oral presentation

63

Upload: rolpasto

Post on 28-May-2015

415 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Oral presentation

Experimental Validation of a Multibody

Model for a Vehicle Prototype and its

Application to State Observers

Roland Pastorino

A thesis submitted for the degree of Doctor Ingeniero Industrial

June 25, 2012, Ferrol, Spain

Mechanical Engineering Laboratory, University of La Coruña

Page 2: Oral presentation

0 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 2/48

Page 3: Oral presentation

1 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 3/48

Page 4: Oral presentation

1 � Motivations

Laboratorio de Ingeniería Mecánica (LIM).

Specialized in real�time simulations of rigid and �exible multibody systems

Fig. 1 � Real�time simulations ofvehicles

Fig. 2 � Real�time simulations ofexcavators

Fig. 3 � Real�time simulations ofcontainer cranes

Fig. 4 � Human�In�The�Loopsimulators of excavators

Mechanical Engineering Laboratory, University of La Coruña 4/48

Page 5: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 6: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 7: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 8: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 9: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 10: Oral presentation

1 � Motivations

Multibody dynamics analysis in the automotive �eld.

ANALYSISTYPES

rideanalysis

durabilityanalysis

crashanalysis

handlinganalysis

real�timeapp

MB MODELS

accuracy

highlydetailedmodels

easeof use

specialformu.

e�ciencyrequired

reducedmodels

comfort

noise &vibration

nonlinearvehicledynamics

crash�worthiness

design &tuning ofcontrollers

HIL &HITL

Mechanical Engineering Laboratory, University of La Coruña 5/48

Page 11: Oral presentation

1 � Motivations

Objectives.

�Without validation of the vehicle dynamics there is only speculation that agiven model accurately predicts a vehicle response�

A.H. Hoskins and M. El-Gindy, �Technical report: Literature survey on driving simulator validation studies�,International Journal of Heavy Vehicle Systems, vol. 13 (3), pp. 241�252, (2006)

new insigths intothe automotive re-

search line of the LIM

reliability and validity of themodeling procedure and

MB formulation to simulatecomprehensive vehicle models

state estimation usingMB models appliedto vehicle dynamics

Mechanical Engineering Laboratory, University of La Coruña 6/48

Page 12: Oral presentation

2 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 7/48

Page 13: Oral presentation

2 � Vehicle �eld testing

Validation methodology.

based on the validation methodology developed by the VRTC (Vehicle Research andTest Center) for the NADS (National Advanced Driving Simulator)composed of 3 main phases

1 � experimentaldata collection

vehicle �eld testing

maneuvers → broad range ofvehicle operating conditions

repetitive maneuvers todetermine the randomuncertainty

experimental post�processing

2 � vehicle parametermeasurement

parametermeasurements for theMB model and thesubsystem models

3 � simulation predictionsvs experimental data

simulations using the samecontrol inputs that weremeasured at the 1st phase

comparisons between thesimulation & experimentalresults

Fig. 5 � NADS bay

Mechanical Engineering Laboratory, University of La Coruña 8/48

Page 14: Oral presentation

2 � Vehicle �eld testing

Diagram of the iterative validation methodology.

vehicle model

vehicle

referencemaneuver

maneuverrepetitions

test track topo. survey

benchmarkinput data

virtual en-vironment

vehicle parameter measurement

MB formu.+ integrator

sensor outputs

brake model tire model

sensor outputs

comparisons

Mechanical Engineering Laboratory, University of La Coruña 9/48

Page 15: Oral presentation

2 � Vehicle �eld testing

Diagram of the iterative validation methodology.

vehicle model

vehicle

referencemaneuver

maneuverrepetitions

test track topo. survey

benchmarkinput data

virtual en-vironment

vehicle parameter measurement

MB formu.+ integrator

sensor outputs

brake model tire model

sensor outputs

comparisons

Mechanical Engineering Laboratory, University of La Coruña 9/48

Page 16: Oral presentation

2 � Vehicle �eld testing

Diagram of the iterative validation methodology.

vehicle model

vehicle

referencemaneuver

maneuverrepetitions

test track topo. survey

benchmarkinput data

virtual en-vironment

vehicle parameter measurement

MB formu.+ integrator

sensor outputs

brake model tire model

sensor outputs

comparisons

Mechanical Engineering Laboratory, University of La Coruña 9/48

Page 17: Oral presentation

2 � Vehicle �eld testing

Diagram of the iterative validation methodology.

vehicle model

vehicle

referencemaneuver

maneuverrepetitions

test track topo. survey

benchmarkinput data

virtual en-vironment

vehicle parameter measurement

MB formu.+ integrator

sensor outputs

brake model tire model

sensor outputs

comparisons

Mechanical Engineering Laboratory, University of La Coruña 9/48

Page 18: Oral presentation

2 � Vehicle �eld testing

The XBW vehicle prototype.

self�developed from scratch

on�board digital acquisition system

longitudinal and lateral maneuver repetitioncapability

Mechanical characteristics.

tubular frame

internal combustion engine (4 cylinders, 2�barrelcarburator)

automatic gearbox transmission

front suspension → double wishbone

rear suspension → MacPherson

tyres → Michelin E3B1 Energy 155/80 R13

Fig. 6 � Design and manufacturing

Fig. 7 � XBW vehicle prototype

Mechanical Engineering Laboratory, University of La Coruña 10/48

Page 19: Oral presentation

2 � Vehicle �eld testing

The by�wire systems of the prototype.

SBW → steer�by�wire

TBW → throttle�by�wire

BBW → brake�by�wire

Extra sensors.

Measured magnitudes Sensors

vehicle accelerations (X,Y,Z) accelerometers (m/s2)

vehicle angular rates (X,Y,Z) gyroscopes (rad/s)

vehicle orientation angles inclinometers (rad)

wheel rotation angles hall�e�ect sensor (rad)

brake line pressure pressure sensor (kPa)

steering wheel and steer angles encoders (rad)

engine speed hall�e�ect sensors (rad/s)

steering torque inline torque sensor (Nm)

throttle pedal angle encoder (rad)

rear wheel torque wheel torque sensor (Nm)

Steering wheel

Precision gearbox

Coreless DC motor

Precision gearboxTorque sensor

Encoder B

Rack and pinion gear system

Encoders A

Fig. 8 � Steer�by�wire system

Fig. 9 � Throttle�by�wiresystem

Fig. 10 � Brake�by�wire system

Mechanical Engineering Laboratory, University of La Coruña 11/48

Page 20: Oral presentation

2 � Vehicle �eld testing

Driver's force feedback of the SBW.

objective → accurate torque feedback to thedriver

problem → �exibility, backlash & friction

solution → highly accurate model of theassembly ampli�er�motor�gearbox

future work → model based torque controller

4 Quadrant Linear Servoamplifier PMDC Motor Gearbox Steering Wheel

123

4

Fig. 11 � Scheme of the modeling

Fig. 12 � Steering wheel system

Fig. 13 � CAD model of the steering wheelsystem

Mechanical Engineering Laboratory, University of La Coruña 12/48

Page 21: Oral presentation

2 � Vehicle �eld testing

7 repetitions of a low speed straight�line maneuver.

total distance = 63.5 mmax speed = 23 km/h

Mechanical Engineering Laboratory, University of La Coruña 13/48

Page 22: Oral presentation

2 � Vehicle �eld testing

6 repetitions of a low�speed J�turn maneuver.

total distance = 59.6 mmax speed = 18 km/h

Mechanical Engineering Laboratory, University of La Coruña 14/48

Page 23: Oral presentation

3 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 15/48

Page 24: Oral presentation

3 � Vehicle modeling and simulation environment

Vehicle modeling.

Type of coordinates : natural + some relative coordinates (angles & distances)

MB formulation : index�3 augmented Lagrangian formulation withmass�damping�sti�ness�orthogonal projections

Bodies / Variables : 18 → all the vehicle bodies / 168 → points and vectors

Steering : kinematically guided

Forces : gravity forces, tire forces, engine torque, brake torques

Degrees of freedom : 14 → suspension systems (4)chassis (6)wheels (4)

Fig. 14 � CAD model of the prototype Fig. 15 � Points & vectors of the MB model

Mechanical Engineering Laboratory, University of La Coruña 16/48

Page 25: Oral presentation

3 � Vehicle modeling and simulation environment

E�cient MB formulation developed and used at LIM.

index�3 augmented Lagrangian formulation with mass�damping�sti�ness�orthogonalprojectionsintegration → the trapezoidal rule and the Newton�Raphson method

predictor →q, q, q

eq. of motion →

f =∆t2

4(Mq +

ΦTq αΦ + ΦTq λ − Q)

tangent matrix →fq = M +

∆t

2C +

∆t2

4(ΦTq αΦq + K)

�rst orderapprox. →fq∆q = −f

trap. rule&

λ = λ + αΦ

eq. of motion →

f =∆t2

4(Mq +

ΦTq αΦ + ΦTq λ − Q)

tangent matrix →fq = M +

∆t

2C +

∆t2

4(ΦTq αΦq + K)

error <min

projections in velocities →

fqq =

[M +

∆t

2C +

∆t2

4K

]q∗ − ∆t2

4ΦTq αΦt

projections in accelerations →

fqq =

[M +

∆t

2C +

∆t2

4K

]q∗−∆t2

4ΦTq α(Φqq+Φt)

t = t+ ∆t

no

yes

Mechanical Engineering Laboratory, University of La Coruña 17/48

Page 26: Oral presentation

3 � Vehicle modeling and simulation environment

Tire model.

part of the empirical and physicalTMeasy model

�rst�order dynamics → longitudinaland lateral de�ections

transition to stand�still → stick�slipbehavior

tire curves → linearized model

Fig. 16 � Points & vectors for the tire modeling

Fig. 17 � Longitudinal deformation of the tire

Fig. 18 � Lateral deformation of the tire

Mechanical Engineering Laboratory, University of La Coruña 18/48

Page 27: Oral presentation

3 � Vehicle modeling and simulation environment

Road pro�le.

topographical survey of the test track with a total station

300 points for a track of 80 meters long

interpolation of the scattered points

Delaunay triangulation → mesh of triangles for the collision detection

Fig. 19 � Total station used forthe topographical survey

−30−20

−100

020

4060

80

0

0.5

1

Width (m)Length (m)

Hei

ght (

m)

Fig. 20 � 3D scattered points Fig. 21 � 3D model of the testtrack

Mechanical Engineering Laboratory, University of La Coruña 19/48

Page 28: Oral presentation

3 � Vehicle modeling and simulation environment

Collision detection.

tire normal force → function of theinter�penetration of the steppedtriangles of the ground mesh

4 spheres for the collision geometry ofthe tires

Simulation environment.

realistic graphical environment of thecampus

I self�developed 3D environmentI open�source 3D graphics toolkit (C++)

inclusion of the topographical survey ofthe test track

Fig. 22 � 3D model of the test track

Mechanical Engineering Laboratory, University of La Coruña 20/48

Page 29: Oral presentation

4 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 21/48

Page 30: Oral presentation

4 � Validation results

MB model inputs.

averaging of the experimental data

0 2 4 6 8 10 12 14 16 18 20−200

−100

0

100

Time (s)

Tor

que

(Nm

)

Fig. 23 � Repetitions (wheel torque)

0 2 4 6 8 10 12 14 16 18 20−200

−100

0

100

Time (s)

Tor

que

(Nm

)

Fig. 24 � Mean and CI (wheel torque)

Con�dence intervals.

assumption → the uncertainty follows a normal distributionsmall number of samples → Student's t distribution

C.I. bounds: x±tn−1(1−α/2)·

S√n

sample mean → x =1

n

n∑i=1

xi sample variance → S2

=1

(n− 1)

n∑i=1

(xi − x)2

(1− α/2) critical value for the tdistribution with (n− 1) degrees of freedom

Mechanical Engineering Laboratory, University of La Coruña 22/48

Page 31: Oral presentation

4 � Validation results

Simulation of the low speed straight�line maneuver.

MB model inputs → averaged experimental data

road pro�le → topographical survey

Mechanical Engineering Laboratory, University of La Coruña 23/48

Page 32: Oral presentation

4 � Validation results

Validation results for the low speed straight�line maneuver.

0 2 4 6 8 10 12 14 16 18 20−5

0

5

10

15

20

25

Time (s)

Spe

ed (

km/h

)

Fig. 25 � Left front wheel speed

0 2 4 6 8 10 12 14 16 18 20−3

−2

−1

0

1

2

3

Time (s)

Ang

ular

vel

ocity

( ° /s

)

Fig. 26 � Roll rate of the chassis

0 2 4 6 8 10 12 14 16 18 20

−2

−1

0

1

Time (s)

Acc

eler

atio

n (m

/s2 )

Fig. 27 � Longitudinal acceleration of the chassis

Mechanical Engineering Laboratory, University of La Coruña 24/48

Page 33: Oral presentation

4 � Validation results

Simulation of the low�speed J�turn maneuver.

MB model inputs → averaged experimental data

road pro�le → topographical survey

Mechanical Engineering Laboratory, University of La Coruña 25/48

Page 34: Oral presentation

4 � Validation results

Validation results for the low speed J�turn maneuver.

0 2 4 6 8 10 12 14 16 18 20 22−25

−20

−15

−10

−5

0

5

Time (s)

Ang

ular

vel

ocity

( ° /s

)

Fig. 28 � Yaw rate of the chassis

0 2 4 6 8 10 12 14 16 18 20 22−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

Fig. 29 � Lateral acceleration of the chassis

0 2 4 6 8 10 12 14 16 18 20 22−4

−2

0

2

Time (s)

Ang

ular

vel

ocity

( ° /s

)

Fig. 30 � Roll rate of the chassis

0 2 4 6 8 10 12 14 16 18 20 22−3

−2

−1

0

1

Time (s)

Acc

eler

atio

n (m

/s2 )

Fig. 31 � Longitudinal acceleration of thechassis

Mechanical Engineering Laboratory, University of La Coruña 26/48

Page 35: Oral presentation

5 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 27/48

Page 36: Oral presentation

5 � State observers

Model running in real�time with the same inputs

State observers for mechanical systems based on Kalman �lters

Real Mechanism

sensorsOUTPUTS

set ofsensors

CONTROLLERS

DISTURBANCESunknownforces, etc

INPUTSforces,

torques, etc

Real�time model

variables ofthe model

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

DRIFT OF THE MODELdisturbances,unmodeled

dynamics, param-eters of the model

sensors ofthe model

MODEL OUTPUTSmodel variables= virtual sensors

MODEL OUTPUTSmodel variables= virtual sensors

Kalmancorrections

State observer based on Kalman �lters

-

+

the model follows themotion of the mechanism

with minimum delay

OUTPUTSminimum setof sensors

MODEL OUTPUTSmodel variables= virtual sensors

Mechanical Engineering Laboratory, University of La Coruña 28/48

Page 37: Oral presentation

5 � State observers

Model running in real�time with the same inputs

State observers for mechanical systems based on Kalman �lters

Real Mechanism

sensorsOUTPUTS

set ofsensors

CONTROLLERS

DISTURBANCESunknownforces, etc

INPUTSforces,

torques, etc

Real�time model

variables ofthe model

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

DRIFT OF THE MODELdisturbances,unmodeled

dynamics, param-eters of the model

sensors ofthe model

MODEL OUTPUTSmodel variables= virtual sensors

MODEL OUTPUTSmodel variables= virtual sensors

Kalmancorrections

State observer based on Kalman �lters

-

+

the model follows themotion of the mechanism

with minimum delay

OUTPUTSminimum setof sensors

MODEL OUTPUTSmodel variables= virtual sensors

Mechanical Engineering Laboratory, University of La Coruña 28/48

Page 38: Oral presentation

5 � State observers

Model running in real�time with the same inputs

State observers for mechanical systems based on Kalman �lters

Real Mechanism

sensorsOUTPUTS

set ofsensors

CONTROLLERS

DISTURBANCESunknownforces, etc

INPUTSforces,

torques, etc

Real�time model

variables ofthe model

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

DRIFT OF THE MODELdisturbances,unmodeled

dynamics, param-eters of the model

sensors ofthe model

MODEL OUTPUTSmodel variables= virtual sensors

MODEL OUTPUTSmodel variables= virtual sensors

Kalmancorrections

State observer based on Kalman �lters

-

+

the model follows themotion of the mechanism

with minimum delay

OUTPUTSminimum setof sensors

MODEL OUTPUTSmodel variables= virtual sensors

Mechanical Engineering Laboratory, University of La Coruña 28/48

Page 39: Oral presentation

5 � State observers

Model running in real�time with the same inputs

State observers for mechanical systems based on Kalman �lters

Real Mechanism

sensors

OUTPUTSset ofsensors

CONTROLLERS

DISTURBANCESunknownforces, etc

INPUTSforces,

torques, etc

Real�time model

variables ofthe model

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

MODEL OUTPUTSmodel variables =numerous avail-able magnitudes

DRIFT OF THE MODELdisturbances,unmodeled

dynamics, param-eters of the model

sensors ofthe model

MODEL OUTPUTSmodel variables= virtual sensors

MODEL OUTPUTSmodel variables= virtual sensors

Kalmancorrections

State observer based on Kalman �lters

-

+

the model follows themotion of the mechanism

with minimum delay

OUTPUTSminimum setof sensors

MODEL OUTPUTSmodel variables= virtual sensors

Mechanical Engineering Laboratory, University of La Coruña 28/48

Page 40: Oral presentation

5 � State observers

State estimation in mechanical systems.

Advantages

new sensors virtual sensors

ubiquitousmagnitude

reduced costsreduced

failure rate

minimum setof sensors

The more detailed the model is,

the more it provides information about the motion of the mechanism

Past researchesI Kalman �lter + linear mechanical systems

I linearized Kalman �lter + nonlinear mechanicalsystems

lack of generalitylinear modelssimple nonlinear models

Mechanical Engineering Laboratory, University of La Coruña 29/48

Page 41: Oral presentation

5 � State observers

First implementations using a 4�bar linkage and a VW Passat.

Recent researches at the LIMI extended Kalman �lter + real�time MB

models

}general approachcomplex nonlinear models

A

B

C

D

s

Fig. 32 � 4�bar linkage Fig. 33 � VW passat & model & state observer w/MB model

Mechanical Engineering Laboratory, University of La Coruña 30/48

Page 42: Oral presentation

5 � State observers

Description.

simple mechanism: 5�bar linkage → 2 DOFs

mechanism parameters → experimentalmeasurements

parameters of the sensors → characteristics fromo��the�shelf sensors

MB Modeling.

natural coordinates (8 variables, 6 constraints, 2DOFs)

MB formulationsI independent coordinates → projection matrix�R

methodI dependent coordinates → penalty formulation

simulation of the real mechanism forcomprehensive comparisons

known errors between the real mechanism andits MB model → lengths, masses, inertias. . .

Fig. 34 � 5�bar linkage image

Fig. 35 � 5�bar linkage modeling scheme

Mechanical Engineering Laboratory, University of La Coruña 31/48

Page 43: Oral presentation

5 � State observers

Free motion simulation.

Drift of the model due to errors in the parameters of the model

real mechanism(matrix�R, trap. rule)

model(matrix�R, trap. rule)

Mechanical Engineering Laboratory, University of La Coruña 32/48

Page 44: Oral presentation

5 � State observers

Comparison of NL Kalman �lters. SPKF

EKF ,UKF ,SSUKF

What is it? de facto NL Kalman �lter recent NL Kalman �lters

Why to use it ? e�ciency accuracy and easy implementation

Which form ? continuous discrete

How does itwork ?

state estimates → propaga-tion through NL system.mean and state estimationuncertainty → propagationthrough linearization

state estimates → propagationthrough NL system.mean and state estimation uncer-tainty → propagation of sigma�points through the NL system

Assumptions additive white Gaussian noises

Systemdynamics

x(t) = f(x(t)) + w(t)

xk+1 = φk(xk) + wk

�rst order di�erential equationswith independent states

nonlinear di�erence equationswith independent states

Mechanical Engineering Laboratory, University of La Coruña 33/48

Page 45: Oral presentation

5 � State observers

The extended Kalman �lter � EKF.

x(t) = f(x(t))

�rst order ODEs

6= Mq + ΦTq λ = Q

Φ = 0

�rst order DAEs

x =

[z(t)w(t)

]z = (RT

MR)−1[RT(Q−MRz)]

=

[z(t)w(t)

]=

[w

(RTMR)−1[RT(Q−MRz)]

]

integrationimplicit integratortrapezoidal rule

duplication of variables(positions & velocities)

independent coordinatesstate space reductionmethod matrix R

Mechanical Engineering Laboratory, University of La Coruña 34/48

Page 46: Oral presentation

5 � State observers

The extended Kalman �lter � EKF.

x(t) = f(x(t))

�rst order ODEs

6= Mq + ΦTq λ = Q

Φ = 0

�rst order DAEs

x =

[z(t)w(t)

]z = (RT

MR)−1[RT(Q−MRz)]

=

[z(t)w(t)

]=

[w

(RTMR)−1[RT(Q−MRz)]

]

integrationimplicit integratortrapezoidal rule

duplication of variables(positions & velocities)

independent coordinatesstate space reductionmethod matrix R

Mechanical Engineering Laboratory, University of La Coruña 34/48

Page 47: Oral presentation

5 � State observers

The extended Kalman �lter � EKF.

˙x(t) = f(x(t), t) + K[y(t)− y(t)]state estimates

K(t) = P(t)H[1]T(t)R(t)Kalman gain

P(t) = F[1]P(t) + P(T)F[1]T + GQ(t)GT − KR(t)KRiccati equation

H[1](t) ' ∂h(x, t)

∂xF[1](t) ' ∂f(x, t)

∂xlinear approximations

F[1](t) =

0 I

∂(M−1Q)

∂z

∂(M−1

Q)

∂w

' [ 0 I

−M−1R

T(KR + 2MRqRw) −M−1R

T(CR + MR)

]

Mechanical Engineering Laboratory, University of La Coruña 35/48

Page 48: Oral presentation

5 � State observers

The unscented Kalman �lter � UKF.

xk+1 = φk(xk)

nonlinear recurrenceswith independent states

6= Mq + ΦTq λ = Q

Φ = 0

�rst order DAEs

z = (RTMR)−1[RT(Q−MRz)]

= integration

independent coordinatesstate space reductionmethod matrix R

q = (M + ΦTq αΦ)−1[Q−ΦT

q α(Φqq + 2ζωΦ + ω2Φ)]

= integration

dependent coordinatespenalty formulation

Mechanical Engineering Laboratory, University of La Coruña 36/48

Page 49: Oral presentation

5 � State observers

The unscented Kalman �lter � UKF.

xk+1 = φk(xk)

nonlinear recurrenceswith independent states

6= Mq + ΦTq λ = Q

Φ = 0

�rst order DAEs

z = (RTMR)−1[RT(Q−MRz)]

= integration

independent coordinatesstate space reductionmethod matrix R

q = (M + ΦTq αΦ)−1[Q−ΦT

q α(Φqq + 2ζωΦ + ω2Φ)]

= integration

dependent coordinatespenalty formulation

Mechanical Engineering Laboratory, University of La Coruña 36/48

Page 50: Oral presentation

5 � State observers

The unscented Kalman �lter � UKF.

xk+1 = φk(xk)

nonlinear recurrenceswith independent states

6= Mq + ΦTq λ = Q

Φ = 0

�rst order DAEs

z = (RTMR)−1[RT(Q−MRz)]

= integration

independent coordinatesstate space reductionmethod matrix R

q = (M + ΦTq αΦ)−1[Q−ΦT

q α(Φqq + 2ζωΦ + ω2Φ)]

= integration

dependent coordinatespenalty formulation

Mechanical Engineering Laboratory, University of La Coruña 36/48

Page 51: Oral presentation

5 � State observers

The unscented Kalman �lter � UKF.

time�update equations (always executed)

x−k =

2L∑i=0

wmi χi,k|k−1

χk|k−1 = φk−1(χk−1)

χi,k−1 =

xk−1

xk−1 + γ(√

Pk−1

)i

xk−1 − γ(√

Pk−1

)i

P−xk

=

2L∑i=0

ωci (χk|k−1 − x

−k )(χk|k−1 − x

−k )T

Fig. 36 � Set of sigma�points (2 dim. GR variable)

measurement�update equations (executed ifinformation from the sensors is available)

xk = x−k + Kk(yk − y

−k )

Kk = PxkykP−1yk

y−k =

2L∑i=0

ωmi Y i,k|k−1

Yk|k−1 = hk(χk|k−1)

Pxk = P−xk− KkPyk

KTk

zk+1, zk+1

integ.

zk+1

z1k+1 z

2k+1 z

3k+1 z

4k+1 z

5k+1

φk φk φk φk φk

zkzkz1k

zkzkz2k

zkzkz3k

zkzkz4k

zkzkz5k

zk, zk, zk

Mechanical Engineering Laboratory, University of La Coruña 37/48

Page 52: Oral presentation

5 � State observers

The unscented Kalman �lter � UKF.

time�update equations (always executed)

x−k =

2L∑i=0

wmi χi,k|k−1

χk|k−1 = φk−1(χk−1)

χi,k−1 =

xk−1

xk−1 + γ(√

Pk−1

)i

xk−1 − γ(√

Pk−1

)i

P−xk

=

2L∑i=0

ωci (χk|k−1 − x

−k )(χk|k−1 − x

−k )T

Fig. 36 � Set of sigma�points (2 dim. GR variable)

measurement�update equations (executed ifinformation from the sensors is available)

xk = x−k + Kk(yk − y

−k )

Kk = PxkykP−1yk

y−k =

2L∑i=0

ωmi Y i,k|k−1

Yk|k−1 = hk(χk|k−1)

Pxk = P−xk− KkPyk

KTk

zk+1, zk+1

integ.

zk+1

z1k+1 z

2k+1 z

3k+1 z

4k+1 z

5k+1

φk φk φk φk φk

zkzkz1k

zkzkz2k

zkzkz3k

zkzkz4k

zkzkz5k

zk, zk, zk

Mechanical Engineering Laboratory, University of La Coruña 37/48

Page 53: Oral presentation

5 � State observers

The spherical simplex UKF.

same equations as for the UKF

reduced set of sigma�pointsI UKF → (2L+1) sigma�pointsI SSUKF → (L+2) sigma�pointsI equations of the reduced set of sigma�points

χji =

[χj−1

0

0

]for i = 0 χj−1

i

− 1√j(j + 1)w1

for i = 1, . . . , j 0j−1

1√j(j + 1)w1

for i = j + 1 Fig. 37 � Reduced set of sigma�points (2dim. GR variable

Mechanical Engineering Laboratory, University of La Coruña 38/48

Page 54: Oral presentation

5 � State observers

Free motion simulation.

Drift of the model due to errors in the parameters of the model

The observers estimate correctly the motion of the real mechanism

real mechanism(matrix�R, trap. rule)

model(matrix�R, trap. rule)

EKF(matrix�R, trap. rule)

UKF(matrix�R, trap. rule)

SSUKF(matrix�R, trap. rule)

SSUKF(matrix�R, RK2)

SSUKF(penal, RK2)

Mechanical Engineering Laboratory, University of La Coruña 39/48

Page 55: Oral presentation

5 � State observers

Performance comparisons of the �lters → e�ciency vs RMSE.

Simulationtime (%)100 125 150 175 200 225 250

1

2

3

4

5

6

7

8

9

10

RMSE

multi�ratecase

non multi�rate case

non multi�rate∆tinteg = 2ms∆tsensors = 2ms

multi�rate∆tinteg = 2ms∆tsensors = 6ms

EKF (matrix�R, trap.rule)

UKF (matrix�R, trap.rule)

SSUKF (matrix�R, trap.rule)

SSUKF (matrix�R, RK2)

SSUKF (penal, RK2)

Mechanical Engineering Laboratory, University of La Coruña 40/48

Page 56: Oral presentation

5 � State observers

STATE OB-SERVERS

NL Kalman �lterswith MB models

Dataacquisitionsystem

NLKalman�lters

EKF

SPKF

UKF

SSUKF

MBformulation

indepen-dentcoord.

matrix�R

method

depen-dentcoord.

penalty-formu.

integrators

explicit

RK2

implicit

TR

mechanism

param-eters

sensors

Mechanical Engineering Laboratory, University of La Coruña 41/48

Page 57: Oral presentation

5 � State observers

Pros & Cons.

EKFI Pros → most e�cient �lter with independent coordinates

I Cons → involved and error�prone calculation of the Jacobian, not suitable to employwith dependent coordinates, not multi�rate

SPKFsI Pros → easiest implementation, possible use of dependent coordinates, highest

accuracy

I Cons → high computational cost due to the sigma�points

Mechanical Engineering Laboratory, University of La Coruña 42/48

Page 58: Oral presentation

6 � Outline

1 Motivations

2 Vehicle �eld testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions

Mechanical Engineering Laboratory, University of La Coruña 43/48

Page 59: Oral presentation

6 � Conclusions

Vehicle �eld testing.

1 X-by-wire vehicle prototype from scratch

2 highly detailed model of the driver's force feedback system

3 repetitions of 2 reference manoeuvres in the campus

Vehicle modeling and simulation environment.

1 real-time 14 DOFs MB model

2 modelling of subsystems → tire, brake

3 topographical survey of the test track

4 realistic 3D simulation environment

Mechanical Engineering Laboratory, University of La Coruña 44/48

Page 60: Oral presentation

6 � Conclusions

Validation results.

1 con�dence intervals for the experimental data

2 simulation of the test manoeuvres using the experimental data

3 evaluation of the accuracy of the MB model

State observers.

1 use of MB models with the extended Kalman �lter

2 application to a 4�bar linkage and a VW Passat

3 use of MB models with SPKFs �lters

4 implementation using a 5�bar linkage

Mechanical Engineering Laboratory, University of La Coruña 45/48

Page 61: Oral presentation

6 � Conclusions

Future research.

1 �eld testingI manoeuvres at higher speeds → new test trackI GPS RTK for real�time positioning of the vehicle

2 vehicle modelling and simulation environmentI better characterization of the tire curvesI Human�In�The�Loop simulation using experimental inputs

3 state observersI EKF in discrete formI research on the observability of MB modelsI tests of the UKF/SSUKF with more complex mechanismsI implementation using the MB model of the XBW prototype

Mechanical Engineering Laboratory, University of La Coruña 46/48

Page 62: Oral presentation

6 � Conclusions

Congress papers.

[1] J. Cuadrado, D. Dopico, J. A. Pérez, and R. Pastorino. In�uence of the sensored magnitude in the performance ofobservers based on multibody models and the extended Kalman �lter. In Proceedings of the Multibody DynamicsECCOMAS Thematic Conference, Warsaw, Poland, June 2009.

[2] R. Pastorino, M. A. Naya, J. A. Pérez, and J. Cuadrado. X�by�wire vehicle prototype: a steer�by�wire system with gearedPM coreless motors. In Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, September2009.

[3] J. Cuadrado, D. Dopico, M. A. Naya, and R. Pastorino. Automotive observers based on multibody models and the extendedKalman �lter. In The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 2010.

[4] R. Pastorino, M. A. Naya, A. Luaces, and J. Cuadrado. X�by�wire vehicle prototype: automatic driving maneuverimplementation for real�time MBS model validation. In Proceedings of the 515th EUROMECH Colloquium, Blagoevgrad,Bulgaria, 2010.

[5] R. Pastorino. La simulation des systèmes multicorps dans l'automobile. Interface, revue des ingénieurs des INSA de Lyon,

Rennes, Rouen, Toulouse, (111):22, 3ème et 4ème trimestre 2011.

[6] R. Pastorino, D. Dopico, E. Sanjurjo, and M. A. Naya. Validation of a multibody model for an x�by�wire vehicle prototypethrough �eld testing. In Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2011, Brussels,Belgium, 2011.

[7] R. Pastorino, M. A. Naya, A. Luaces, and J. Cuadrado. X�by�wire vehicle prototype : a tool for research on real�timevehicle multibody models. In Proceedings of the 13th EAEC European Automotive Congress, Valencia, Spain, June 2011.

[8] R. Pastorino, D. Richiedei, J. Cuadrado, and A. Trevisani. State estimation using multibody models and nonlinear Kalman�lters. In The 2nd Joint International Conference on Multibody Systems Dynamics, Stuttgart, Germany, May 2012.

[9] R. Pastorino, D. Richiedei, J. Cuadrado, and A. Trevisani. State estimation using multibody models and unscented Kalman�lters. In Proceedings of the 524th EUROMECH Colloquium, Enschede, Netherlands, 2012.

[10] E. Sanjurjo, R. Pastorino, D. Dopico, and M. A. Naya. Validación experimental de un modelo multicuerpo de un prototipode vehículo automatizado. In XIX Congreso Nacional de Ingeniería Mecánica (to be presented), Castellón, Spain, Nov. 2012.

Mechanical Engineering Laboratory, University of La Coruña 47/48

Page 63: Oral presentation

6 � Conclusions

Journal papers.

[1] J. Cuadrado, D. Dopico, J. A. Pérez, and R. Pastorino. Automotive observers based on multibody models andthe Extended Kalman Filter. Multibody System Dynamics, 27(1):3�19, 2011.

[2] R. Pastorino, M. A. Naya, J. A . Pérez, and J. Cuadrado. Geared PM coreless motor modelling for driver's forcefeedback in steer�by�wire systems. Mechatronics, 21(6):1043�1054, 2011.

Journal papers in preparation.

[1] R. Pastorino, M.A. Naya, and J. Cuadrado. Experimental validation of a multibody model for a vehicle prototype.Vehicle System Dynamics, 2012.

[2] R. Pastorino, D. Richiedei, J. Cuadrado, and A. Trevisani. State estimation using multibody models and nonlinearkalman �lters. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi�body Dynamics,2012.

Acknowledgments.

Spanish Ministry of Science and Innovation � Grant TRA2009�09314 (ERDF funds)

Mechanical Engineering Laboratory, University of La Coruña 48/48