onetesla tuning guide draft

Upload: cryogen11

Post on 02-Jun-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Onetesla Tuning Guide Draft

    1/11

    Tuning your oneTeslaDraft version 2013-11-19, Stefan Gustavson ([email protected]).

    Pulis!e" un"er ## $%-S& license (see creativecommons.org for "etails).

    The oneTesla kit was designed to be a manageable project for relatively inexperienced hobbyists. Ifassembled correctly, it should perform well and give you long, beautiful sparks without any extra

    adjustments. However, the performance of a Tesla coil is very much dependent on its tuning, and

    due to component tolerances and small details in your assembly of the kit, it is quite possible that

    your particular coil is not as well tuned as it could be, and that it could perform even better. tuned

    coil gives longer sparks and a louder sound, draws less power and runs cooler, thereby reducing the

    risk of component failures. coil that is very badly out of tune will produce weak sparks and might

    break down on higher power settings. This guide is meant to teach you how to detect tuning

    problems in your oneTesla, and how to bring it into tune.

    Some 'eo'le !ave !a" 'rolems it! secon"ar coils t!at ere acci"entall oun" it! t!e

    incorrect numer of turns, !ic! results in more severe tuning 'rolems an" com'onent failures

    even at mo"est 'oer settings. *!is gui"e is meant to !el' also in t!ose circumstances.

    Tuning?

    In any dual resonant Tesla coil, including the solid state variety of which the oneTesla is an

    example, there are two !" resonant circuits involved in creating the high tension sparks# the

    primary circuit and the secondary circuit. n !" resonant circuit consists of an inductor $!% and a

    capacitor $"% connected either in series or in parallel. Its resonant frequency f is easily computed

    from the inductance + and the capacitance # according to#

    f= &

    '(+#)(or a Tesla coil to be well tuned, the primary and secondary circuits should resonate at the same

    frequency, or at least almost the same. This is paramount to performance.

    How does it work?

    In order to understand why tuning is so important, it is helpful to understand how a Tesla coil

    works. (%ou "o not nee" to un"erstan" t!is section, or even rea" it, to "etect an" fi tuning

    'rolems, ut e elieve t!at t!e est tos are also e"ucational.)

    The oneTesla is an interrupted coil, which means that it is not creating a continuous spark, but rapid

    successions of sparks in short bursts, controlled by the interrupter. This is what makes it able to emit

    a tone of a specific pitch. )uring the *on+ time for each pulse from the interrupter, the output

    transistors $insulated gate bipolar transistors, or I-Ts for short% are driving the primary circuit by

    means of a feedback circuit that adapts to the primary resonance frequency. ith each cycle, more

    electrical energy is *pumped+ into the primary circuit, gradually increasing its resonance amplitude.

    This energy will then transfer to the secondary, but the magnetic coupling between the primary and

    secondary coils is weak by design, unlike a regular transformer, were you want strong coupling.

    This means that the energy transfer will not happen instantaneously, but over time across several

    cycles. In this manner, the secondary gets pumped by the primary, and increases its resonance

    amplitude $*rings up+%, while the primary is active. /ome power is lost to the spark when it breaks

    out, and there is a maximum voltage you can reach both in the primary and the secondary, partly

    because of thermal and magnetic losses, but also because a pumped0up secondary will starttransferring some of its stored energy back to the primary. However, the main limitation of spark

    power during normal operation of the oneTesla is the time you allow the primary to ring up. If you

  • 8/10/2019 Onetesla Tuning Guide Draft

    2/11

    make that time too long, the device will actually suffer a catastrophic breakdown. The primary

    circuit, and the I-T bridge in particular, was designed for an interrupted Tesla coil, and the

    components are not rated to handle continuous operation at full mains voltage. If you were to try

    continous operation, the current in the primary coil would become too high and fry the I-Ts

    within milliseconds. "ontinuous operation is possible at a much reduced " supply voltage from a

    variac, like 12 volts or so, or by feeding the bus capacitors directly from a )" power supply, but

    then the output voltage from the secondary will be reduced accordingly, and the spark will be short,faint and not very loud.

    The secondary oscillations will tend to follow the oscillations of the primary while it is being

    pumped by it, but when left alone it will resonate at its own preferred frequency. If the two are

    significantly different, the secondary will not respond well to being pumped by the primary

    frequency, and the energy transfer will be inefficient. 3erfect tuning is definitely best, but rather

    hard to accomplish, because the secondary resonance frequency varies quite significantly with the

    spark length. slight detuning is 45 and will only make a small difference. ith stronger

    detuning, the secondary will respond well to the first few cycles of the primary, but after a while,

    when the secondary has had more energy transferred to it, the secondary self0resonance will drift

    out of phase with the primary, and the energy transfer will stop. serious detuning will make the

    secondary run out of phase sooner, making it fight against the primary oscillations for some part of

    the cycle and load the primary circuit down instead of sucking up the energy from it.

    "onversely, if the secondary is well tuned, the energy transfer from the primary will be efficient for

    the entire duration of the primary oscillations, making the secondary ring up to a high voltage while

    only putting a minimal load on the primary. The maximum output voltage from a well tuned Tesla

    coil is much higher than what you could get from an ordinary, non0resonant transformer circuit with

    the same ratio of turns between the primary and secondary windings.

    Deliberate detuning

    6ou generally don7t want to hit perfect tuning $exactly the same frequency for the primary and thesecondary% at lowest power, because then you will be out of tune at high power. This is because a

    longer spark, or *streamer+ in coiler0speak, adds some to the top load capacitance and influences the

    resonance frequency. This is called *streamer loading+. Therefore, after you have found the perfect

    tuning on low power, you will need to retune the coil some more to perform its best at higher power.

    8xperimental evidence from the oneTesla forum seems to indicate that the oneTesla, being a small

    coil that throws big sparks, needs to have the primary frequency tuned significantly lower than the

    secondary frequency for best performance. good rule of thumb seems to be that you should aim

    for a primary frequency that is &9: to '2: lower than secondary frequency. 3opular online

    resources for Tesla coils in general usually state this number as somewhere around 9: to &2:, but

    the oneTesla is an unusually strong performer for its si;e, and needs a larger margin for the streamer

    loading.

    strong, full length streamer from the oneTesla seems to reduce the secondary resonance frequency

    by up to '2: from the frequency at lowest power. t half power setting on the interrupter, the

    difference is more like &2: from the low power state. Thus, if you want your coil to give good

    results at full power, you will run it slightly out of tune at half power, and vice versa.

  • 8/10/2019 Onetesla Tuning Guide Draft

    3/11

    Measuring the resonance frequencies

    There are many ways of measuring the resonance frequencies of your primary and secondary, some

    direct and some indirect. The most convenient ways require you to have access to an oscilloscope.

    6ou can manage without one, but let7s start by explaining how to do it with an oscillosope.

    Using an oscilloscope and a running coil correctly built oneTesla will create a small spark from the breakout point even on the lowest

    power setting. If the coil is not well tuned, the spark might be weak, almost invisible and not very

    loud, but there should definitely be a spark. =sing an oscilloscope, you can measure the oscillating

    electrical field from the top load by holding or hanging the probe somewhere in the air a few meters

    from the running coil. /et the time base to '2 us or &2 us>div, and adjust the sensitivity of the scope

    to have a trace that looks similar to the image below.

    (image: a typical trace of a oneTesla with some detuning issues)

    4n this trace, you can notice detuning problems in several ways, the most direct being a difference

    in frequency between the first and the second part of the waveform. healthy, tuned coil will show

    the same frequency across the entire trace.(image: a trace from a oneTesla with good tuning)

    hen you have a trace like the ones shown above, you can count and measure the pulses in the

    leading part and the trailing part of the waveform, and calculate the frequency for each part. ?ost

    digital oscilloscopes have built0in tools in the user interface to measure a time interval. /et the

    cursors to coincide with two peaks or two ;ero crossings in the ringing0up or ringing0down part of

    the trace, respectively, read the time interval, and divide by the number of cycles between the peaks

    to get the period * . 6our corresponding resonance frequency is &/* .

    If you have an analog oscilloscope, you can get a very reliable measurement by snapping a straight

    head0on, high resolution picture of the trace with a digital camera and count pixel distances in an

    image editing program, as shown in the image below. ?easuring this directly on the display is alsopossible, but it gives you a less accurate reading.

  • 8/10/2019 Onetesla Tuning Guide Draft

    4/11

    Using an oscilloscope and a signal generator without running the coil

    6ou can also measure the primary and the secondary resonance without powering up your oneTesla,

    but then you need both an oscilloscope and a signal generator capable of outputting a signal with a

    variable frequency up to & ?H;, or at least in the range '22 kH; to 192 kH;. The signal does not

    have to be sinus shaped @ a square wave from the digital output of a simple timer circuit will do just

    fine.

    TO DO: include or link to instructions on how to build a 555 timer circuit to test resonance.

    If your signal generator does not have a built0in accurate reading of its currently set frequency, a

    frequency counter or an oscilloscope with built0in frequency measurement is a big help. 6ou can

    count cycles and measure distances on an analog scope as shown in the previous section, but it7s not

    nearly as convenient.

    Primary

    To measure the primary resonance, disconnect your oneTesla from all power sources. !ocate the

    primary lead that is farthest from the tank capacitor and disconnect it from its screw terminal.

    "onnect a short and straight wire from the tank capacitor lead that is closest to the corner of theboard to the primary lead you just detached. Then, connect your oscilloscope across the tank

    capacitor. "onnect the signal generator to the same points, but through a &k resistor. schematic is

    presented below.

    /tart the signal generator at around '92 kH; and adjust the oscilloscope until you see a clear trace.

    Then, adjust the frequency until you find the maximum amplitude for the trace. This peak amplitude

    happens at the resonance frequency. The signal is not very strong, and the peak is not very

    pronounced, but with some care, you should be able to determine the resonance frequency with

    good accuracy. good digital oscilloscope with amplitude and frequency readout helps a lot here,

    but an analog scope will do.

  • 8/10/2019 Onetesla Tuning Guide Draft

    5/11

    Secondary

    There are several ways to measure the secondary resonance, but we recommend the following

    method for its accuracy. )isconnect the primary coil from its terminals, and connect your signal

    generator to the primary coil, possibly through a small resistor of about &22 ohms if your signal

    generator is not comfortable with a short circuit across its output. "onnect the bottom of the

    secondary coil to a good, low impedance ground or to a counterpoise $a sheet of metal, like

    aluminium foil, about & m square%, and place the coil in the same kind of environment as during

    operation, keeping it reasonably far away from the ceiling, walls and other objects. Hang the

    oscilloscope probe still in a position a few feet away from the top load, and set the amplitude scale

    of the oscilloscope to somewhere in the mA>div range to detect weak signals. /tart your signal

    generator and adjust its frequency. hen you hit the secondary resonance frequency, you should see

    a strong increase in the amplitude of the field that is emitted from the top load through the air to

    your oscilloscope probe. This peak is a lot more pronounced than the peak you detected from the

    primary circuit.

    Measuring without an oscilloscope

    Link to the online schematics and instructions for the circuit with the 555 timer and the LD

    indicator. Does it work! " ha#e no e$perience with it. %eed to build it and test it& or insert a

    disclaimer here saying 'untested'. econdary measurement should work. rimary is more

    doubtful.

    "s it possible to measure the peak with a multimeter capable of measuring *+ #oltage! The *+#oltages in#ol#ed are small& but at least for the secondary measurement it might be enough.

    ,uild an instrument amplifier with a simple op-amp to measure small *+ #oltages! ould be

    ine$pensi#e& but not dead simple.

    Hand tuning

    If you do not have access to an oscilloscope and do not feel like assembling the home0brew signal

    generator mentioned in the section above, you can tune your oneTesla using nothing but your eyes

    and ears and some experimentation. 6ou will not be running blind, but you will be running with a

    sort of tunnel vision, so an oscilloscope really makes things a lot more convenient. However, it is

    perfectly possible to tune a Tesla coil without any extra equipment.-ad tuning manifests itself as poor performance of the coil# the sound is not as loud as expected,

    and the sparks are shorter than expected. =se the gallery at the end of this document for reference.

  • 8/10/2019 Onetesla Tuning Guide Draft

    6/11

    8xactly how to tune your coil is presented in the next section. -elow, we just give you a hint on

    how to tune without access to measuring equipment. The adjustments and modifications you need

    to make are the same as described in the section *etting into tune+.

    ithout any frequency measurements for reference, it is impossible to know which way to tune

    your coil, but try a small adjustment in one direction and see if the situation improves. If it doesn7t,

    try the other way. If things do not improve nor get any worse either way, try a somewhat larger

    adjustment. "ontinue making small adjustments until you reach the optimal performance. It is wiseto do this on low power, around one0third setting on the power knob, or else you risk destroying

    something. 6ou can also try it on minimum power to be absolutely sure that nothing bad happens.

    (or reference, you should know that when the oneTesla is well tuned at lowest power $a situation

    you generally don7t want, see the section *)eliberate detuning+ above%, the sound is a little too loud

    for comfort without ear protection when you are standing close to it.

    Tuning with an AC current meter

    s strange as it sounds, you can also tune a Tesla coil by hooking up an " current meter to the

    mains power line and adjust the tuning until the current draw is as small as possible for a certain

    power setting on the interrupter. It may seem a bit counter0intuitive that a stronger spark is producedwhen the power input is smaller, but that is how it works. The power losses to heat when the tuning

    is bad have a stronger influence on the total mains current than the extra power that gets pushed into

    the spark when you hit perfect tuning.

  • 8/10/2019 Onetesla Tuning Guide Draft

    7/11

    Getting into tune

    ?easure your resonance frequencies on minimum power, or on an unpowered coil using a signal

    generator and an oscilloscope. If you are lucky, your primary frequency is about &9: lower than

    your secondary frequency. In that case, you7re basically fine. 6our coil does not need any strong

    tuning adjustments. The reason for having different frequencies for the primary and secondary is

    that the secondary frequency will shift down somewhat during operation when there is a long spark

    present. That spark is a conductor that will add to the capacitance of the top load and reduce the

    resonance frequency by about &9:. /ee the section *)eliberate detuning+ above.

    If you want absolutely top performance from your coil, you should measure the frequencies during

    operation at full power, and aim for perfect tuning when there is a strong spark present. To measure

    the resonance frequency during operation at higher power, hang the oscilloscope probe somewhere

    a few meters from your coil. round the ground lead but keep the probe tip unconnected, and you

    should be able to get a trace of the radiated electrical field, similar to what you saw earlier in this

    guide for measuring the secondary resonance, only you will see a much stronger signal.

    4n longer pulse widths $higher power settings on the interrupter%, you will see slight detuning

    issues as an uneven amplitude in the *on+ part of the trace. This happens because the primary andsecondary circuits drift in and out of phase with each other, and when they are out of phase, some of

    the energy in the secondary is transferred back into the primary. -y seasoned coilers, this is referred

    to as *bucking+. s long as the bucking is small and only creates small variations in amplitude, like

    in the plot below, it7s not a big issue, but if it gets stronger, it can make the primary coil run hot to

    the point of smoking, and in extreme cases it will destroy the I-Ts.

    (image: * trace where bucking is clearly #isible& but not strong enough to be a big problem)

    (possible additional image: * trace of a long pulse without any bucking 0 if " can make one)

    (possible additional image: * trace where bucking is strong enough to be a big problem)

    relevant measure of your amount of detuning is the secondary frequency divided by the primary

    frequency. 6ou want this ratio to be somewhere in the range &.& to &.'. If it is greater than &.' or

    smaller than &.&, you are out of the *comfort ;one+ and should consider improving the performance

    and stability of your coil by tuning it. If the ratio is as high as &.'9 or &.1 or more, you will destroy

    your coil if you run it at full power, and in that case you must perform a tuning before you crank up

    the power setting on your interrupter. If the ratio is lower than &.&, you will see good performance at

    lower power, but a bad performance at higher power, and even in this case there is a risk of

    destroying the coil by pushing it to higher power.

    Adjusting the primary resonance

    (rom above, recall the formula for the resonance frequency of an !" circuit#

    f=&

    '(+#)

    The primary resonance circuit can be tuned in two ways# change the capacitance, or change the

    inductance. In the oneTesla design, the value of the tank capacitor cannot be varied easily and

    freely. If you happen to have access to a large stash of such capacitors, you could probably fix slight

    detuning issues by using a capacitance meter to find one that has just the right value, but that is out

    of reach for most people. The primary coil, however, is relatively easy to change. If your primary

    has a too low resonance frequency, you should decrease the primary inductance, and if the

    frequency is too high, you should increase the inductance. Increasing the inductance can be

    performed by adding more turns to the default six turns. The inductance of a short coil like the

    oneTesla primary is proportional to the number of turns squared, and inversely proportional toa weighted sum of its length l and diameter " #

  • 8/10/2019 Onetesla Tuning Guide Draft

    8/11

    +

    '

    l+2.B "

    There is also some stray inductance in the connecting wires leading up to the coil, but that is not a

    big contribution to the overall inductance of the primary.

    The inductance of the standard C turn primary with the wire wound tightly $minimum length of the

    coil, about &D mm% is approximately E FH. /preading the windings out to twice that length reduces

    the inductance to about 9 FH.

    Geducing the coil to 9 turns over &' mm length gives an inductance of about D. FH, and spreading

    that 9 turn coil out to 12 mm length reduces the inductance further to around 1.9 FH.

    "onversely, adding one turn and packing the E turns tightly together increases the inductance to B

    FH, and spreading the E turns out over 12 mm reduces it to about C FH.

    -ecause the resonance frequency is inversely proportional to the square root of the inductance, the

    nominal resonance frequency for the C turn tight coil of around '1C kH; can be increased to 112

    kH; for a widely spread 9 turn coil, and decreased to '22 kH; for a tightly wound E turn coil. This

    should be a more than adequate tuning range to match even a very problematic secondary. The table

    below summari;es this. reen cells represent a tightly wound coil. Ged cells represent coils that

    would require thinner wire than the default to fit across the specified length. 6ellow cells represent a

    more or less spread0out winding.

    The process of changing the resonance frequency by expanding and contracting the winding is

    called *scrunch tuning+. This is not quite as convenient as a commonly used method on larger Tesla

    coils, where a movable tap on an uninsulated primary makes it possible to tap the primary coil at,

    say 9.E turns, but the insulated primary coil on the oneTesla is a simpler and more safe design, and

    it makes the coil less likely to create arcs between the secondary and the primary.

    Adjusting the secondary resonance

    The secondary coil of a oneTesla kit comes pre0manufactured and is cumbersome to rewind, but it7s

    easier to change the capacitance of the top load. /light adjustments can be made by making thebreakout rod a little shorter or longer. This will change the tuning only slightly, but it is a good way

    to do fine tuning for absolutely maximum performance.

    (or stronger re0tuning, you should consider adjusting your primary. However, it is possible to adjust

    the secondary by using a smaller or larger toroid for the top load, or adding a second toroid on top

    of the first. The stamped toroid that comes with the oneTesla kit is a large part of its good looks, so

    replacing it is not the recommended way of tuning a oneTesla, but it can be done. ny custom top

    load you make should have a smooth, softly rounded surface, or else you will have sparks breaking

    out all over the place. It should also be symmetrical about the central axis of the secondary.

    toroidal shape is best, for various reasons, but a sphere, or something reasonably close to a spherical

    shape, will work too.

    The capacitance of a toroid can be computed with this excellent online resource#

    http#>>deepfriedneon.com>teslafcalctoroid.html

    10 12 14 16 18 20 24 28 32 40

    5 4.97 4.80 4.64 4.49 4.35 4.21 3.97 3.76 3.56 3.23

    6 6.91 6.68 6.46 6.26 6.07 5.72 5.41 5.13 4.65

    7 9.09 8.80 8.52 8.26 7.78 7.36 6.98 6.33

    278.6 283.4 288.1 292.7 297.3 306.3 314.9 323.4 339.7kHz

    236.1 240.1 243.9 247.8 255.2 262.5 269.5 283.1

    205.8 209.1 212.4 218.8 225.0 231.0 242.6

    Coil lengt !mm"

    #$m%er o& t$rn'

    $H

    (re)$ency *it 68 n(

    5 t$rn'

    6 t$rn'

    7 t$rn'

    http://deepfriedneon.com/tesla_f_calctoroid.htmlhttp://deepfriedneon.com/tesla_f_calctoroid.html
  • 8/10/2019 Onetesla Tuning Guide Draft

    9/11

    The formula is a little bit hairy, even though it7s only an approximation, but it goes like this#

    #=&(&.'E&D'

    D&)

    ' '(D&D')D'

    '

    D$p(%

    where D&

    and D'

    are the major and minor diameters of the toroid, respectively. .&=E.&&

    if D& and D' are measured in centimeters, and &='. if measurements are in inches. Thestamped aluminum toroid has )&J'22 mm $K% and )'JD9 mm $&.K%, which gives a capacitance of

    .C p(.

    The capacitance of a sphere is a lot more simple to compute# #=.'/ $p(%, where / is the

    radius of the sphere, and .'=&.&& if / is in centimeters, and '=2.D1 if / is in inches.

    combination of toroids and spheres is also fine. If you want to be creative, go ahead.

  • 8/10/2019 Onetesla Tuning Guide Draft

    10/11

    A gallery of sparks

    !ast, we present a visual gallery of sparks from a well tuned oneTesla coil. This is the kind of

    performance you should expect from a device that is properly tuned. Tesla coils are individuals, and

    your coil might not perform exactly like the one we used to make this gallery, but if the results from

    your coil are significantly smaller than what you see below, if your coil draws an abnormal power

    from " mains, or if either the heatsink or the primary coil becomes hot to the touch during

    operation, you need to tune your coil.

    bove is the kind of image you get if you just point and shoot in dim ambient lighting using

    automatic exposure mode with a typical camera# a long exposure, showing how the spark dances

    around over the course of several seconds. This is not what it looks like in real life, but it7s a nice

    image. In the close0up, you can see that this is an interrupted Tesla coil. To the naked eye, it looks

    like a continuous streamer licking the air, but a spark is actually forming and extinguishing in a

    cycle that repeats hundreds of times per second.

    These are shorter $&>12 second% exposures from the same run, showing the spark fro;en in time.

    This spark is '9012 cm long $&20&' inches% and was obtained in fixed frequency mode, at medium

    frequency and 92: power setting on the interrupter. The current drawn from '12A " mains was

    &.9 $G?/%, and the primary coil stayed cool to the touch even when the coil was left running inthis mode for several minutes. This coil was not in perfect tune $the ratio between secondary and

    primary was &.&%, so the spark length did not increase significantly when the power was increased

  • 8/10/2019 Onetesla Tuning Guide Draft

    11/11

    from 92: to &22:. It got brighter and louder, but not longer, and the coil ran hot.

    coil that is in perfect tune can throw some really impressive sparks up to '2 inches long at full

    power, as can be seen from the images below.