Page 11: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

The Hofstadter–Conway $10,000 sequence is defined as follows

𝑎(𝑛) = 𝑎(𝑎(𝑛 − 1)) + 𝑎(𝑛 − 𝑎(𝑛 − 1)), 𝑛 = 3,4, …

𝑎(1) = 𝑎(2) = 1

The first few terms of this sequence are

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, ...

(A004001 in OEIS)

Page 12: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Theorem Conway: 0.5

𝐥𝐢𝐦𝑛→∞

𝑎(𝑛)

𝑛=1

2

Conway J. 1988, Some Crazy Sequences, Lecture at AT&T Bell Labs, July 15

Batrachion Functions

John Horton Conway offered a prize of $10,000 to find a value of n for which

|𝑎(𝑛)

𝑛−1

2| <

1

20

𝐧 = 𝟏𝟒𝟖𝟗 Mallows

Page 13: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Schroeder, M. 1991, "John Horton Conway's 'Death Bet.' " Fractals, Chaos, Power

Laws, New York: W. H. Freeman, pp. 57-59

Hofstadter later claimed he had found the sequence and its structure some 10–

15 years before Conway posed his challenge

[private communication with Klaus Pinn]

Page 14: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Renyi S: [0,1)→ [0,1): yt+1 = 2yt (mod 1) = 2 yt 1[o, ½)(yt)+(2yt - 1) 1[½, 1)(yt) Γεωμετρικη Προοδος με λογο 2 στο [0,1) Periodic Orbits Error Free Computation

Page 15: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Σκηνης (Tent Map) S: [0,1)→ [0,1): yt+1=2 yt 1[o, ½)(yt)+(2 - 2yt) 1[½, 1)( yt)

Συμμετρια S(y)=S(1-y)

Λυση Ulam-Von Neumann: yt = 1

𝜋 arcsin (cos2tπy0), t=1,2,3,..., ∀ y0 in [0,1)

Aσκ Επαληθευση {0.2} 3 υπολογισμοι {0.8} Computability of Ulam-Von Neumann Analytic Formula {2}

Page 16: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Λογιστικη Απεικονιση (Logistic Map)

S: [0,1)→ [0,1): yt+1 = α yt (1- yt)

has known exact solutions only for α=−2,2 and 4.

Λυση Ulam-Von Neumann yt = sin2 (2t arcsin √y0), t=1,2,3,... Aσκ {0.2}

Page 17: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Ισοδυναμια Λογιστικης Απεικονισης με Απεικονιση Σκηνης Aσκ {0.5} Απεικονιση Chebychev Sm: [-2,2)→ [-2,2): yt+1 = 2cos(m arcos yt) , t=1,2,3,... m = 2,3 ....

Page 18: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Gauss S: [0,1)→ [0,1):

yt+1 = 1

𝑦𝑡 (mod1) = {

1

𝑦𝑡} =

1

𝑦𝑡− [

1

𝑦𝑡] = the Fractional part of

1

𝑦𝑡 ,t=1,2,3,...

Continued Fractions representations of Real numbers

Page 19: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Gauss 2dim= Απεικονιση Mixmaster

S:[0,1)x[0,1) → [0,1)x[0,1) : (xy)↦(

1

𝑥𝑡− [

1

𝑥𝑡]

11

𝑦𝑡−[

1

𝑥𝑡]

)

S−1 (xy)=(

1

𝑥+[1

𝑦𝑡]

1

𝑦𝑡− [

1

𝑦𝑡]

)

Page 20: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Σφηνας (Cusp)

:[ 1,1] [ 1,1]

1 2

S

y S y y

Page 21: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Απεικονιση Πλαστη (Baker)

B:[0,1)x[0,1) → [0,1)x[0,1) :(𝒙𝒚) ↦ (

𝟐𝒙𝒚

𝟐

) mod1

Page 22: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 23: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 24: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Στατιστικη Μη ΑναστρεψιμοτηταΑσταθεια στην οριζοντια κατευθυνσηΕυσταθεια στην καθετη κατευθυνσηΥπερβολικη Δομη Τοπικο Γεωμετρικο Χαρακτηριστικο Χαους

Page 25: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Baker Map as Source of Information

Information of the Baker Map with respect to the generating partition {Ξ0 = lower, Ξ1

=upper}

𝒮0(ξ) = 2[−1

2𝑙𝑜𝑔2

1

2] = 𝑙𝑜𝑔22 = 1bit

𝒮1(ξ) = 4[−1

4𝑙𝑜𝑔2

1

4] = 𝑙𝑜𝑔24 = 2bit

𝒮2(ξ) = 8[−1

8𝑙𝑜𝑔2

1

8] = 𝑙𝑜𝑔28 = 3bit

𝒮t(ξ) = (t+1) ℐ0 = (t+1) bits

The Linear Hyperbolic Map

S:ℝ2 → ℝ2 :(𝒙𝒚) ↦ (

𝟐𝒙𝒚

𝟐

)

B = S mod 1

Page 26: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

The Horseshoe map= 2dimensional Tent Map

Page 27: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 28: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Τhe Cat Map on the Torus

S:[0,1)x[0,1) → [0,1)x[0,1) : (xy) ↦ (

11 1 2) (xy) = (

x + yx + 2y

) mod1

Anosov 1963, Sov. Math. Dokl 4, 1153-6

J=det(𝟏 𝟏𝟏 𝟐

)=1

(11 1 2)−1

= (𝟐 −𝟏−𝟏 𝟏

)

Page 29: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Eigenvalues of (11 1 2) λ+=

3+√5

2 >1 λ-=

3−√5

2 <1

λ+λ- =1

Eigenvectors of (11 1 2)

η+ = (1𝜑) κατευθυνση διαστολης

η- = (1

−1

𝜑) κατευθυνση συστολης

φ= 𝟏+√𝟓

𝟐 ο Χρυσος Αριθμος

Page 30: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

2 Iterations of the Cat Map After streching the deformed square is cut into 4 pieces The 4 pieces are assembled and stacked to a square

Page 31: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Mixing 2 or more metals by mechanical alloying takes place due to repeated streching and

folding described by simple chaotic maps (Baker, Cat)

[Shingrou,ea 1995 ]

Periodic Points

(xy) is Periodic Point of S with period T → (

xy) is fixed point of ST

(xy) = (

00) is the only fixed point of S

Only 4 period 2 points exist (

1

53

5

) , (

2

51

5

) , (

3

54

5

) , (

4

52

5

)

Θ. 1) (xy) is Periodic Point of S ⟺ Both x and y are rationals with the same denominator

2) Τhe Periodic Points of S are countably infinite 3) Τhe Set of Periodic Points of S is dense in the Unit Square [Guckenheimer 21]

Page 32: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 33: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 34: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Εμβαπτιση σε Ροη Ασκηση 2 Υπολογισιμοτης Ασκηση 2

Page 35: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Torus Maps

S:[0,1)x[0,1) → [0,1)x[0,1) : (xy)↦(

ac b d) (xy) = (

ax + bycx + dy

) mod1

a,b,c,d are Integers

Page 36: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Henon Map

S:ℝ2 → ℝ2 : (xy)↦(

1 − αx(1 − x) + ybx

) = (1 − ax2 + y

bx)

Jacobian: J=- b , J-1 = −1

b S−1 (

xy) = (

yx−a+y2

b

)

b≠0 Reversible b=0 Reduces to the Logistic Map b=1 Conservative 0<b<1 Contraction a=1,4, b=0.3 Chaos

The Henon Map is the Positive Dilation of the Logistic Map

Simplification of the Poincare Map of the Lorenz ODE Aσκηση 2 Hénon M. 1976, A two-dimensional mapping with a strange attractor", Communications in Mathematical Physics 50, 69–77. Curry J. 1979, On the Henon Transformation, Commun. Math. Phys. 68, 129-140

Χαος Υπολογιστικα + Διερευνηση Aσκηση 2 Marotto F. 1979, Chaotic Behavior in the Henon Mapping, Commun. Math. Phys. 68, 187-194 Χαος Θεωρητικα Aσκηση 2

Page 37: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Hénon attractor for a = 1.4 and b = 0.3

Page 38: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 39: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 40: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map
Page 41: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Lozi Map

S:ℝ2 → ℝ2 : (xy) ↦ (1−a

|x|+ybx

)

There is a Strange Attractor made up of Straight Line Segments Ασκηση 1 + 1(simulation 2D) + 1 (simulation 3D)

Page 42: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

The Nicholson–Bailey Host-Parasite Dynamics

Parasites lay an egg at every encounter with the host

𝑵𝒕+𝟏 = 𝒓𝑵𝒕𝑒−𝛼𝜫𝒕

𝜫𝒕+𝟏 = 𝒈𝑵𝒕(𝟏 − 𝑒−𝛼𝜫𝒕)

t=0,1,2…,T the successive stages - generations times

t=0 is the initial generation.

t=T is the last generation

𝑵𝟎 is the initial Host population density

𝜫𝟎 is the initial parasite population density.

𝑁𝑡 the Host population at time (generation) t

𝛱𝑡 the Parasite population at time (generation) t

𝑒−𝛼𝛱𝑡 is the fraction of hosts not parasitized

α is the searching efficiency (the probability that a parasite will encounter some

host over the course of their lifetime)

r is the number of eggs laid by a host

g is the number of eggs laid by a parasite on a single host

Nicholson, A. J., and V. A. Bailey. 1935, The balance of animal populations, Proceedings

of the Zool. Soc. of London. 1: 551-598. 1 (Th) + 1 (sim)

Page 43: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Rational Complex Maps =RCM

S: ℂ→ ℂ : z↦ S(z) =𝑃(𝑧)

𝑄(𝑧) , P,Q Polynomials

S: Rational Complex Function Julia Set = [Fatou Set]c

Fractals Demetriou A., Christou C., Spanoudis G., Platsidou M. 2002 Blackwell, Boston

Page 44: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Quadratic Map Sz= z2 + c, c Complex Parameter The Mandelbrot Set for the family of Quadratic Maps z ⟼ z2 + c

M = {c ∈ℂ | the orbit of 0 (0 , c , c2 + c , (c2 + c)2 + c , ...) is bounded}

c = 1 ( 0, 1, 2, 5, 26,…) unbounded ⟹ 1 is not in the Mandelbrot set.

c = i (0, i, (−1 + i), −i, (−1 + i), −i, ...) bounded ⟹ i is in the Mandelbrot set.

The Mandelbrot set is Self- Similar (Fractal)

Page 45: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Fractal Aesthetics Fractals as Attractors of Dynamical Systems VIDEO

Correspondence between the Mandelbrot Set M and the Logistic Map

The intersection of M with the real axis is the interval [-2, 0.25].

The parameters along this interval can be put in one-to-one correspondence with

the parameter α of the Logistic family

x ⟼ αx(1−x) , α ∈ [1,4]

The correspondence between Re(c) and α is: Re(c) = 𝛼

2 (1 −

𝛼

2) Aσκ 1

Page 47: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Constructions from the Mandelbrot Set

Buddhabrot http://www.superliminal.com/fractals/bbrot/bbrot.htm Aσκ 1

Page 48: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

ΙΤΕRATED FUNCTION SYSTEMS = IFS

A family of Contractions: Sν: Y→Y , ν = 1,2,…,Ν on the Complete Metric space Y

Theorem Hutchinson 1981

Every IFS on Y=ℝn has a unique Attracting Invariant Set Ξ (Set of Fixed Points)

which is Compact (closed and bounded)

Proof Aσκηση 0,5

Hutchinson J. 1981, Fractals and Self Similarity, Indiana Univ. Math. J. 30, 713–747

Two problems arise.

1) Direct Problem: For a given IFS Find the Invariant Set Ξ.

2) Inverse Problem: For a given Compact set Ξ,

Find an IFS {Fi} that has Ξ as its Invariant Set.

Page 49: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

The Direct Problem is solved by deterministic Algorithms

based on the proof of the FP Theorem

Construction of the Fixed Set Ξ Aσκηση 0,5

Chaos Game Aσκηση 0,5

Examples Explicit (2) Aσκηση 0,5

The Inverse Problem is solved approximately by the Collage Theorem.

The construction involves random iteration algorithms

Random IFS (pν Sν) , ν=1,2,…,Ν ∑ 𝑝𝜈 = 1𝛮𝜈=1

The Collage Theorem tells us that “to find an IFS whose attractor is "close to" or "looks like" a given set, one must endeavor to find a set of transformations - contraction mappings on a suitable set within which the given set lies - such that the union, or collage, of the images of the given set under transformations is near to the given set”.

Barnsley M. 1988, "Fractals Everywhere", Academic Press, New York

Page 50: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

IFS Examples produced by pairs of 2-dimensional affine maps.

Sprott J. 1994, Automatic Generation of Iterated Function Systems, Comput. & Graphics 18, 417-425

Page 51: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Barnsley Fern

Page 52: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

IFS Applications

Image Representation-Reconstruction as IFS

Fractal Image Compression

Fractal Interpolation. Increase resolution

Iterated Systems Inc (1987) over 20 patents related to fractal compression

Page 53: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Recursive Functions

Wolfram, S. 2002, "Recursive Sequences." A New Kind of Science.

Champaign, IL: Wolfram Media, pp. 128-131 and 890-891.

ΕΞΙΣΩΣΕΙΣ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΩΝ και ΚΥΨΕΛΙΚΑ ΑΥΤΟΜΑΤΑ

pde and Cellular Automata

Partial Difference Equations Yk+1,m+1 - q Yk+1,m - pYk,m = 0 k,m = 1,2,3,… Wolfram S. 2002, A New Kind of Science, Wolfram Media, Champaign, Illinois.

Net of Cells Finite states (2adic ON, OFF) Κυψελικά Aυτόματα Kανόνες γειτνίασης στο πλέγμα.

An initial state (time t=0) is selected by assigning a state for each cell.

A new generation is created (t + 1), according to some fixed rule that

determines the new state of each cell in terms of the current state of the cell and the states of the

linked cells

Typically, the rule for updating the state of cells is the same for each cell and does not change over

time, and is applied to the whole grid simultaneously

Page 54: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Example: the cell is "ON" in the next generation if exactly two of the cells in the neighborhood are

"ON" in the current generation, otherwise the cell is "OFF" in the next generation

Game of Life 1970

VIDEO

Probabilistic Cellular Automata

Page 55: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Network Dynamical Systems t=0,1,2,… = {0,1,2,…}

State Dynamics: 𝑆𝑡: Y ⟶ Y ∶ (𝑥𝑤) ⟼ 𝑆𝑡 (

𝑥𝑤)

Sκt : Y ⟶Σ : (

𝑥𝑤) ⟼ xRκR(t) = Sκ

t (𝑥, 𝑤) = 𝑆𝜅𝑡(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽)

the (Activation) Dynamics-Algorithm of the node κ

Sκλt : Y ⟶ℝ : (

𝑥𝑤) ⟼ wRκλR(t) = Sκ𝜆

t (𝑥, 𝑤) = 𝑆𝜅𝜆𝑡 (𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽)

the (Learning) Dynamics-Algorithm

(𝑥𝜅(𝑡)𝑤κλ(𝑡)

) = 𝑆𝑡 (𝑥𝜅𝑤κλ

) = (𝑆𝜅𝑡(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽)

𝑆𝜅𝜆𝑡 (𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽)

)

the solution of the Dynamical Equation.

Page 56: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Weighted Graphs are defined by the Adjacency Matrix 𝐴𝜅𝜆

Weighted Graph are Graphs with weights at the Links

Network are Weighted Graphs with Activation Variables at the Nodes

y the state of the Graph, Weighted Graph, Network

Graphs 𝑦 = (

⟦∑ (𝜶𝟏𝝀 + 𝜶𝝀𝟏) > 0𝝀 ⟧

⟦∑ (𝜶𝟐𝝀 + 𝜶𝝀𝟐) > 0𝝀 ⟧⋮𝐴𝜅𝜆

)

Weighted Graphs 𝑦 = (1𝑤) = (

⟦∑ (𝜶𝟏𝝀 + 𝜶𝝀𝟏) > 0𝝀 ⟧

∑ (𝜶𝟐𝝀 + 𝜶𝝀𝟐) > 0𝝀

⋮𝑤𝜅𝜆

)

Νetworks y=(𝜓𝑤) = (

𝜓1𝜓2⋮𝑤𝜅𝜆

)

Page 57: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

the Iverson Bracket, named after Kenneth E. Iverson, is a notation that denotes

a number that is 1 if the condition in square brackets is satisfied, and 0

otherwise:

⟦𝑸⟧ = {𝟏, 𝒊𝒇 𝑸 𝒊𝒔 𝑻𝒓𝒖𝒆𝟎, 𝒊𝒇 𝑸 𝒊𝒔 𝑭𝒂𝒍𝒔𝒆

where Q is a statement that can be true or false.

This notation was introduced by Kenneth E. Iverson in his programming

language APL,

Kenneth E. Iverson, A Programming Language, New York: Wiley, p. 11, 1962.

Ronald Graham, Donald Knuth, and Oren Patashnik. Concrete Mathematics,

Section 2.2: Sums and Recurrences.

The specific restriction to square brackets was advocated by Donald Knuth to

avoid ambiguity in parenthesized logical expressions

Knuth D. 1992, "Two Notes on Notation", American Mathematical Monthly,

Volume 99, Number 5, May 1992, pp. 403–422. (TEX, arXiv:math/9205211)

The Iverson Bracket converts a Boolean value to a 0, 1

Page 58: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Counting is represented as summation.

Examples:

𝛿𝜅𝜆 = {𝟏, 𝒊𝒇 𝜿 = 𝝀𝟎, 𝒊𝒇 𝜿 ≠ 𝝀

=[𝜿 = 𝝀]

1𝛯(𝑥) = {𝟏, 𝒊𝒇 𝒙 ∈ 𝜩𝟎, 𝒊𝒇 𝒙 ∉ 𝜩

= [𝒙 ∈ 𝜩]

The Hamming Distance between two strings of equal length N

𝒅((

𝒙𝟏⋮𝒙𝑵) , (

𝒚𝟏⋮𝒚𝑵)) =∑ [𝒙𝝂 ≠ 𝒚𝝂]

𝜨

𝝂=𝟏

Number of Active Nodes = ∑ [∑ (𝜶𝜿𝝀 + 𝜶𝝀𝜿)𝝀 ]𝜿

Page 59: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Differential Equation for Continuous Time t ≥ 0 or Real

Νet Flow

dy(t)

dt= 𝛷(y(t))

d

dt(𝑥(𝑡)𝑤(𝑡)

) = 𝛷 (𝑥(𝑡)𝑤(𝑡)

)

d

dt(

𝑥1(𝑡)⋮

𝑥𝛮(𝑡)𝑤κλ(𝑡)

) =

(

𝛷1(𝑥1(𝑡), … 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡))

⋮𝛷𝛮(𝑥1(𝑡), … 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡))

𝛷κλ(𝑥1(𝑡), … 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡)))

Page 60: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Difference Equation for Discrete Time t=0,1,2,…, or Integer

Net Update at discrete steps

y(t+1) = S(𝑦(𝑡))

(𝑥(𝑡 + 1)

𝑤(𝑡 + 1)) = 𝑆 (

𝑥(𝑡)

𝑤(𝑡))

(

𝑥1(𝑡 + 1)⋮

𝑥𝑁(𝑡 + 1)𝑤𝜅𝜆(𝑡 + 1)

) =

(

𝑆1(𝑥1(𝑡), … , 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡))

⋮𝑆𝑁(𝑥1(𝑡), … , 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡))

𝑆𝜅𝜆(𝑥1(𝑡), … , 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡)))

Page 61: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Cognition Graphs are Directed

Layered Representation (Drawing, Layout) of Graphs as Cognition Graphs (Neural Nets, Mind)

Bastert O. and Matuszewski C. 2001, Layered Drawings of Digraphs, in: Kaufmann M. and D. Wagner D. eds., 2001, Drawing Graphs. LNCS 2025, pp. 87-120, Springer, Berlin

Page 62: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Node Update Dynamics

Sκ: Y ⟶Σ : (𝑥𝑤) ⟼ Sκ(

𝑥𝑤) = Sκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽) , κ∈ 𝒱

xκ (t+1) =𝑆𝜅(𝑥1(𝑡), … , 𝑥𝑁(𝑡), 𝑤𝛼𝛽(𝑡)) the Update Dynamics of the node κ

1st order Discrete GDS

For each Node v,

The node Update map Sv depends on the states associated to the 1-neighborhood of each node

EXAMPLE : Cellular Automata

Page 63: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Neural Networks

Sκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽)= φκ(ζκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽))

ζκ : Y ⟶ ℝ : (𝑥𝑤) ⟼ zκ= ζκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽) the Input Aggregation Map

φκ : ℝ ⟶ Σ: zκ ⟼ φκ (zκ) the Οutput Activation Map = Transition Map

Input Output Prosynaptic Postsynaptic Activity Activity

Page 64: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Neuron Model

[Heykin S. 1999, Neural Networks. A Comprehensive Foundation, Pearson Prentice Hall, New

Jersey]

Page 65: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

AGGREGATION Maps EXAMPLES

Bilinear AM

zκ= ζκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽) = ∑ x𝜆λ 𝑤𝜆𝜅

Since the early dates of the study of ΝΝ, the bilinear function has been used to model the aggregated input on each node at time t

Bilinear AM with bias bκ

zκ= ζκ(𝑥1, … 𝑥𝑁, 𝑤𝛼𝛽) = ∑ x𝜆λ 𝑤𝜆𝜅 + bκ

Perceptron

Page 66: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

NN Οutput Activation Maps = Transition Maps

EXAMPLES

Unit Step Heaviside Map

φκ (x)= θ(x− ακ) = {1, 𝑖𝑓 𝑥 ≥ 𝑎𝜅0, 𝑖𝑓 𝑥 < 𝑎𝜅

}

ακ = the Activation Threshold of the Node κ,

We may consider AM with values in [−1,1]

φκ (x)= {

+1, 𝑖𝑓 𝑥 > 0 0, 𝑖𝑓 𝑥 = 0−1, 𝑖𝑓 𝑥 < 0

}

All or None Property

McCullock-Pitts Neuron Model 1943

Page 67: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Piecewise Linear Map

φκ (x)=

{

1, 𝑖𝑓 𝑥 ≥

1

2

𝑥, 𝑖𝑓 𝑥 ∈ (−1

2, +

1

2 )

0, 𝑖𝑓 𝑥 ≤1

2 }

Page 68: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Sigmoid Map (Innovation)

β=2 β=1 β=0.5

φκ (x)= 1

1+𝑒−𝛽(𝑥−𝑎𝜅)

ακ = Activation Threshold of the Node κ

β = the slope parameter of the Sigmoid Map

Page 69: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Hyperbolic Tangent Map

Ferrazzi et al. BMC Bioinformatics 2007 8(Suppl 5):S2 doi:10.1186/1471-2105-8-S5-S2

φκ (x)= tanh(αx)

Page 70: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Link Update Dynamics = Learning Algorithm

Sλκ: Y ⟶ℝ : (𝑥𝑤) ⟼ Sλκ(

𝑥𝑤) = Sλκ(𝑥1, … 𝑥𝑁, 𝑤)

wλκ(t+1) = 𝑆𝜆𝑘(𝑥1(𝑡), … , 𝑥𝑁(𝑡), 𝑤(𝑡))

EXAMPLES

Constant Weights - No Learning

w(t) = w , wκλ(t) = wκλ

NN

wλκ(t+1) = 𝑆𝜆𝑘(𝑥1(𝑡), … , 𝑥𝛼(𝑡), w1κ(t), … ,wακ(t))

the Update Dynamics of the presynaptic link (λ,κ) , λ=1,2,…α to Neuron κ

NN Hebb Learning

wακ (t+1) = wακ (t) + η(t) xα(t) ζκ(x(t),w1κ(t),…, wακ(t))

wακ (t+1) = wακ (t) + η(t) xα(t) ∑ x𝑣𝑣 (t) 𝑤𝑣𝜅(t) ,

η(t)= the Learning rate

Simplest Hebb Learning:

wακ (t+1) − wακ (t) = η xα(t) xκ(t)

η = the constant Learning rate

Page 71: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

NN Oja Learning (as Principal Components Analysis)

wακ(t+1) = wακ(t) + η(t) [xα(t)− wακ(t) ζκ(x(t),w(t))] ζκ(x(t),w(t))

wακ(t+1) = wακ(t) + η(t) [xα(t)− wακ(t) ∑ x𝑣𝑣 (t) 𝑤𝑣𝜅(t)] ∑ x𝑣𝑣 (t) 𝑤𝑣𝜅(t)

η(t)= the Learning rate

NN Learning by Supervision Widrow-Hoff rule or the delta rule

The adjusting of the weights wακ depend not the actual activation xκ(t) of the node κ but

on the difference between the actual activation xκ(t) and desired activation dκ provided by a teacher:

wακ (t+1) − wακ (t) = η xα(t) [dκ(t)−xκ(t)]

wακ (t+1) − wακ (t) = η xα(t) [dκ−xκ(t)]

Page 72: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Stochastic NN

Stochastic Activation

Stochastic McCullock-Pitts Neuron Model

φκ(x)= {+1,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑥)

−1,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝(𝑥)

}

p(x)= 1

1+𝑒−𝛽𝑥 [Haukin 1999, 37]

Boltzmann Machines, the activation as the probability of generating an action potential spike, and is determined via a logistic function on the sum of the inputs to a unit.

Page 73: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Does Goddess Μνημωσυνη Operates through the Nervous System? Is Memory Encoded in the Nervous System? If YES, What are the traces of Memory in the Nervous System? Semon 1921 Assumed psycho-physiological parallelism (Every psychological state corresponds to alterations in the Nervous System. Therefore, Memory traces are stored as biophysical or biochemical changes in the Neural tissue, in response to external and internal stimuli. Semon introduced the term Engrams for Memories Representation in the Neural System and found evidence that different parts of the body relate to each other involuntarily, such as "reflex spasms, co-movements, sensory radiations," and noticed the non-uniform distribution and revival of Engrams.

Semon R. 1921. The Mneme, George Allen & Unwin, London. p. 24"Chapter II. Engraphic Action of Stimuli on the Individual".

Page 74: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

After K. Lashley failed (1930-1950) to find a single biological locus of memory (engram), he suggested that memories were not localized to one part of the brain, but were widely and distributed throughout the cerebral cortex. Later it was found that engrams are non-uniformly distributed across all cortical areas.

Hebb Learning Rule “cells that fire together, wire together” was based on Lashley’s work

Hebb, D.O. 1949. The Organization of Behavior. New York: John Wiley

Jack Orbach. 1998. The Neuropsychological Theories of Lashley and Hebb. University Press of America. ISBN 0-7618-1165-6.

Josselyn S. A. 2010, Continuing the search for the engram: examining the mechanism of fear memories". J. Psychiatry Neurosci. 35(4): 221–228

BCM Rule Modification of Hebb Learning Bienenstock E., Cooper L., and Munro P. 1982, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48.

Cooper, L. 2000, Memories and memory: A physicist's approach to the brain". International Journal of Modern Physics A 15 (26): 4069–4082. doi:10.1142/s0217751x0000272x.

Page 75: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Memory and Long-Term Potentiation Long-term potentiation (LTP) is a persistent increase in synaptic strength following high-frequency stimulation of a chemical synapse from recent patterns of activity. Paradiso, Michael A.; Bear, Mark F.; Connors, Barry W. (2007). Neuroscience: Exploring the Brain. Hagerstwon, MD: Lippincott Williams & Wilkins. p. 718.

Verification of Memory and Long-Term Potentiation The cellular mechanism of memory formation is clear by Optogenetics Nabavi, S., et al. (2014). Engineering a memory with LTD and LTP. Nature, doi: 10.1038/nature13294

Page 76: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Working Memory (WM)

WM or Short-Term Memory is the RAM of the Mind Short-Term Memory was called thus to distinguish it from "long-term memory" the memory store. WM contains the information of which we are immediately aware.

Miller G. demonstrated that:

1) the capacity of WM cannot be defined in terms of the amount of information it contains. Instead WM stores information in the form of “Modules-Cells-Categories-Classes-Chunks-Semantic Units”

2) the Human Brain can store only about 7±2 Modules in the WM

3) the Human Brain uses Recoding. Brain’s ability to recode is one of the keys to artificial

intelligence. Until a computer could reproduce this ability, it could never match the performance of the human brain.

Miller G. 1956, The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97

Simon H. 1969 showed that the ideal number of Modules is 3. This is evidenced by the tendency to remember phone numbers as several chunks of 3 numbers with the final 4-number groups generally broken down into two groups of 2.

Simon H. 1969, The Sciences of the Artificial, M.I.T. Press, Cambridge, Massachusetts

Εach Module may contain a very small amount of information or complex big data

equivalent to large amounts of information.

Page 77: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Module Constructon: Classification, Categorization WM Capacity is a measure of Intelligence determining the ability to : take good notes, read efficiently, understand complex issues, reason.

Turing Machines may Realize Neural Networks and WM

Graves A., Wayne G., Danihelka I. 2014 Neural Turing Machines, arxiv.org/abs/1410.5401

Aσκ. Αναλυση της Working Memory 4 NN Integrated Circuit Merolla P., Arthur J. , ea 2014, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345, 668-673 Aσκ. Αναλυση του Σχετικου Δικτυου 4

Page 78: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Coupled Map System (CMS) or Coupled Map lattice (CML)

DS modeling the behavior of non-linear Dynamics of spatially extended systems.

spatiotemporal chaos (the number of effective degrees of freedom diverge as the size of the system

increases)

populations,

chemical reactions,

convection,

fluid flow

biological networks.

computational networks (identifying detrimental attack methods and cascading failures).

Web (not yet)

Page 79: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Kaneco CML

1D Lattice, κ in ℤ coupling with coupling parameter ε in [0,1].

xκ (t+1) = Sκ(x1(t), … , xN(t), wαβ(t)) = (1−ε) F(xκ(t)) + ε

2 [F(xκ−1(t))+ F(xκ+1(t))]

F: ℝ→ℝ the Local Dynamics Map

Example: The logistic map F(x(t)) = r x(t) (1− x(t))

xκ (t+1) =Sκ(x1(t), … , xN(t), wαβ(t)) = (1−ε) r xκ(t) (1− xκ(t)) + ε

2 r [xκ-1(t) (1− xκ-1(t)) + xκ-1(t) (1− xκ-1(t))]

Even though each native recursion is chaotic, a more solid form develops in the evolution.

Elongated convective spaces persist throughout the lattice

History

CMLs were introduced in the mid 1980’s

K. Kaneko 1984, Prog. Theor. Phys. 72, 480

I. Waller and R. Kapral 1984, Phys. Rev. A 30 2047

J. Crutchfield 1984, Physica D 10, 229

S. P.Kuznetsov and A. S. Pikovsky 1985 , Izvestija Radiofizika 28, 308

Page 80: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Boolean Networks = SHANNON GRAPH = Binary decision diagram (BDD)

propositional directed acyclic graphs (PDAG), as a data structures

representing Boolean functions

Logical operations SG

Many logical operations on SGs can be implemented by polynomial-time graph

algorithms.

• conjunction

• disjunction

• negation

• existential abstraction

• universal abstraction

Repeating these operations several times, may in the worst case result in an exponential

time.

Page 81: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Random Boolean Networks = Kauffman Networks

proposed by S. Kauffman, as models of genetic regulatory networks

Kauffman, S. A. 1969, Metabolic Stability and Epigenesis in randomly constructed genetic

nets. Journal of Theoretical Biology 22, 437-467.

Kauffman, S. A. 1993, Origins of Order: Self-Organization and Selection in Evolution,

Oxford University Press. ISBN 0-19-507951-5A

RBN is a system of N binary-state nodes (representing genes)

with K inputs to each node representing regulatory mechanisms.

The two states (on/off) represent respectively, the status of a gene being active or

inactive.

The state of a network at any point in time is given by the current states of all N genes.

Thus the state space of any such network is 2N.

Simulation of RBNs is done in discrete time steps.

Page 82: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Bayesian Networks , Graphical Models

P[A=α|B=β] = the degree of belief that the RV A has the value α based on the fact that B=β

P[A |B] = P[A∩B]

P[B] =

P[A]

P[B] P[B|A]

P[x1, x2,…, xN ] = ∏ P[xv|x𝜅𝑎𝑣𝜅 ] 𝑣,𝜅 (the parents of each node v)

P[x1, x2, x3, x4, x5] = P[x1] P[x2] P[x3 |x1, x2] P[x4|x3] P[x5 | x3, x4]

1

1

3

1

2

Page 83: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

The graph is Acyclic

P[x3 | x2] P[x1|x3] P[x2 | x1] is not consistent probability

Links indicate Direction, Causality, Temporal succession

GM include:

Markov Nets

Hidden Markov Nets

Kalman Filters

Neural Nets

1

3

2

Page 84: Ordinary Difference Eq of order r = r-order odecosal.auth.gr/iantonio/sites/default/files/M1/5 Discrete DS.pdf · φ= +√ ο Χρυος Αριθμος. 2 Iterations of the Cat Map

Genetic Algorithms, Evolutionary Strategies, Net Games Swarms, Agents, Sensors Nets Collective Intelligence

Immune System Models