online estimation of lithium ion soc multiscalefiltering ...€¦ · 10/27/2011 shrm lab., seoul...

24
Sep 26, 2011 Online Estimation of LithiumIon Battery SOC and Capacity with Multiscale Filtering Technique for EVs/HEVs BATTERY MANAGEMENT SYSTEMS WORKSHOP Chao Hu 1 , Byeng D. Youn 2 , Jaesik Chung 3 and T.J. Kim 2 1 Department of Mechanical Engineering, University of Maryland at College Park 2 School of Mechanical and Aerospace Engineering, Seoul National University 3 PCTEST Engineering Laboratory

Upload: phungkhuong

Post on 25-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Sep 26, 2011

Online Estimation of Lithium‐Ion Battery SOC and Capacity with 

Multiscale Filtering Technique for EVs/HEVs

BATTERY MANAGEMENT SYSTEMS WORKSHOP

Chao Hu1, Byeng D. Youn2, Jaesik Chung3 and T.J. Kim2 

1 Department of Mechanical Engineering, University of Maryland at College Park2 School of Mechanical and Aerospace Engineering, Seoul National University

3 PCTEST Engineering Laboratory

Background and MotivationBackground and Motivation1

Task 1: Battery Health Diagnostics Task 1: Battery Health Diagnostics 2

Task 2: Battery Health PrognosticsTask 2: Battery Health Prognostics3

Task 3: Battery Health ManagementTask 3: Battery Health Management4

Concluding RemarksConcluding Remarks5

Contents

10/27/2011 2SHRM Lab., Seoul National University

Background and Motivation

10/27/2011 3SHRM Lab., Seoul National University

Battery Management System (BMS)

2. Battery Monitoring Module

SOC, SOH, SOL Module 

Decision Logic

SensoryData

V, I, T

Control Signals

Charging & Equalization

Power In

External Charger or Alternator

4. Thermal Management 

System

Battery

Engine

HCU

Generator

Battery Pack

Cells

…3. Battery 

Control Module5. Safety Module

1. Module Sensing System (V, I, T measurements)

2. Battery Monitoring Module

3. Battery Control Module

4. Thermal Management System (cooling pumps/fans)

5. Battery Warning Device and Safety Module

1. Sen

sing

 System

Hubwheel

Background and Motivation

10/27/2011 4SHRM Lab., Seoul National University

Battery Health Management (BHM) for BMS

Schedule‐BasedBattery Replacement 

BHM‐Based

BHM‐Based

RUL1 > RUL2

Late Replacement (Failure)

Timely Replacement (Safe)

Average Co

st

Failu

re   Co

st

Health Con

ditio

n

Lifetime

Case1

Case 2

+

Passive capacity Adaptive capacity (BHM)

+

Benefit 1. Cell balancing in multi‐cell battery chains

Benefit 2. Cell health management

Case 1: Enabling use of full cell capacities

Case 2: Anticipating & preventing future failures

Maximizing charging & discharging pack capacity

20%

Cdis

10%

60%

Cchar

40%

u44

h1

Slide 4

u44 It is not clear how short-term and long-term benefits can be distinguished.user, 9/21/2011

h1 The titles have been revised to be more specific. huchaostu, 9/22/2011

Overview of Battery Health Management

10/27/2011 5SHRM Lab., Seoul National University

Battery Cycle Testing

SOC & Capacity Estimation

Task I

Battery Health Diagnostics

Battery Cells Cycle Tester

Test con

ditio

n

SOC : Micro EKF/UKF

Capacity : Macro EKF/UKF

Volta

ge

Curren

t

SOC

Capacity

SOC 

Projectio

n

t

End time

Task II

Battery Health Prognostics

Remaining Useful Time

Remaining Useful Life 

Voltage Projection

Capacity

Operation History

RUT Estimate

t

Volta

ge

3.0V

4.2V

Current time

Prediction

UDDS

Battery Health Database (Offline)Ca

pacity

Cycle End life

Temperature

Discharge rate

Chemistry

Background health knowledge

Predicted RUL

Particle Filter Projection (Online)

Task III

Battery Health Management

Cell Balancing

Cell Replacement

+

Unbalance: Cdis = 20%, Cchar = 10%

+

Balance: Cdis = 60%, Cchar = 40%

Boosting/shuffling

Prob

ability

…Designed life

t

Cell 1 life

Cell Nlife

Cell to replace

Overview of Battery Health Management

10/27/2011 6SHRM Lab., Seoul National University

Battery Cycle Testing

SOC & Capacity Estimation

Task I

Battery Health Diagnostics

Battery Cells Cycle Tester

Test con

ditio

n

SOC : Micro EKF/UKF

Capacity : Macro EKF/UKF

Volta

ge

Curren

t

SOC

Capacity

SOC 

Projectio

n

t

End time

Task II

Battery Health Prognostics

Remaining Useful Time

Remaining Useful Life 

Voltage Projection

Capacity

Operation History

RUT Estimate

t

Volta

ge

3.0V

4.2V

Current time

Prediction

UDDS

Battery Health Database (Offline)Ca

pacity

Cycle End life

Temperature

Discharge rate

Chemistry

Background health knowledge

Predicted RUL

Particle Filter Projection (Online)

Task III

Battery Health Management

Cell Balancing

Cell Replacement

+

Unbalance: Cdis = 20%, Cchar = 10%

+

Balance: Cdis = 60%, Cchar = 40%

Boosting/shuffling

Prob

ability

…Designed life

t

Cell 1 life

Cell Nlife

Cell to replace

Concluding Remarks

10/27/2011 7SHRM Lab., Seoul National University

Multiscale Extended Kalman Filter (EKF) Proposed

Two Unique Strategies in Capacity Estimation

Multiscale estimation of SOC and capacity with time‐scale separation

State projection scheme for accurate and stable capacity estimation

Improved Performance

Enhanced accuracy (less noise and more stable) in capacity estimation

Higher efficiency by reduced frequency (1/L) in capacity estimation

Future Research

Extension of the proposed algorithm from a cell level to a pack level

Validation of the proposed algorithm with more extensive accelerated life test

u50

h3

Slide 7

u50 Highlight the uniquenesses of our proposed method: multiscale, stochastic, etc.

Express the uniquenesses, contributions, advantages of the proposed method.user, 9/21/2011

h3 The conclusion has been revised to reflect the uniquenesses, contributions and benefits of the proposed multiscale filtering method. huchaostu, 9/22/2011

Acknowledgements

10/27/2011 8SHRM Lab., Seoul National University

• PCTEST Laboratory (Battety Certification Firm, Columbia, MD)

• National Research Foundation (NRF), Korea (2011‐2014)

• Hyundai Motors R&D, Electric Vehicle Department, Korea (2011‐2012)

u59

h8

Slide 8

u59 Highlight the uniquenesses of our proposed method: multiscale, stochastic, etc.

Express the uniquenesses, contributions, advantages of the proposed method.user, 9/21/2011

h8 The conclusion has been revised to reflect the uniquenesses, contributions and benefits of the proposed multiscale filtering method. huchaostu, 9/22/2011

10/27/2011 9SHRM Lab., Seoul National University

Q/A

Thank You!

10/27/2011 10SHRM Lab., Seoul National University

Task 1: Battery Health Diagnostics

Time‐Scale Separation in State of Charge (SOC) and Capacity EvolutionsCa

pacity (A

h)

Time (month)

SOC (%)Capacity  (Ah)

3 5 7 9 111

SOC (%

)

Time (hour)2 3 4 5 61

Capacity: slowly time‐varying health condition (macro time‐scale); 

SOC: fast time‐varying system state (micro time‐scale)

Multiscale EKF – Hybrid of Coulomb counting and adaptive filtering technique

10/27/2011 11

Contribution 1 – Multiscale EKF for SOC & Capacity Estimation

Time updatexk,l–=xk,l‐1^ +ηi∙T∙ik,l‐1/Ck‐1

Ck–

xk,l–xk,l‐1^

Ck‐1

ik,l‐1 Measurement update(cell dynamic model)

xk,l^

Vk,l ik,l

Ckxk,L~

Macroscale achieved (go to Macro EKF)? xk,l^

No

Yesxk,L^(SOC)

Micro EKF

Macro EKF(Capacity)

SHRM Lab., Seoul National University

Cell current profile Cell voltage profile

Zoom of first minutes

SOC estimation Capacity estimation

Cell current

Zoom of first minutes

SOC estimationCell voltage 

Task 1: Battery Health Diagnostics

Measurement updateCk+ = Ck– +KkC∙[xk,L^ – xk,L~ ]

Capacity transitionCk– = Ck–1+

SOC projectionxk,L~ = xk,0+η∙T∙ik,0:L‐1/Ck–

10/27/2011 12SHRM Lab., Seoul National University

Contribution 2 – State Projection for Accurate Capacity Estimation

t

SOC/x

tk,0 tk,L

Ck‒(L)Ck‒(N)

Ck‒(S)1

Microscale: T

Macroscale: L∙T

2

Ck−1(L)

Ck−1(N)Ck−1(S)

3

Ck‒(L)

Ck‒(N)

Ck‒(S)

1 Capacity transition

2 SOC projection (coulomb counting)

(SOC)Micro EKF

Macro EKF(Capacity)31 2

Task 1: Battery Health Diagnostics

3 Measurement update

Estimated SOC

10/27/2011 13SHRM Lab., Seoul National University

• Testing cells: Li‐ion prismatic cells (around 1.50Ah)

• Testing facilities: Arbin BT2000 cell tester with Espec SH‐241 temperature chamber at 25oC

• Test step 1: Setup UDDS test System• Test step 2: Program and load UDDS test profile into cell tester• Test step 3: Start test and acquire test data (duration: around 20hrs)

Arbin Cell Tester

Experiment Setup – UDDS Test System

Data Acquisition Device Temperature Chamber

Prismatic Cells Prismatic Cells

Test Jig

Task 1: Battery Health Diagnostics

Test Steup – Urban Dynamometer Drive Schedule (UDDS) Test

10/27/2011 14SHRM Lab., Seoul National University

Task 1: Battery Health Diagnostics

Test Result – Urban Dynamometer Drive Schedule (UDDS) Test

Compu

tatio

nal 

time (s)

MEKF

36.2% saving

22 Comparison of efficiency (overall) 

DEKF

5.813

3.711

MATLAB Version 7.11.0.584 on Intel Core i5 760 CPU 2.8 GHz and 4 Gbyte RAM.

11 Comparison of accuracy (small initial) 

RMS error (mAh

)

MEKF

41.7% error reduction

DEKF

108

63

Average RMS errors after convergence (at t = 200min)

Capa

city Estim

ation 

(Five Ce

lls)

MEKF

DEKF

Small initial (convergence check )

MEKF

DEKF

Accurate initial (stability check )

u53

h4

Slide 14

u53 We need to hightlight the benefits and advantages of our approach far more clearly.user, 9/21/2011

h4 1. Capacity estimation results of MEKF and DEKF are plotted in the same figure to deliver a more clear comparision.

2. Quantitative comparison results have been added to clearly show the superior performance of MEKF. huchaostu, 9/22/2011

0 100 200 3001.2

1.3

1.4

1.5

1.6

Cycle No.

Cel

l Cap

acity

(Ah)

Cell 1Cell 2Cell 3Cell 4

0 100 200 3001.2

1.3

1.4

1.5

1.6

Cycle No.

Cel

l Cap

acity

(Ah)

Cell 5Cell 6Cell 7Cell 8

0 100 200 3001.2

1.3

1.4

1.5

1.6

Cycle No.

Cel

l Cap

acity

(Ah)

Cell 9Cell 10Cell 11Cell 12

0 100 200 3001.2

1.3

1.4

1.5

1.6

Cycle No.C

ell C

apac

ity (A

h)

Cell 13Cell 14Cell 15Cell 16

Preliminary Results – Accelerated Cycle Life Test (Ongoing)

Task 2: Battery Health Prognostics

10/27/2011 15SHRM Lab., Seoul National University

1.0C Charging,1.0C Discharging

1.5C Charging,1.0C Discharging

1.0C Charging,2.0C Discharging

1.5C Charging,2.0C Discharging

Charging Rate

DischargingRate

Number of Cells

1.0C 1.0C 4

1.5C 1.0C 4

1.0C 2.0C 4

1.5C 2.0C 4

C = 1.5A; Temperature = 25oCOne cell to check 1.5C charge and 2.0C discharge

10 charging & discharging cycles

… …

Capacity and impedance check

u45 u46

h6

Slide 15

u45 It is not clear what we can observe out of the results.Also not clear correlation between C-rate and degradation.Please analyze these results to get more insightful understanding.user, 9/21/2011

u46 Can we update the results with recent cycle data?This could be critical in order to make some conclusions.user, 9/21/2011

h6 The results have been updated with recent cycle data. At this stage, it is still very difficult to see a clear correlation between the C-rateand capacity degradation, since cells (9-16) with higher C-rates exhibit similar degradation behavior compared to cells (1-8) with lowerC-rates. This slide can be used for the purpose of demonstrating our ongoing cycle life testing with preliminary results.huchaostu, 9/22/2011

Preliminary Results – Hybrid Algorithm for SOL Prediction (Ongoing)

Task 2: Battery Health Prognostics

10/27/2011 16SHRM Lab., Seoul National University

SOC&Capacity 

Remaining Life

Health Diagnostics

Health Prognostics

Cell Dynamic Model Training

Degradation Model Training

Offline Process

Health Filtering(Mutiscale EKF)

Health Projection (Particle Filter)

Online Process

100 250200150

350

300

250

200

150

Time (cycles)

10% error bounds

300 350

100

50

RUL (cycles)

Life Prediction

Performan

ce Plot

0 100 400300200

1.6

1.5

1.4

1.3

1.2

Time (cycles)

1.5C Charging, 1.0C Discharging

500 600

1.1

1.0

Prediction at 300cycles

Test data

Capacity (A

h)

True RUL

RUL PDF

4000

RUL prediction(mean)

u58

h7

Slide 16

u58 Not clear how this result comes from.Is it based on someone else's results or ours?The workshop has many participants in this research. It is not a good idea to present others' results.user, 9/21/2011

h7 The life prediction approach with Particle Filter has been developed by researchers from NASA. But this integrated framework combining health diagnostics (with MEKF) and health prognostics has not been attempted. Thus, we may present this integrated framwork and show some preliminary results (shown in the bottom figures) to support it. huchaostu, 9/23/2011

Module 1 (5 Cells)

Cell‐Module‐Pack Health Information Panel (Conceptually Created)

Task 3: Battery Health Management

10/27/2011 17SHRM Lab., Seoul National University

0

100

1 2 3 4 5

0

10

State of charge (%)

Remaining life (yr)

Cell ID

Module 2 (5 Cells)

0

100

6 7 8 9 10

0

10

State of charge (%)

Remaining life (yr)

Cell ID

Pack (2 Modules)

Remaining useful time  hours              min.4     30 Cells requesting 

replacement 5,7Real‐time & user‐friendly health information feedback for effective cell balancing/replacement

u49

h5

Slide 17

u49 Is it based on the result or just conceptual slide? Please clarify this.user, 9/21/2011

h5 This table is conceptually created to show the ultimate objective (the creation of a cell-module-pack health information panel).huchaostu, 9/22/2011