on¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · muhammad arshad _ahoo.com...

10
Vol.:(0123456789) 1 3 Mathematical Sciences (2019) 13:307–316 https://doi.org/10.1007/s40096-019-00300-0 ORIGINAL RESEARCH On new common fixed points of multivalued (, ) ‑contractions in complete b‑metric spaces and related application Eskandar Ameer 1,2  · Muhammad Arshad 2  · Nawab Hussain 3 Received: 12 April 2018 / Accepted: 4 September 2019 / Published online: 16 September 2019 © The Author(s) 2019 Abstract The aim of this paper is to introduce the concept of generalized multivalued ( , ) -contractions and generalized multivalued ( , ) -Suzuki contractions and introduce some new common fixed point results for such maps in complete b-metric spaces. Our results are an improvement of the Liu et al. fixed point theorem and several comparable results in the existing literature. We set up an example to elucidate our main result. Moreover, we also discuss an application to existence of solution for system of functional equations. Keywords Fixed point · b-metric space · Generalized multivalued ( , )-contraction · Generalized multivalued ( , )-Suzuki contraction Mathematics Subject Classification Primary 47H10 · Secondary 54H25 Introduction and preliminaries Fixed point theory plays an important role in functional and nonlinear analysis. Banach [1] proved a significant result for contraction mappings. Afterward, a large number of fixed point results have been established by various authors and they showed different generalizations of the Banach’s results, see for example ([228]). On the other hand, Czerwik [26, 27] gave a generaliza- tion of the famous Banach fixed point theorem in so-called b-metric spaces. For some results on b-metric spaces, see ([1725, 28]) and related references therein. Definition 1 [18] Let be a non-empty set. A func- tion d × [0, ∞) is said to be a metric if for all , , , we have (1) d( , )= 0 if and only if x = y; (2) d( , )= d(, ) ; (3) d( , ) d( , )+ d(, ). In this case, the pair (, d) is called a metric space (or for short MS). Definition 2 [ 27 ] Let be a non-empty set and 1 ∈ (−∞, ∞). A function d b × [0, ∞) is said to be a b-metric if for all , , , we have (1) d b ( , )= 0 if and only if x = y; (2) d b ( , )= d b (, ) ; (3) d b ( , ) [ d b ( , )+ d b (, ) ] . In this case, the pair (, d b ) is called a b-metric space with constant (or for short bMS). Note that the concept of convergence in such spaces is similar to that of the standard metric spaces. The b-metric space (, d b ) is called complete if every Cauchy sequence of elements from (, d b ) is convergent. In general, a b-metric is not a continuous functional. If b-metric d b is continuous, then every convergent sequence has a unique limit. * Eskandar Ameer [email protected]; [email protected] Muhammad Arshad [email protected] Nawab Hussain [email protected] 1 Department of Mathematics, Taiz University, Taiz, Yemen 2 Department of Mathematics, International Islamic University, H-10, Islamabad 44000, Pakistan 3 Department of Mathematics, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia

Upload: others

Post on 26-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

Vol.:(0123456789)1 3

Mathematical Sciences (2019) 13:307–316 https://doi.org/10.1007/s40096-019-00300-0

ORIGINAL RESEARCH

On new common fixed points of multivalued (�,�)‑contractions in complete b‑metric spaces and related application

Eskandar Ameer1,2 · Muhammad Arshad2 · Nawab Hussain3

Received: 12 April 2018 / Accepted: 4 September 2019 / Published online: 16 September 2019 © The Author(s) 2019

Abstract The aim of this paper is to introduce the concept of generalized multivalued (� ,�)-contractions and generalized multivalued (� ,�)-Suzuki contractions and introduce some new common fixed point results for such maps in complete b-metric spaces. Our results are an improvement of the Liu et al. fixed point theorem and several comparable results in the existing literature. We set up an example to elucidate our main result. Moreover, we also discuss an application to existence of solution for system of functional equations.

Keywords Fixed point · b-metric space · Generalized multivalued ( � ,�)-contraction · Generalized multivalued ( � ,�

)-Suzuki contraction

Mathematics Subject Classification Primary 47H10 · Secondary 54H25

Introduction and preliminaries

Fixed point theory plays an important role in functional and nonlinear analysis. Banach [1] proved a significant result for contraction mappings. Afterward, a large number of fixed point results have been established by various authors and they showed different generalizations of the Banach’s results, see for example ([2–28]).

On the other hand, Czerwik [26, 27] gave a generaliza-tion of the famous Banach fixed point theorem in so-called b-metric spaces. For some results on b-metric spaces, see ([17–25, 28]) and related references therein.

Definition 1 [18] Let � be a non-empty set. A func-tion d ∶ 𝜔 × 𝜔 → [0,∞) is said to be a metric if for all � , �, � ∈ � , we have

(1) d(𝜁 , 𝜂) = 0 if and only if x = y;

(2) d(𝜁 , 𝜂) = d(𝜂, 𝜁);(3) d(𝜁 , 𝜂) ≤ d(𝜁 , 𝜐) + d(𝜐, 𝜂).

In this case, the pair (𝜔, d) is called a metric space (or for short MS).

Definition 2 [27] Let � be a non-empty set and � ≥ 1 ∈ (−∞,∞) . A function db ∶ 𝜔 × 𝜔 → [0,∞) is said to be a b-metric if for all � , �, � ∈ � , we have

(1) db(𝜁 , 𝜂) = 0 if and only if x = y;

(2) db(𝜁 , 𝜂) = db(𝜂, 𝜁);(3) db(𝜁 , 𝜂) ≤ 𝜚

[db(𝜁 , 𝜐) + db(𝜐, 𝜂)

].

In this case, the pair (𝜔, db) is called a b-metric space with constant � (or for short bMS).

Note that the concept of convergence in such spaces is similar to that of the standard metric spaces. The b-metric space (𝜔, db) is called complete if every Cauchy sequence of elements from (𝜔, db) is convergent. In general, a b-metric is not a continuous functional. If b-metric db is continuous, then every convergent sequence has a unique limit.

* Eskandar Ameer [email protected]; [email protected]

Muhammad Arshad [email protected]

Nawab Hussain [email protected]

1 Department of Mathematics, Taiz University, Taiz, Yemen2 Department of Mathematics, International Islamic University,

H-10, Islamabad 44000, Pakistan3 Department of Mathematics, King Abdulaziz University,

P.O.Box 80203, Jeddah 21589, Saudi Arabia

Page 2: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

308 Mathematical Sciences (2019) 13:307–316

1 3

Theorem  3 [10] Let (𝜔, d) be a compact MS and let S ∶ 𝜔 ⟶ 𝜔 . Assume that ∀� , � ∈ � with � ≠ �,

Then S has a unique fixed point in �.Jleli and Samet  [3, 4] introduced the notion of �

-contraction.

Definition 4 Let (𝜔, d

) be a MS. A mapping T ∶ 𝜔 → 𝜔 is

said to be a �-contraction, if there exist a constant k ∈ (0, 1) and � ∈ Θ such that

where Θ is the set of functions � ∶ (0,∞) ⟶ (1,∞) satisfy-ing the following conditions:

(Θ1) � is non-decreasing,(Θ2) for each sequence ,

(Θ3) there exist r ∈ (0, 1) and � ∈ (0,∞] such that

(Θ4) � is continuous.

Jleli and Samet [3] established the fixed point theorem as follows:

Theorem 5 [3] Let (𝜔, d

) be a complete MS and T ∶ 𝜔 → 𝜔

be a �-contraction. Then T has a unique fixed point.

Very recently, Liu et al. [6] introduced the notion of ( � ,�)-Suzuki contractions.

Definition 6 Let (𝜔, d

) be a MS. A mapping T ∶ 𝜔 → 𝜔 is

said to be a (� ,�)-Suzuki contraction, if there exist a com-parison function � and � ∈ � such that, for all, � , � ∈ � with T(𝜁) ≠ T(𝜂)

where

1

2d(𝜁 , S(𝜁)) < d(𝜁 , 𝜂) ⟹ d(S(𝜁), S(𝜂)) < d(𝜁 , 𝜂).

𝜁 , 𝜂 ∈ 𝜔, d(T(𝜁), T(𝜂)) ≠ 0

⟹ 𝜃(d(T(𝜁), T(𝜂))

)≤[𝜃(d(𝜁 , 𝜂

)]k,

1

2d(𝜁 , T(𝜁)

)< d(𝜁 , 𝜂)

⟹ 𝛬(d(T(𝜁), T(𝜂)

))≤ 𝛶 [𝛬(U(𝜁 , 𝜂))],

U(𝜁 , 𝜂) = max

{d(𝜁 , 𝜂), d

(𝜁 , T(𝜁)

), d(𝜂, T(𝜂)

),

d(𝜁 , T(𝜂)) + d(𝜂, T(𝜁))

2

},

� is the set of functions � ∶ (0,∞) ⟶ (0,∞) satisfying the following conditions:

(�1) � is non-decreasing,(�2) for each sequence ,

(�3) � is continuous.

And as in  [2], a function � ∶ (0,∞) ⟶ (0,∞) is called a comparison function if it satisfies the following conditions:

(1) � i s m o n o t o n e i n c r e a s i n g , t h a t i s , ,

(2) for all t> 0 , where � n stands for the nth iterate of � .

Clearly, if � is a comparison function, then for each > 0.

Lemma 7 [6] Let � ∶ (0,∞) ⟶ (0,∞) be a non-decreas-ing and continuous function with and be a sequence in (0,∞) . Then,

Theorem  8 [8] Let (𝜔, d) be a complete MS and S ∶ 𝜔 ⟶ CB(𝜔) be a multivalued mapping, where CB(�) is the family of all non-empty closed and bounded subsets of � . If S is a multivalued contraction, that is, if there exists � ∈ [0, 1) such that

Then S has a fixed point �∗ ∈ � such that 𝜁∗ ∈ S(𝜁∗) .Definition 9 [9] Let

(𝜔, d

) be a MS. Let S ∶ 𝜔 ⟶ CB(𝜔)

be a multivalued mapping. Then S is said to be a generalized multivalued-F-contraction if there exist -F ∈ F and 𝜗 > 0 such that for all � , � ∈ �,

where

H(S(𝜁), S(𝜂)

)≤ 𝜆d(𝜁 , 𝜂), all 𝜁 , 𝜂 ∈ 𝜔.

H(S(𝜁), S(𝜂)

)> 0

⟹ 𝜗 + -F(H(S(𝜁), S(𝜂)

))≤ -F(U(𝜁 , 𝜂)),

U(𝜁 , 𝜂) = max

{d(𝜁 , 𝜂),D

(𝜁 , S(𝜁)

),D

(𝜂, S(𝜂)

),

D(𝜁 , S(𝜂)

)+ D

(𝜂, S(𝜁)

)2

}.

Page 3: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

309Mathematical Sciences (2019) 13:307–316

1 3

HanÇer et al. [7] (see also [5]) extended the concept of �-contraction to multivalued mappings as follows.

Definition 10 [7] Let (𝜔, d

) be a metric space,

S ∶ 𝜔 ⟶ CB(𝜔) and � ∈ Θ. Then S is said to be a mul-tivalued � - contraction if there exists a constant k ∈ [0, 1) such that

for all � , � ∈ �, with H(S(𝜁), S(𝜂)

)> 0.

From now on, let (𝜔, db) be a bMS. Let CBb(�) denote the family of all bounded and closed sets in � . For � ∈ � and A,B ∈ CBb(�) , we define

Define a mapping Hb ∶ CBb(�) × CBb(�) ⟶ [0,∞) by

for every A,B ∈ CBb(�) . Then the mapping Hb is a b-metric, and it is called a Hausdorff b-metric induced by a b-metric space (𝜔, db).

Lemma 11 [26] Let (𝜔, d) be a bMS. For any A,B,C ∈ CBb(�) and any � , � ∈ � , we have the following.

(1) Db(𝜁 ,B) ≤ db(𝜁 , b) for any b ∈ B;

(2) Db(� ,B) ≤ Hb(A,B);

(3) Db(𝜁 ,A) ≤ s[db(𝜁 , 𝜂) + Db(𝜂,B)

];

(4) Db(� ,A) = 0 ⇔ � ∈ A;

(5) Hb(A,B) ≤ s[Hb(A,C) + Hb(C,B)

].

Lemma 12 [26] Let A and B be non-empty closed and bounded subsets of a bMS (𝜔, db) and q > 1. Then for all a ∈ A , there exists b ∈ B such that db(a, b) ≤ qHb(A,B).

Definition 13 [18] Let (𝜔, db) be a bMS, the b-metric–met-ric d is called ∗-continuous if for every A ∈ CBb(�) , every � ∈ � and every sequence

{�n

}n∈ℕ

of elements from � such that limn→∞ �n = � , we have

Now we introduce the following definitions.

D e f i n i t i o n 1 4 L e t (𝜔, db

) b e a b M S . L e t

S, T ∶ 𝜔 ⟶ CBb(𝜔) . Then the pair (S, T

) is called a gener-

alized multivalued (� ,�)-contraction if there exist a com-parison function � and � ∈ � such that for all � , � ∈ �,

𝜃(H(S(𝜁), S(𝜂)

))≤[𝜃(d(𝜁 , 𝜂)

)]k,

Db(𝜁 ,A) = infI∈A

db(𝜁 , I) and Db(A,B) = supI∈A

Db(I,B).

Hb(A,B) = max

{sup�∈A

Db(� ,B), sup�∈B

Db(�,A)

},

limn→∞

Db(�n,A) = Db(� ,A).

where

D e f i n i t i o n 1 5 L e t (𝜔, db

) b e a b M S . L e t

S, T ∶ 𝜔 ⟶ CBb(𝜔) . Then the pair (S, T

) is called a gener-

alized multivalued (� ,�)-Suzuki contraction if there exist a comparison function � and � ∈ � such that for all � , � ∈ � , with S(𝜁) ≠ T(𝜂),

and Ub(� , �) is defined as in (2).

Main results

Theorem  16 Let (𝜔, db

) be a complete bMS and

S, T ∶ 𝜔 ⟶ CBb(𝜔) be a generalized multivalued (� ,�)

-Suzuki contraction. Suppose that

(1) � is continuous(2) db is ∗-continuous.

Then S and T have a common fixed point �∗ ∈ �.

Proof Let �0 ∈ � . Choose 𝜁1 ∈ S(𝜁0

). Assume that

Db

(𝜁0, S

(𝜁0

)) , Db

(𝜁1, T

(𝜁1

))> 0, therefore,

By Lemma 18,

Hence, there exists 𝜁2 ∈ T(𝜁1

),

Since � is non-decreasing, we have

(1)

Hb

(S(𝜁), T(𝜂)

)> 0

⟹ 𝛬(s3Hb

(S(𝜁), T(𝜂)

))≤ 𝛶

(𝛬(Ub(𝜁 , 𝜂)

)),

(2)

Ub(𝜁 , 𝜂) = max

{db(𝜁 , 𝜂),D

b

(𝜁 , S(𝜁)

),D

b

(𝜂, T(𝜂)

),

Db

(𝜁 , T(𝜂)

)+ D

b

(𝜂, S(𝜁)

)2

}.

(3)1

2smin

{Db

(𝜁 , S(𝜁)

),Db

(𝜂, T(𝜂)

)}< db(𝜁 , 𝜂)

⟹ 𝛬(s3Hb

(S(𝜁), T(𝜂)

))≤ 𝛶

(𝛬(Ub(𝜁 , 𝜂)

)),

(4)1

2smin

{Db

(𝜁0, S

(𝜁0

)),D

(𝜁1, T

(𝜁1

))}< db

(𝜁0, 𝜁1

)

0 < Db

(𝜁1, T

(𝜁1

))≤ Hb

(S(𝜁0

), T

(𝜁1

))

≤(s3Hb

(S(𝜁0

), T

(𝜁1

))).

(5)0 < db

(𝜁1, 𝜁2

)≤ Hb

(S(𝜁0

), T

(𝜁1

))

≤(s3Hb

(S(𝜁0

), T

(𝜁1

))).

Page 4: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

310 Mathematical Sciences (2019) 13:307–316

1 3

Hence from (3)

where

If max{db(𝜁0, 𝜁1

),Db

(𝜁1, T

(𝜁1

))}= Db

(𝜁1, T

(𝜁1

)), then

from (7), we have

a contradiction. Thus, max{db

(𝜁0, 𝜁1

),D

b

(𝜁1, T

(𝜁1

))}=

db

(𝜁0

, 𝜁1

). By (7), we get that

Similarly, for 𝜁2 ∈ T(𝜁1

) and 𝜁3 ∈ S

(𝜁2

) . We have

which implies

By continuing this manner, we construct a sequence {�n} in � such that 𝜁2i+1 ∈ S

(𝜁2i

) and 𝜁2i+2 ∈ T

(𝜁2i+1

) , i = 0, 1, 2,…,

Hence from (3), we have

(6)𝛬(db(𝜁1, 𝜁2

))≤ 𝛬

(Hb

(S(𝜁0

), T

(𝜁1

)))

≤ 𝛬(s3Hb

(S(𝜁0

), T

(𝜁1

))).

(7)0 ≤ 𝛬

(db(𝜁1, 𝜁2

))≤ 𝛬

(s3Hb

(S(𝜁0

), T

(𝜁1

)))≤ 𝛶

(𝛬(Ub

(𝜁0, 𝜁1

))),

Ub

(𝜁0, 𝜁1

)

= max

{db(𝜁0, 𝜁1

),Db

(𝜁0, S

(𝜁0

)),Db

(𝜁1, T

(𝜁1

)),

Db(𝜁0,T(𝜁1))+D(𝜁1,S(𝜁0))2s

}

≤ max

{db(𝜁0, 𝜁1

),Db

(𝜁1, T

(𝜁1

)),Db

(𝜁0, T

(𝜁1

))2s

}

≤ max{db(𝜁0, 𝜁1

),Db

(𝜁1, T

(𝜁1

))}.

𝛬(db(𝜁1, 𝜁2

))≤ 𝛶

(𝛬(db(𝜁1, 𝜁2

)))< 𝛬

(db(𝜁1, 𝜁2

)),

𝛬(db(𝜁1, 𝜁2

))≤ 𝛶

(𝛬(db(𝜁0, 𝜁1

))).

𝛬(db(𝜁2, 𝜁3

))= 𝛬

(Db

(𝜁2, S

(𝜁2

)))

≤ 𝛬(Hb

(T(𝜁1

), S(𝜁2

)))

≤ 𝛬(s3Hb

(T(𝜁1

), S(𝜁2

)))≤ 𝛶

(𝛬(Ub

(𝜁1, 𝜁2

)))

≤ 𝛶(𝛬(db(𝜁1, 𝜁2

))),

(8)𝛬(db(𝜁2, 𝜁3

))≤ 𝛶

(𝛬(db(𝜁1, 𝜁2

))).

1

2smin

{Db

(𝜁2i, S

(𝜁2i

)),D

(𝜁2i+1, T

(𝜁2i+1

))}

< db(𝜁2i, 𝜁2i+1

),

(9)

0 < 𝛬(db(𝜁2i+1, 𝜁2i+2

))

≤ 𝛬(s3Hb

(S(𝜁2i

), T

(𝜁2i+1

)))≤ 𝛶

(𝛬(Ub

(𝜁2i, 𝜁2i+1

)))

where

I f max{db(𝜁2i, 𝜁2i+1

), db

(𝜁2i+1, 𝜁2i+2

)}= db

(𝜁2i+1, 𝜁2i+2

),

then from (9) we have

which is a contradiction. Thus,

By (9), we get that

This implies that

Hence,

which implies

Letting n ⟶ ∞ in the above inequality, we get

which implies

From (�2) and Lemma (10), we get

Ub

(𝜁2i, 𝜁2i+1

)

= max

{db(𝜁2i, 𝜁2i+1

),Db

(𝜁2i, S

(𝜁2i

)),Db

(𝜁2i+1, T

(𝜁2i+1

)),

Db(𝜁2i,T(𝜁2i+1))+Db(𝜁2i+1,S(𝜁2i))2s

}

≤ max

{db(𝜁2i, 𝜁2i+1

), db

(𝜁2i+1, 𝜁2i+2

),

db(𝜁2i,𝜁2i+2)2s

}

≤ max{db(𝜁2i, 𝜁2i+1

), db

(𝜁2i+1, 𝜁2i+2

)}.

𝛬(db(𝜁2i+1, 𝜁2i+2

))≤ 𝛶

(𝛬(db(𝜁2i+1, 𝜁2i+2

)))

< 𝛬(db(𝜁2i+1, 𝜁2i+2

)),

max{db(𝜁2i, 𝜁2i+1

), db

(𝜁2i+1, 𝜁2i+2

)}= db

(𝜁2i, 𝜁2i+1

).

𝛬(db(𝜁2i, 𝜁2i+1

))< 𝛶

(𝛬(db(𝜁2i, 𝜁2i+1

))).

1

2smin

{Db

(𝜁n, S

(𝜁n

)),Db

(𝜁n+1, T

(𝜁n+1

))}

< db(𝜁n, 𝜁n+1

),

𝛬(db(𝜁2n+1, 𝜁2n+2

))

< 𝛶(𝛬(db(𝜁2n, 𝜁2n+1

))), for all n ∈ ℕ,

𝛬(db(𝜁2n+1, 𝜁2n+2

))≤ 𝛶

(𝛬(db(𝜁2n+1, 𝜁2n+2

)))

≤ 𝛶2(𝛬(db(𝜁2n−1, 𝜁2n

)))

≤ ⋯ ≤ 𝛶n(𝛬(db(𝜁0, 𝜁1

)))

0 ≤ limn⟶∞

𝛬(db(𝜁2n+1, 𝜁2n+2

))

≤ limn⟶∞

𝛶n(𝛬(db(𝜁0, 𝜁1

)))= 0,

limn⟶∞

𝛬(db(𝜁2n+1, 𝜁2n+2

))= 0.

Page 5: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

311Mathematical Sciences (2019) 13:307–316

1 3

Now, we will prove that the sequence {�n

} is a Cauchy.

Arguing by contradiction, we assume that there exist 𝜀 > 0 and sequence

{hn}∞

n=1 and

{𝚥n

}∞

n=1 of natu-

ral numbers such that for all n ∈ ℕ, hn > 𝚥n > n with db(𝜁h(n), 𝜁𝚥(n)

)≥ 𝜀, db

(𝜁h(n)−1, 𝜁𝚥(n)

)< 𝜀. Therefore,

By setting n → ∞ in (11) , we get

From triangular inequality, we have

and

By taking upper limit as n → ∞ in  (13) and apply-ing (10), (12) ,

Again, by taking the upper limit as n → ∞ in (14), we get

Thus

Similarly

By triangular inequality, we have

(10)limn⟶∞

db(𝜁2n+1, 𝜁2n+2

)= 0.

(11)

𝜀 ≤ db(𝜁h(n), 𝜁𝚥(n)

)

≤ s[db(𝜁h(n), 𝜁h(n)−1

)+ db

(𝜁h(n)−1, 𝜁𝚥(n)

)]

< s𝜀 + sdb(𝜁h(n), 𝜁h(n)−1

).

(12)𝜀 < limn→∞

db(𝜁h(n), 𝜁𝚥(n)

)< s𝜀.

(13)db(𝜁h(n), 𝜁𝚥(n)

)≤ [db

(𝜁h(n), 𝜁h(n)+1

)

+ db(𝜁h(n)+1, 𝜁𝚥(n)

)],

(14)db(𝜁h(n)+1, 𝜁𝚥(n)

)≤ s[db

(𝜁h(n), 𝜁h(n)+1

)

+ db(𝜁h(n), 𝜁𝚥(n)

)].

𝜀 ≤ limn→∞

sup db(𝜁h(n), 𝜁𝚥(n)

)

≤ s(limn→∞

sup db(𝜁h(n)+1, 𝜁𝚥(n)

)).

limn→∞

sup db(𝜁h(n)+1, 𝜁𝚥(n)

)≤ s

(limn→∞

sup db(𝜁h(n), 𝜁𝚥(n)

))

≤ s.s𝜀 = s2𝜀.

(15)𝜀

s≤ lim

n→∞sup db

(𝜁h(n)+1, 𝜁𝚥(n)

)≤ s2𝜀.

(16)𝜀

s≤ lim

n→∞sup db

(𝜁h(n), 𝜁𝚥(n)+1

)≤ s2𝜀.

(17)db(𝜁h(n)+1, 𝜁𝚥(n)

)≤ s[db

(𝜁h(n)+1, 𝜁𝚥(n)+1

)

+ db(𝜁𝚥(n)+1, 𝜁𝚥(n)

)].

On letting n → ∞ in  (17) and using the inequali-ties (10), (15), we get

Following the above process, we find

From (18) and (19), we get

From (10) and (12), we can choose a positive integer n0 ≥ 1 such that

for all n ≥ n0 , from (3), we get

where

Taking the limit as n → ∞ and using  (10),  (12),  (15) and (16), we get

(18)𝜀

s2≤ lim

k→∞sup db

(𝜁h(n)+1, 𝜁𝚥(n)+1

).

(19)limn→∞

sup db(𝜁h(n)+1, 𝜁𝚥(n)+1

)≤ s3𝜀.

(20)𝜀

s2≤ lim

n→∞sup db

(𝜁h(n)+1, 𝜁𝚥(n)+1

)≤ s3𝜀.

1

2smin

{Db

(𝜁h(n), S

(𝜁h(n)

)),Db

(𝜁𝚥(n), T

(𝜁𝚥(n)

))}

<1

2s𝜀 < db

(𝜁h(n), 𝜁𝚥(n)

),

0 < 𝛬(s3db

(𝜁h(n)+1, 𝜁𝚥(n)+1

))

≤ 𝛬

(s3Hb

(S(𝜁h(n)

), T

(𝜁𝚥(n)

)))

≤ 𝜓(𝜙(Ub

(𝜁h(n), 𝜁𝚥(n)

))), for all n ≥ n0,

Ub

�𝜁h(n), 𝜁𝚥(n)

= max

⎧⎪⎨⎪⎩

db�𝜁h(n), 𝜁𝚥(n)

�,Db

�𝜁h(n), S

�𝜁h(n)

��,Db

�𝜁𝚥(n), T

�𝜁𝚥(n)

��,

Db

�𝜁h(n),T

�𝜁𝚥(n)

��+Db

�𝜁𝚥(n)

,S(𝜁p(n))�

2s

⎫⎪⎬⎪⎭

≤ max

⎧⎪⎨⎪⎩

db�𝜁h(n), 𝜁𝚥(n)

�, db

�𝜁h(n), 𝜁h(n)+1

�, db

�𝜁𝚥(n), 𝜁

𝚥(n)+1

�,

db

�𝜁h(n),𝜁𝚥(n)+1

�+db

�𝜁𝚥(n)

,𝜁h(n)+1

2s

⎫⎪⎬⎪⎭.

𝜀 = max

{𝜀,

𝜀

s+

𝜀

s

2s

}

≤ limn→∞

supUb

(𝜁h(n), 𝜁𝚥(n)

)

≤ max

{s𝜀,

s2𝜀 + s2𝜀

2s

}= s𝜀.

Page 6: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

312 Mathematical Sciences (2019) 13:307–316

1 3

From (18) , and ( �2 ), we get

This is a contradiction. Therefore {�n

} is a Cauchy. Since X

is a complete, we can assume that {xn} converges to some

point �∗ ∈ �, that is, limn→∞

db(𝜁n, 𝜁

∗)= 0 and so

Now, we claim that

or

Assume that it does not hold, there exists m ∈ ℕ such that

and

Therefore,

which implies

𝛬(s𝜀) = 𝛬

(s3(

𝜀

s2)

)

≤ 𝛬

(s3 lim

n→∞sup db

(𝜁h(n)+1, 𝜁𝚥(n)+1

))

≤ limn→∞

𝛶(𝛬(Ub

(𝜁h(n), 𝜁𝚥(n)

)))

= 𝛶 (𝛬(s𝜀)) < 𝛬(s𝜀).

(21)limn→∞

db(𝜁n, 𝜁

∗)= lim

n→∞db(𝜁2n, 𝜁

∗)

= limn→∞

db(𝜁2n+1, 𝜁

∗)= 0

(22)1

2smin

{Db

(𝜁n, S

(𝜁n

)),Db

(𝜁∗, T(𝜁∗)

)}

< db(𝜁n, 𝜁

∗),

1

2smin

{Db

(𝜁∗, S(𝜁∗)

),Db

(𝜁n+1, T

(𝜁n+1

))}

< db(𝜁n+1, 𝜁

∗), ∀n ∈ ℕ.

(23)1

2smin

{Db

(𝜁m, S

(𝜁m

)),Db

(𝜁∗, T(𝜁∗)

)}

≥ db(𝜁m, 𝜁

∗),

(24)1

2smin

{Db

(𝜁∗, S(𝜁∗)

),Db

(xm+1, Txm+1

)}

≥ db(xm+1, x

∗).

2sdb(𝜁m, 𝜁

∗)

≤ min{Db

(𝜁m, S

(𝜁m

)),Db

(𝜁∗, T(𝜁∗)

)}

≤ min{s[db(𝜁m, 𝜁

∗)+ Db

(𝜁∗, S

(𝜁m

))],

Db

(𝜁∗, T(𝜁∗)

)}

≤ s[db(𝜁m, 𝜁

∗)+ Db

(𝜁∗, S

(𝜁m

))]

≤ s[db(𝜁m, 𝜁

∗)+ db

(𝜁∗, 𝜁

m+1

)],

db(𝜁m, 𝜁

∗)≤ db

(𝜁∗, 𝜁

m+1

).

This together with (23) shows that

Since 12smin

{Db

(𝜁m, S

(𝜁m

)),Db

(𝜁∗, T(𝜁∗)

)}< db

(𝜁m, 𝜁m+1

),

by (3), we have

where

I f max{db

(𝜁m, 𝜁m+1

), db

(𝜁m+1, 𝜁m+2

)}= db

(𝜁m+1, 𝜁m+2

),

then from (26) we have

a contradiction. Thus,

By (25), we get that

It follows from conditions (�1)

(25)

db(𝜁m, 𝜁

∗)

≤ db

(𝜁∗, 𝜁

m+1

)

≤1

2smin

{Db

(𝜁∗, S

(𝜁m

)),

Db

(𝜁m+1, T

(𝜁m+1

))}.

(26)

0 < 𝛬(db(𝜁m+1, 𝜁m+2

))

≤ 𝛬

(s3Hb

(S(𝜁m

), T

(𝜁m+1

)))

≤ 𝛶(𝛬(Ub

(𝜁m, 𝜁m+1

)))

Ub

�𝜁m, 𝜁m+1

= max

⎧⎪⎨⎪⎩

db

�𝜁m, 𝜁m+1

�,Db

�𝜁m, S

�𝜁m

��,Db

�𝜁m+1, T

�𝜁m+1

��,

Db

�𝜁m,T

�𝜁m+1

��+Db(𝜁m+1,S(𝜁m ))

2s

⎫⎪⎬⎪⎭

≤ max

⎧⎪⎨⎪⎩

db

�𝜁m, 𝜁m+1

�, db

�𝜁m+1, 𝜁m+2

�,

db(𝜁m,𝜁m+2)2s

⎫⎪⎬⎪⎭≤ max

�db

�𝜁m, 𝜁m+1

�, db

�𝜁m+1, 𝜁m+2

��.

𝛬(db(𝜁m+1, 𝜁m+2

))≤ 𝛶

(𝛬(db(𝜁m+1, 𝜁m+2

)))

< 𝛬(db(𝜁m+1, 𝜁m+2

)),

max{db

(𝜁m, 𝜁m+1

), db

(𝜁m+1, 𝜁m+2

)}= db

(𝜁m, 𝜁m+1

).

𝛬(db(𝜁m+1, 𝜁m+2

))≤ 𝛶

(𝛬

(db

(𝜁m, 𝜁m+1

)))

< 𝛬

(db

(𝜁m, 𝜁m+1

)).

(27)db(𝜁m+1, 𝜁m+2

)< db

(𝜁m, 𝜁m+1

).

Page 7: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

313Mathematical Sciences (2019) 13:307–316

1 3

From (24), (25), and (27), we get

a contradiction. Hence (22) holds, that is, ∀n ≥ 2

holds. By (3), it follows that for every n ≥ 2

where

Now, we show that 𝜁∗ ∈ T(𝜁∗) . Suppose on the contrary, Db

(𝜁∗, T(𝜁∗)

)> 0. Since d is ∗-continuous,

Letting n ⟶ ∞ in (29) and by using (21), (30), ( �3 ), we obtain

which is a contradiction. Therefore, Db

(𝜁∗, T(𝜁∗)

)= 0 and

from Lemma  18, we obtain 𝜁∗ ∈ T(𝜁∗). Similarly we can

db(𝜁m+1, 𝜁m+2

)< db

(𝜁m, 𝜁m+1

)

≤ s[db(𝜁m, 𝜁

∗)+ db

(𝜁∗, 𝜁m+1

)]

≤1

2min

{Db

(𝜁∗, S(𝜁∗)

),

Db

(𝜁m+1, T

(𝜁m+1

))}

+1

2min

{Db

(𝜁∗, S(𝜁∗)

),

Db

(𝜁m+1, T

(𝜁m+1

))}

= min{Db(𝜁

∗,

S(𝜁∗)), db

(𝜁m+1, 𝜁m+2

)}

≤ db(𝜁m+1, 𝜁m+2

),

(28)1

2smin

{Db

(𝜁n, S

(𝜁n

)),Db

(𝜁∗, T(𝜁∗)

)}

< db(𝜁n, 𝜁

∗),

(29)

0 < 𝛬(Db

(𝜁n+1, T(𝜁

∗)))

≤ 𝛬(s3Hb

(S(𝜁n

), T(𝜁∗)

))≤ 𝛶

(𝛬(Ub

(𝜁n, 𝜁

∗)))

Ub

(𝜁n, 𝜁

∗)

= max

{db(𝜁n, 𝜁

∗), db

(𝜁n, 𝜁n+1

),Db

(𝜁∗, T(𝜁∗)

),

Db(𝜁n,T(𝜁∗))+db(𝜁n+1,𝜁n+1)2s

}.

(30)limn→∞

Db

(𝜁n, T(𝜁

∗))= Db

(𝜁∗, T(𝜁∗)

).

𝛬(Db

(𝜁∗, T(𝜁∗)

))= lim

n→∞𝛬(Db

(𝜁n+1, T(𝜁

∗)))

≤ limn→∞

𝛶(𝛬(Ub

(𝜁n, 𝜁

∗)))

=𝛶(𝛬(Db

(𝜁∗, T(𝜁∗)

)))

<𝛬(Db

(𝜁∗, T(𝜁∗)

)),

show that 𝜁∗ ∈ S(𝜁∗). Thus S and T have a common fixed point. ◻

Corollary 17 Let (𝜔, d

) be a complete bMS and

S, T ∶ 𝜔 ⟶ CBb(𝜔) be a generalized multivalued (� ,�)

-contraction. Suppose that

(1) � is continuous(2) d is ∗-continuous.

Then S and T have a common fixed point �∗ ∈ �.Example 18 Let X = [0, 1] . Define d ∶ 𝜔 × 𝜔 → [0,+∞) by d(𝜁 , 𝜂) = |𝜁 − 𝜁 |2, for all � , � ∈ � . Clearly, (𝜔, d) is a com-plete bMS with s = 2, but (𝜔, d) is not a metric space. For � = 0 , � = 1 and � = 1

2 , we have

Define � ∶ (0,∞) ⟶ (0,∞) by �(t) = tet, for all t > 0. Then � ∈ �. Also, define � ∶ (0,∞) ⟶ (0,∞) by � (t) =

198t

200, for all t > 0. Then � is a continuos comparison

function. Define the mappings S, T ∶ 𝜔 ⟶ CBb(𝜔) by

Suppose, without any loss of generality, that all � , � are nonzero and 𝜁 < 𝜂 . Then

Hence all the hypotheses of Corollary 17 are satisfied, and thus, S and T have a common fixed point.Corollary 19 Let

(𝜔, d

) be a complete bMS such that d is

a continuous function and S, T ∶ 𝜔 ⟶ 𝜔 be a generalized (� ,�)-type contraction, that is, if there exist a compari-son function � and � ∈ � such that, for all, � , � ∈ � with S(𝜁) ≠ T(𝜂),

where

d(𝜁 , 𝜂) = 1 >1

4+

1

4= d(𝜁 , 𝜐) + d(𝜐, 𝜂).

S(𝜁) =

[0,

𝜁

6

]and T(𝜁) =

[0,

𝜁

4

].

𝛬(s3Hb

(S(𝜁), T(𝜂)

))= 𝛬

(s3Hb

([0,

𝜁

6

],[0,

𝜂

4

]))

= 𝛬

(8||||𝜁

6−

𝜂

4

||||2)

= 8||||𝛾

6−

𝜂

4

||||2

e8|||𝜁

6−

𝜂

4

|||2

≤198

200|𝜁 − 𝜂|2e|𝜁−𝜂|2

≤198

200Ub(𝜁 , 𝜂)e

Ub(𝜁 ,𝜂)

=198

200𝛬(Ub(𝜁 , 𝜂)

)

= 𝛶(𝛬(Ub(𝜁 , 𝜂)

)).

𝛬(s3d

(S(𝜁), T(𝜂)

))≤ 𝛶

[𝛬(Ub(𝜁 , 𝜂)

)],

Page 8: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

314 Mathematical Sciences (2019) 13:307–316

1 3

If � is continuous, then S and T have a unique common fixed point x∗ ∈ X.Corollary 20 Let

(𝜔, d

) be a complete bMS and

S ∶ 𝜔 ⟶ CBb(𝜔) be a generalized multivalued (� ,�)

-Suzuki contraction, that is, if there exist a comparison function � and � ∈ � such that, for all, � , � ∈ � with S(𝜁) ≠ S(𝜂),

where

Suppose that

(1) � is continuous(2) d is ∗ -continuous.

Then S has a fixed point �∗ ∈ �.Corollary 21 Let

(𝜔, d

) be a complete bMS such that d is a

continuous function and S ∶ 𝜔 ⟶ 𝜔 be a generalized (� ,�)

-type Suzuki contraction. If � is continuous. Then S has a unique fixed point �∗ ∈ �.

Corollary 22 [6] Let (𝜔, d

) be a complete MS such that d

is a continuous function and S ∶ 𝜔 ⟶ 𝜔 be a generalized (� ,�)-type Suzuki contraction. If � is continuous. Then S has a unique fixed point �∗ ∈ �.

Remark 23 Theorem 16 is a generalization of the main results in Suzuki [10] and the recent result in Liu [6].

Remark 24 Corollary 17 is a generalization of Nadler [8] and the recent results in Jleli et al. [3, 4], HanÇer et al. [7] and Vetro [5].

Application

In this section, we present an application of our result in solv-ing functional equations arising in dynamic programming.

Ub(𝜁 , 𝜂) = max{db(𝜁 , 𝜂), db

(𝜁 , S(𝜁)

), db

(𝜂, T(𝜂)

),

db(𝜁 , T(𝜂)

)+ db

(𝜂, S(𝜁)

)2

}.

1

2sDb

(𝜁 , S(𝜁)

)< db(𝜁 , 𝜂) ⟹ 𝛬

(s3Hb

(S(𝜁), S(𝜂)

))

≤ 𝛶[𝛬(Ub(𝜁 , 𝜂)

)],

Ub(𝜁 , 𝜂)

= max{db(𝜁 , 𝜂),Db

(𝜁 , S(𝜁)

),Db

(𝜂, S(𝜂)

),

Db

(𝜁 , S(𝜂)

)+ Db

(𝜂, S(𝜁)

)2

}.

Decision space and a state space are two basic components of dynamic programming problem. State space is a set of states including initial states, action states and transitional states. So a state space is set of parameters representing different states. A decision space is the set of possible actions that can be taken to solve the problem. We assume that U and V are Banach spaces, W ⊆ U , D ⊆ V and

and for more details on dynamic programming we refer to ([29–32]). Suppose that W and D are the state and deci-sion spaces, respectively, and the problem of dynamic pro-gramming related reduces to the problem of solving the functional equations

We aim to give the existence and uniqueness of common and bounded solution of functional equations given in (31) and (32). Let B(W) denote the set of all bounded real-valued functions on W. For h, k ∈ B(W) , define

Suppose that the following conditions hold:(B1) :  Γ,Ψ, g, and u are bounded and continuous.(B2)  :  For � ∈ W , h ∈ B(W) and b > 0, define

E,A ∶ B(W) ⟶ B(W) by

Moreover, for every (� , �) ∈ W × D, h, k ∈ B(W) and t ∈ W we have

where

� ∶ W × D ⟶ W

g, u ∶ W × D ⟶ ℝ

Γ,Ψ ∶ W × D ×ℝ ⟶ ℝ,

(31)p(�) = sup�∈D

{g(� , �) + Γ(� , �, p(�(� , �)))}, for � ∈ W

(32)q(� ) = sup�∈D

{u(� , �) + Ψ(� , �, q(�(x, y)))}, for � ∈ W,

(33)d(h, k) =‖‖‖(h − k)2

‖‖‖∞ = supx∈W

|h𝜁 − k𝜁 |2.

(34)Eh(� ) = sup�∈D{g(� , �) + Γ(� , �, h(�(� , �)))},

(35)Ah(� ) = sup�∈D{u(� , �) + Ψ(� , �, h(�(� , �)))}.

(36)

|Γ(� , �, h(t)) − Ψ(� , �, k(t))| ≤√

Ub(h(t), k(t))

s3(Ub(h(t), k(t)) + 1

)

Ub((h(t), k(t))

= max{d(h(t), k(t)), d(h(t),Eh(t)), d(k(t),Ak(t)),

d(h(t),Ak(t)) + d(k(t),Eh(t))

2s

}.

Page 9: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

315Mathematical Sciences (2019) 13:307–316

1 3

Theorem 25 Assume that the conditions (B1) − (B2) are satisfied. Then the system of functional equations  (31) and (32) has a unique  common and bounded solution in B(W).

Proof Note that (B(W), d) is a complete bMS with constant s = 2 . By (B1), E, A are self-maps of B(W). Let � be an arbi-trary positive number and h1, h2 ∈ B(W) . Choose � ∈ W and �1, �2 ∈ D such that

Further from (37) and (38), we have

Then (37) and (40) together with (36) imply

Then (38) and (39) together with (36) imply

where

From (41), (42), and since 𝜆 > 0 was taken as an arbitrary number, we obtain

(37)Eh1 < g(𝜁 , 𝜂1) + Γ(𝜁 , 𝜂1, h1(𝜉(𝜁 , 𝜂1)) + 𝜆

(38)Ah2 < g(𝜁 , 𝜂2) + Ψ(𝜁 , 𝜂2, h2(𝜉(𝜁 , 𝜂2)) + 𝜆

(39)Eh1 ≥ g(� , �2) + Γ(� , �2, h1(�(� , �2))

(40)Ah2 ≥ g(� , �1) + Ψ(� , �1, h2(�(� , �1)).

(41)

Eh1(𝜁) − Ah2(𝜁) < Γ(𝜁 , 𝜂1, h1(𝜉(𝜁 , 𝜂1)))

− Ψ(𝜁 , 𝜂1, h2(𝜉(𝜁 , 𝜂1))) + 𝜆

≤ ||Γ(𝜁 , 𝜂1, h1(𝜉(𝜁 , 𝜂1)))−Ψ(𝜁 , 𝜂1, h2(𝜉(𝜁 , 𝜂1)))

|| + 𝜆

√Ub(h1(𝜁), h2(𝜁))

s3(Ub(h1(𝜁), h2(𝜁) + 1)+ 𝜆.

(42)

Ah2(�) − Eh1(�) ≤ Γ(� , �2, h1(�(� , �2)))

− Ψ(� , �2, h2(�(� , �2))) + �

≤ ||Γ(� , �2, h1(�(� , �2)))−Ψ(� , �2, h2(�(� , �2))

|| + �

√Ub(h1(�), h2(�))

s3(Ub(h1(�), h2(�) + 1

) + �,

Ub((h1(𝜁), h2(𝜁))

= max{d(h1(𝜁), h2(𝜁)), d(h1(𝜁),

Eh1(𝜁)), d(h2(𝜁),Ah2(𝜁)),

d(h1(𝜁),Ah2(𝜁)) + d(h2(𝜁),Eh1(𝜁))

2s

}.

Thus,

The inequality (43) implies

Taking �(t) = t, t > 0 and � (t) =t

t+1, t > 0 , we get

Therefore, all the conditions of Corollary 17 immediately hold. Thus, E and A have a common fixed point h∗ ∈ B(W), that is, h∗(�) is a unique, bounded and common solution of the system of functional equations (31) and (32). ◻

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecom-mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-tion, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 3, 133–181 (1922)

2. Berinde, V.: Generalized Contractions and Applications, vol. 22. Editura Cub Press, Baia Mare (1997)

3. Jleli, M. Samet, B.: A new generalization of the Banach contrac-tion principle. J. Inequal. Appl. 2014, Article ID 38 (2014)

4. Jleli, M., Karapinar, E., Samet, B.: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 439 (2014)

5. Vetro, F.: A generalization of Nadler fixed point theorem. Car-pathian J. Math. 31, 403–410 (2015)

6. Liu, X.-D., Chang, S.-S., Xiiao, Y., Zhao, L.-C.: Some fixed point theorems concerning (� ,�)-type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 9, 4127–4136 (2016)

7. HanÇer, H.A., Minak, G., Altun, I.: On a broad category of multivalued weakly Picard operators. Fixed Point Theory 18(1), 229–236 (2017)

8. Nadler, S.B.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

9. Piri, H., Rahrovi, S.: Generalized multivalued F-weak contractions on complete metric spaces. Sahand Commun. Math. Anal. 2(2), 1–11 (2015)

10. Suzuki, T.: A new type of xed point theorem in metric spaces. Nonlinear Anal. 71, 5313–5317 (2009)

11. Wardowski, D.: Fixed points of a new type of contractive map-pings in complete metric spaces. Fixed Point Theory Appl. 2012, 6 (2012)

||Eh1(�) − Ah2(�)|| ≤

√Ub(h1(�), h2(�))

s3(Ub(h1(x), h2(x) + 1

) .

(43)||Eh1(�) − Ah2(�)||2 ≤

Ub(h1(�), h2(�))

s3(Ub(h1(x), h2(x) + 1

) .

(44)d(Eh1(�),Ah2(�)) ≤Ub(h1(�), h2(�))

s3(Ub(h1(x), h2(x) + 1

) .

(45)�(s3d(Eh1(�),Ah2(�))

)≤ �

(�(Ub(h1(�), h2(�))

)).

Page 10: On¢new¢common¢¡xed¢points¢of multivalued¢ ‑contractions ... · Muhammad Arshad _ahoo.com Nawab Hussain nhusain@kau.edu.sa 1 Department of˚Mathematics, Taiz University, Taiz,

316 Mathematical Sciences (2019) 13:307–316

1 3

12. Iqbal, I., Hussain, N., Sultana, N.: Fixed points of multivalued non-linear F-contractions with application to solution of matrix equations. Filomat 31(11), 3319–3333 (2017)

13. Hussain, N., Doric, D., Kadelburg, Z., Radenovic, S.: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 126 (2012)

14. Hussain, N., Mitrović, Z.D.: On multi-valued weak quasi-contrac-tions in b-metric spaces. J. Nonlinear Sci. Appl. 10, 3815–3823 (2017)

15. Hussain, N., Yasmin, N., Shafqat, N.: Multi-valued Ćirić contrac-tions on metric spaces with applications. Filomat 28(9), 1953–1964 (2014)

16. Arshad, M., Ameer, E., Karapinar, E.: Generalized contractions with triangular �-orbital admissible mapping on Branciari metric spaces. J. Inequal. Appl. 2016, 63 (2016)

17. Aydi, H., Karapinar, E., Bota, M.F., Mitrović, S.: A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 88 (2012)

18. Miculescu, R., Mihail, A.: New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 19(3), 2153–2163 (2017). https ://doi.org/10.1007/s1178 4-016-0400-2

19. Aydi, H., Felhi, A., Sahmim, S.: Common fixed points in rectan-gular b-metric spaces using (E:A) property. J. Adv. Math. Stud. 8(2), 159–169 (2015)

20. Ameer, E., Arshad, M., Shatanawi, W.: Common fixed point results for generalized �∗-�-contraction multivalued mappings in b-metric spaces. J. Fixed Point Theory Appl. (2017). https ://doi.org/10.1007/s1178 4-017-0477-2

21. Jleli, M., Samet, B., Vetro, C., Vetro, F.: Fixed points for multival-ued mappings in b-metric spaces. Abstr. Appl. Anal. 2015, Article ID 718074 (2015)

22. Jovanović, M., Kadelburg, Z., Radenović, S.: Common xed point results in metric-type spaces. Fixed Point Theory Appl. 2010, Article ID 978121

23. Huang, H., Xu, S.: Fixed point theorems of contractive mappings in cone b-metric spaces and applications. Fixed Point Theory Appl. 2013, 112 (2013)

24. Shi, L., Xu, S.: Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces. Fixed Point Theory Appl. 2013, 120 (2013)

25. Hussian, N., Shah, M.H.: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 167–168 (2011)

26. Czerwik, S.: Nonlinear set-valued contraction mappings in b-met-ric spaces. Atti Semin. Mat. Fis. Univ. Modena. 46(2), 263–276 (1998)

27. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1, 5–11 (1993)

28. Felhi, A., Sahmim, S., Aydi, H.: Ulam-Hyers stability and well-posedness of fixed point problems for �-�-contractions on quasi b-metric spaces. Fixed Point Theory Appl. 2016, 1 (2016)

29. Baskaran, R., Subrahmanyam, P.V.: A note on the solution of a class of functional equations. Appl. Anal. 22(3–4), 235–241 (1986)

30. Bellman, R., Lee, E.S.: Functional equations in dynamic program-ming. Aequ. Math. 17, 1–18 (1978)

31. Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)

32. Pathak, H.K., Cho, Y.J., Kang, S.M., Lee, B.S.: Fixed point theo-rems for compatible mappings of type (P) and applications to dynamic programming. Matematiche 50, 15–33 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.