optical characterization of the composition and ...€¦ · estimate bop from srs data • forward...

34
Optical characterization of the composition and scatterer size distributions of turbid liquids from Vis/NIR spectroscopy W. Saeys, A. Postelmans, R. Watté, R. Van Beers, B. Aernouts [email protected]

Upload: others

Post on 15-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Optical characterization of the composition and scatterer size distributions of turbid

liquids from Vis/NIR spectroscopy

W. Saeys, A. Postelmans, R. Watté, R. Van Beers, B. Aernouts

[email protected]

Page 2: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Overview• Introduction

• From optical measurements to bulk optical propertieso Double integrating sphereso Spatially resolved spectroscopy

• From scattering spectra to particle size distributiono Shape dependento Shape independento Case study polystyrene particles

• Conclusions 2

Page 3: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Introduction

Page 4: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Light propagation in turbid media

4

Absorption

Scattering

Incident light

Page 5: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Bulk scattering and absorption coefficient• Bulk absorption coefficient µa

o Probability of photon absorption per unit infinitesimal pathlength

• Bulk scattering coefficient µso Probability of photon scattering per unit infinitesimal pathlengtho Non-linear effect on light extinction

5

Page 6: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Anisotropy factor g

Particle << wavelengthAnisotropy = 0Isotrope scattering

Particle ≈ wavelengthAnisotropy ≈ 0.6

Particle > wavelengthAnisotropy → 1

6

Page 7: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Optical properties and product characteristics• Why interest in bulk optical properties? Related to emulsion/suspension characteristics

Bulk optical properties

Chemical

Physical

µa

µs

Chemical composition

Particle size distributionVolume fraction

7

Page 8: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Research hypothesis

Composition

Microstructure

Absorptionµa

Scatteringµs & g

Light propagation

R(t,r)

T(t,r)

Inverse light

propagationmodels

Chemometrics

Inverse microscale

light propagation

models

Page 9: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Bulk optical propertiesFrom optical measurements to BOP

Page 10: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

BOP from optical measurements• Calculate BOP from multiple (uncorrelated) measurements

Reflectance & transmittance

o Double integrating spheres (DIS)

o Unscattered transmission (UT)

Multiple distances from

light source

o Spatially resolved spectroscopy (SRS)

10

Page 11: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Double integrating spheres set-upMonochromator

550 – 2250 nm

Aernouts et al., Opt. Express 21 (2013)

Total reflection

Total transmission

Unscatteredtransmission

11

Page 12: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Inverse adding-doubling (IAD)• Find optical properties that correspond to measured

reflection and transmission

• 3 optical measurementso Diffuse reflectiono Diffuse transmissiono Unscattered transmission

• Iterative process

µaµsg

µaµs’

12

Page 13: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Inverse adding-doubling (IAD)Initial guess

BOP

Calculate reflection + transmission

Update BOP

Calculated vs. measuredMatch?

BOP found

Thin slabKnown BOP, reflection, transmission

Adding or Doubling

Correct thickness?

Reflection + transmission found

Summing reflections and transmission contributions

ADDING-DOUBLING

13

Page 15: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

15

IAD

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Dif

fuse

ref

lect

ance

M

R

(*1

00

%)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Dif

fuse

ref

lect

ance

M

R

(*1

00

%)

(b)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

To

tal

tran

smit

tan

ce

MT

(*1

00

%)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

To

tal

tran

smit

tan

ce

MT

(*1

00

%)

(b)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Un

scat

tere

d t

ran

smit

tan

ce

MU

(*

10

0%

)

(a)

A*

G*

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

Un

scat

tere

d t

ran

smit

tan

ce

MU

(*

10

0%

)

(b)

A*

G*

500 550 600 650 700 7500

2

4

6

8

10

12

14

Wavelength (nm)

µa (

cm-1

)

(a)

*1

*2

*3

*4

*5

*6

*7

*8

500 550 600 650 700 7500

2

4

6

8

10

12

14

Wavelength (nm)

µa (

cm-1

)

(b)

*1

*2

*3

*4

*5

*6

*7

*8

500 1000 1500 20000

50

100

150

200

Wavelength (nm)

µs (

cm-1

)

(a)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

50

100

150

200

Wavelength (nm)

µs (

cm-1

)

(b)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

An

iso

tro

py

fac

tor

(a)

A*

B*

C*

D*

E*

F*

G*

IL

500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelength (nm)

An

iso

tro

py

fac

tor

(b)

A*

B*

C*

D*

E*

F*

G*

IL

Aernouts et al., Opt. Express 21 (2013)

0 50 100 1500

2

4

6

8

10

12

14

16

Concentration MB cMB

(M)

a (

cm-1

)

(a)

0.55 mm

1.1 mm

a = 0.1071c

MB

0.75 0.8 0.85 0.9 0.95 1

22

24

26

28

30

32

34

36

Volume concentration water w (m

3/m

3)

a (

cm-1

)

(b)

0.55 mm

1.1 mm

a = -15.75 + 48.76

w

R² = 0.996 (up to 70 µM)

Page 16: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Spatially resolved spectroscopy (SRS)• Detectors at multiple distances from light source

• Interaction history is function of distance do Further from light source

• Lower signal• More interaction with tissue

• Intensity profile R(d)

• Possible for dense samples without dilution

d

16

Page 17: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Estimate BOP from SRS data• Forward light propagation model

o Adding-doubling → no 2D informationo Diffusion approximation → assumptions not valido Monte Carlo simulations → computationally expensiveo Data-based metamodeling approach

• Stochastic Kriging• Train on set of liquid phantoms covering wide range of BOP

17

Watté et al., Opt. Express 21 (2013)

Page 18: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Wavelength by wavelength

18

• Iterative optical properties estimationo Nelder-Mead optimizer for minimization

• Cost function = sum of squared relative errors

o No assumptions on scattering or absorption profiles used

Watté et al., Opt. Express 21 (2013)

600 800 1000 1200 1400 1600

101

102

Wavelength [nm]

µs' [c

m-1

]

Original µs' profile

Estimated µs' profile

Page 19: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Constrained optimization• Include expert knowledge: µs’ as parametric function

o Trade-off smoothness - flexibility

• Minimising cost function over entire wavelength range• Construction of ‘information grid’ to select best combination

19

Watté et al., Opt. Express (2016)

𝜇𝑠′ 𝑊𝐿 = 𝑝1. 𝑒𝑥𝑝 𝑝2.𝑊𝐿 + 𝑝3 + 𝑝4.𝑊𝐿 + 𝑝5.𝑊𝐿

2 + 𝑝6.𝑊𝐿3

Page 20: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Particle size distribution estimationFrom scattering spectra to PSD

Page 21: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Forward problem• Calculate optical properties for known PSD

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

Radius a (µm)

Re

lative

we

igh

t

discrete

continuous

Mie theory

Discretise PSD

+

MICROSCALE

Physical information• Particle size distribution• Volume fraction scatterers• Refractive indices

MACROSCALE

Bulk optical properties• Bulk absorption coefficient• Bulk scattering coefficient• Anisotropy factor

21

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

µs [

µm

-1]

wavelength [µm]

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

radius [µm]

Page 22: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Inverse estimation PSD

Inverse estimation

polydispersePSD

RegularizationShape dependent Assume shape

Shape independent Smoothness condition

22

Scattering spectraµs, µs’ or g

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

µs [

µm

-1]

wavelength [µm]

Particle Size Distribution (PSD)Volume fraction

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

radius [µm]

Mathematical solutions Non-negative

solutions Conform literature/ measurements

Page 23: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Shape dependent PSD estimation

23

• Assume probability density functiono Monomodal: PSD = logn(μ1,σ1)

o Bimodal: PSD = scale . logn(μ1,σ1) + (1-scale) . logn(μ2,σ2)

• Robust against noise• Limited flexibility

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

Estimate parameter values and volume fraction

Minimize sum of relative least squared errors

Page 24: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Shape independent PSD estimation• Approximate PSD by weighted sum of splines

• Find B-spline weights

o Calculate volume fraction from weights

B-spline basis

Weighted sum B-splines

24

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

radius [µm]

(vo

lum

e b

ase

d)

10-3

10-2

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

radius [µm]

𝜇𝑠 𝜆 =

𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥

𝑃𝑆𝐷 𝑟 . 𝜎𝑠 𝑟, 𝜆 𝑑𝑟 =

𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥

𝑗=1

𝑁𝐵

𝑤𝑗 . 𝐵𝑗 𝑟 . 𝜎𝑠 𝑟, 𝜆 𝑑𝑟 =

𝑗=1

𝑁𝐵

𝑤𝑗 . 𝜇𝑠,𝑗 𝜆

Number of splines

Particle radius range

Page 25: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Shape independent PSD estimation• Tikhonov regularization

o Non-negative least squares

• Chahine algorithmo Iterative update spline weights

µs = ∑ wi . µs, spline i Non-smoothness penalty

γ: regularization parameter,strength of penalty

L: regularization matrix,discrete 2nd derivative

• More flexible• Less robust,

regularization needed

25

𝑤𝑗𝑝+1= 𝑤𝑗𝑝.𝜇𝑠, 𝑚𝑒𝑎𝑠 𝜆𝑗

𝜇𝑠, 𝑐𝑎𝑙𝑐𝑝𝜆𝑗

min 𝐴𝑤 − 𝜇𝑠2 𝑤 ≥ 0+𝛾 𝐿𝑤 2,

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

radius [µm]

(vo

lum

e b

ase

d)

reference

estimated

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

input

estimated

spline 17

spline 22

spline 23

spline 24

spline 25

spline 28

spline 29

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

input

estimated

spline 22

spline 23

spline 24

spline 25

10-1

100

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

radius [µm]

(vo

lum

e b

ase

d)

reference

estimated

Page 26: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Case study polystyrene particles

26

Input PSD BOPForward

simulation Add noise

Input scattering spectrum Estimated PSD

Inverse estimation

Estimated BOP

DIS + UT500-1850 nm

IAD BOP

Laser diffractionDLS

Check

Check

Measured data

Simulated data

Reference PSD

Measured BOP+

Page 27: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Results polystyreneMonomodal shape dependent

27

1 1.5 3 50

2

4

6

8

10

12

radius [µm]

(vo

lum

e b

ase

d)

3µm reference

= 1.5015 = 0.043472

6µm reference

= 3.1259 = 0.066031

10µm reference

= 4.9887 = 0.20495

0.5 0.6 0.7 0.8 0.9 12

3

4

5

6

7

8

9

10x 10

-3

µs [

µm

-1]

wavelength [µm]

3µm input, VF = 0.005

3µm estimated, VF = 0.0047072

6µm input, VF = 0.0075

6µm estimated, VF = 0.010936

10µm input, VF = 0.0075

10µm estimated, VF = 0.0070289

Page 28: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Results polystyreneMonomodal shape dependent

0.6 0.8 1 1.2 1.4 1.6 1.80.65

0.7

0.75

0.8

0.85

0.9

0.95

1

g [

-]

wavelength [µm]

1µm input, VF = 0.75%

1µm estimated

10-1

100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

radius [µm]

(vo

lum

e b

ase

d)

1µm reference

= 0.50673 = 0.083152

28

Page 29: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Results simulated fat in waterBimodal shape dependent bimodal

29

0.5 1 1.5

4

5

6

7

8

9

10

11

x 10-4

µs' [

µm

-1]

wavelength [µm]

0.5 1 1.5

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

µs [

µm

-1]

wavelength [µm]

60s input

60s estimated

bimod input

bimod estimated

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

radius [µm]

(vo

lum

e b

ase

d)

60s reference

60s estimated

bimod reference

bimod estimated

Page 30: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Results simulated fat in waterShape independent

30

0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.005

0.01

0.015

0.02

0.025

wavelength [µm]

µs [

µm

-1]

Raw reference

Raw estimated

120s reference

120s estimated

480s reference

480s estimated

bimod reference

bimod estimated

10-3

10-2

10-1

100

101

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

radius [µm]

(vo

lum

e b

ase

d)

Raw reference

Raw estimated

120s reference

120s estimated

480s reference

480s estimated

bimod reference

bimod estimated

Page 31: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Applications• Link to product properties and quality attributes

o Viscosity, creaming, mouth feeling/creaminess perception, nutrient uptake...

• Quality monitoring during production and storage

31

Page 32: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Conclusions• Accurate determination of bulk optical properties from

o Reflectance & transmittance data• DIS + UT

o Multiple reflectance measurements• SRS

• Use of BOP for characterizing emulsions/suspensionso Absorption: chemical compositiono Scattering: PSD, volume fraction scatterers

32

Page 33: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Conclusions

33

• PSD estimation from Vis/NIR bulk scattering spectra

• Shape dependent methodo Good estimation if correct choice of probability density

function

• Shape independent methodo Flexible, but more prone to artefactso Good estimation if good regularization and choice B-

spline basis

• Opportunities for (on-line) optical determination of microphysical emulsion/suspension quality

Page 34: Optical characterization of the composition and ...€¦ · Estimate BOP from SRS data • Forward light propagation model o Adding-doubling →no 2D information o Diffusion approximation

Questions?Contact:[email protected]