on trades, volume, and the martingale estimating function approach for stochastic volatility models...

Upload: tradercat-solaris

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    1/33

    On Trades, Volume, and the MartingaleEstimating Function Approach for Stochastic

    Volatility Models with Jumps

    Friedrich Hubalek (Joint work with Petra Posedel)

    PRisMa 2008 One-Day Workshop on Portfolio Risk

    Management, Vienna University of Technology,September 29,2008.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    2/33

    Our papers

    Friedrich Hubalek and Petra Posedel, Joint analysis andestimation of stock prices and trading volume inBarndorff-Nielsen and Shephard stochastic volatility models,arXiv:0807.3464 (July 2008)

    Friedrich Hubalek and Petra Posedel, Asymptotic analysis fora simple explicit estimator in Barndorff-Nielsen and Shephardstochastic volatility models, arXiv:0807.3479 (July 2008)

    Friedrich Hubalek and Petra Posedel, Asymptotic analysis for

    an optimal estimating function for Barndorff-Nielsen-Shephardstochastic volatility models, Work in progress.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    3/33

    The Barndorff-Nielsen and Shephard stochastic volatilitymodels with jumps

    Logarithmic returns (discounted)

    dX(t) = ( + V(t))dt +

    V(t)dW(t) + dZ(t)

    Instantaneous variance

    dV(t) = V(t)dt + dZ(t)

    W. . . Brownian motion, Z. . . subordinator,

    Z(t) = Z(t) [. . . ] Parameters: R...linear drift, R. . . I t o drift,

    R...leverage, > 0. . . acf parameter.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    4/33

    Analytical tractability

    (X(t), V(t), t 0). . . Markov, affine model (in continuoustime)

    simple Riccati-type equations for characteristic resp. momentgenerating function

    general solution (up to one integral)

    -OU and IG-OU completely explicitly in terms of elementaryfunctions

    Exploited in

    Option pricing (Nicolato and Venardos)

    Portfolio optimization (Benth et al.) Minimum entropy martingale measure (Benth et al.,

    Rheinlander and Steiger)

    Semimartingal Esscher transform (Hubalek and Sgarra)

    . . .

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    5/33

    But statistical inference seems difficult! Bayesian, MCMC computer intensive approaches!

    Barndorff-Nielsen O.E., Shephard N. (2001), Non-GaussianOrnstein-Uhlenbeck-based models and some of their uses infinancial economics.

    Roberts G.O., Papaspiliopoulos O., Dellaportas P. (2004),Bayesian inference for non-Gaussian Ornstein-Uhlenbeck

    stochastic volatility processes, J.E. Griffin, M.F.J. Steel (2006), Inference with non-Gaussian

    Ornstein-Uhlenbeck processes for stochastic volatility

    Matthew P.S. Gandera and David A. Stephens (2007),

    Stochastic volatility modelling in continuous time with generalmarginal distributions: Inference, prediction and modelselection

    Sylvia Fruhwirth-Schnatter and Leopold Sogner (2007?),Bayesian estimation of stochastic volatility models based on

    OU processes with marginal Gamma laws.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    6/33

    Discrete observations

    Grid ti = i, i 0, fixed width > 0, discrete time observations

    Xi = X(ti) X(ti1), Vi = V(ti)Discrete dynamics

    Xi = + Yi +

    YiWi + Zi, Vi = eVi1 + Ui

    Auxiliary quantities (no discretization error!)

    Zi = Z(ti) Z(ti1), Ui =titi1

    e(tis)dZ(s)

    and

    Yi =

    titi1

    V(s)ds, Wi = 1Yi

    titi1

    V(s)dW(s).

    (Xi, Vi, i N). . . Markov affine model (in discrete time)

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    7/33

    Construction and moments

    Two starting points

    L . . . infinitely divisible distribution on R+ subordinator Zwith Z(1)

    d= L (OU-L)

    D . . . self-decomposable distribution on R+ stationaryOrnstein-Uhlenbeck process V with V(t)

    d= D

    (D-OU)

    Moments of D resp. L all (mixed, conditional, unconditional)integer moments by simple algebra (multivariate Faa di Brunoformula resp. Bell polynomials, practical calculations best byrecursions!)

    E[Xni ], E[Vni ], E[X

    mi V

    ni ], E[X

    i Vmi V

    ni1],

    E[Xni |Vi1], E[Vni |Vi1], E[Xmi Vni |Vi1], . . .

    method of moments estimation

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    8/33

    Various methods of moments

    Method of moments MM (Pearson 1893)

    Generalized method of moments GMM (Hansen 1982)

    Simulated method of moments SMM (. . . )

    Efficient method of moments EMM (Gallant and Tauchen1996),

    . . .

    [Methods of moments for weak convergence]

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    9/33

    Estimation: Setting and problems

    Grid, fixed width, horizon (number of observations) going toInfinity for asymptotics! (Several other possibilities. . . )

    Rich, well-informed financial institutions and traders observeand trade in continous-time

    Poor, academic statisticians and econometers do inferencewith daily (or less frequent!) observations

    [But: High-frequence analyses . . . ]

    Discrete time observations

    Vi not observed, BNS becomes

    non-Markovian, (a hidden Markov model)!

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    10/33

    Remedies

    Substitute unobserved Vi model-implied Vi from optiondata, i.e., joint analysis of P and Q. Cf. Jun Pan, The Jump-Risk Premia Implicit in Options: Evidence

    from an Integrated Time-Series Study (2002).

    (GMM, realistic, complicated, many assumptions.)Also our long term goal!

    Ignore the problem. Purely theoretical study, exhibitsmethodology, provides an upper bound for the accuracy forthis type of methods. See our first paper!

    NOW: Substitute unobserved Vi by an observable proxy,volume or number of trades.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    11/33

    Prices, volatility, trading intensity

    Our incentive

    Carl Lindberg, The estimation of the Barndorff-Nielsen andShephard model from daily data based on measures of tradingintensity. Applied Stochastic Models in Business and Industry24 (4), 2008.

    Some earlier/classical references

    J. M. Karpoff, The relation between price changes and tradingvolume: a survey. JFQA 22, 1987.

    R.P.E. Gallant, A.R. and G. Tauchen, Stock prices andvolume, Rev.Fin.Stud. 5:199242, 1992.

    K.G. Jones, C. and M.L. Lipson, Transactions, volume andvolatility. Rev.Fin.Stud. 7:631651, 1994.

    G.E. Tauchen and M.Pitts, The Price Variability-VolumeRelationship on Speculative Markets Econometrica 51,(1983).

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    12/33

    The new variant/interpretation of the BNS models

    Bold simplification/assumption: Instantaneous variance IS a(constant) multiple of the trading volume resp. number of trades.Introduce a proportionality parameter > 0. [. . . ]

    Logarithmic returns

    dX(t) = ( + V(t))dt +

    V(t)dW(t) + dZ(t) Trading volume (or number of trades)

    dV(t) = V(t)dt + dZ(t)

    W. . . Brownian motion, Z. . . subordinator,Z(t) = Z(t) [. . . ]

    Parameters: R...linear drift, R. . . I t o drift, > 0. . . proportionality, R...leverage, > 0...acfparameter.

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    13/33

    What about maximum likelihood ?

    Practical issue: Bivariate Markov, known transition probability(in terms of characteristic resp. cumulant function) invertfor each observation in each iterations [Possible remedies,approximate inversions, LeCams trick,. . . ]

    Theoretical issue: For infinite activity BDLP (e.g., IG-OU)

    fine, for finite activity (e.g., -OU with exponential compoundPoisson BDLP)

    P[V1 = ve|V0 = v] = e (no jump)

    No dominating sigma-finite measure! Usual MLframework does not apply! Generalized ML (Kiefer and Wolfowitz 1956) [. . . ] Much better than

    n by ad hoc (?) methods! [. . . ]

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    14/33

    Martingale estimating functions

    E.g., (, )-OU: Parameter vector (3 + 4 = 7)

    = (,,,,,,)

    Moments

    i = (Vi, ViVi1, V2i , Xi, XiVi1, XiVi, X

    2i ), i = (Vi1, V

    2i1)

    Martingale estimating function

    Gn() =1

    n

    ni=1

    [i f(Vi1, )] , f(v, ) = E[1|V0 = v]

    Estimator: Solve Gn() = 0 ! Sample moments

    n =1

    n

    ni=1

    i, n =1

    n

    ni=1

    i,

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    15/33

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    16/33

    Consistency

    The basic (and only!) assumption: V0 self-decomposable rv on R+with

    E[Vn0 ] < n N.The basic convergence result

    1

    n

    n

    i=1

    Xpi V

    qi V

    ri1

    a.s.

    E[Xp

    1

    Vq

    1

    Vr0 ]

    p, q, rN.

    Remark: Ergodicity vs. simple proof. Martingale differences uncorreclated elementary convergence result.

    TheoremWe have P(Cn) 1 and the estimator n is consistent on Cn,namely

    nICna.s. 0

    as n

    .

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    17/33

    Asymptotic normality delta method

    Explicit estimator Delta-Method applies: Sample moments

    (n, n)D

    N(0, )estimator

    n = h(n, n)

    result n(n 0) D N(0, T) T = JJ

    Jacobian J = h. Messy. Better: General framework (implicit function theorem)

    Michael Srensen, Statistical inference for discretely observeddiffusions, Lecture Notes, Berlin, 1997. Michael Srensen, On asymptotics of estimating functions,

    Brazil. J. Prob. Stat. (1999).

    Also when estimating functions Gn() explicit, but estimator

    n is not [. . . optimal estimating functions].

    f

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    18/33

    Asymptotic normality general framework

    Basic result: asymptotic normality of estimating functions

    1n

    Gn(0)D N(0, ), = E[Var[1]|V0]

    Proof by multivariate martingale central limit theorem.

    TheoremThe estimator nICn is asymptotically normal, namely

    n

    n 0 D N(0, T), T = A1(A1)

    as n , with Jacobian A = E[f(V0, 0)]. Recall f(v, ) = E[1|V0 = v] and E = E0 . Matrices A and simple, explicit, (slightly lengthy).

    Fi i l f h ll d i l i

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    19/33

    Finite sample performance the controlled simulationexperiment

    -OU: Volume V(t)

    (, ) stationary, BDLP Z compoundPoisson, intensity exponential jumps with mean 1/.

    Parameter values (annual, 250 trading days)

    = 6.17, = 1.42, = 177.95,

    = 0.015, = 0.00056, = 0.435, = 0.087. BDLP: 4.4 jumps per day (interesting pieces of news

    arriving?), each jump with mean and stddev 0.704.

    Volume (in Mio): Stationary mean 4.35, variance 0.033Volatility 18%. ACF half-life 1 day.

    Log returns: Mean -6.5%, volatility 18%.

    Experiments: n=2500 (10 years), n = 8000 (32 years,theoretical check).

    Si l d h 1

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    20/33

    Simulated paths 1

    Volume

    0 500 1000 1500 2000 25000

    5

    10

    15

    t

    Volatility

    0 500 1000 1500 2000 25000.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Volatility

    t

    Si l t d th 2

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    21/33

    Simulated paths 2

    Returns

    0 500 1000 1500 2000 25000.04

    0.03

    0.02

    0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    Xt

    A t ti f

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    22/33

    Asymptotic performance

    True values = (,,,,,,)

    = (6.17, 1.42, 177.95, 0.015, 0.00056, 0.435, 0.087) Asymptotic stddev s/

    n

    s = (12.0, 2.8, 440, 9.0, 2.6, 0.066, 0.007)

    Asymptotic correlation r

    r =

    1 0.9 0.6 0.007 0.05 0.006 0.0030.9 1 0.6 0.007 0.05 0.01 0.0040.6 0.6 1 0.01 0.09 0.0006 0.00

    0.007 0.008 0.01 1 0.8 0.01 0.030.05 0.05 0.09 0.8 1 0.01 0.5

    0.006 0.01 0.0006 0.01 0.01 1 0.0050.003 0.004 0.00 0.03 0.5 0.005 1

    Bigr

    in AR(1)-part! Optimal estimating function.

    Histog a s 1000 e licatio s each 2500

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    23/33

    Histograms: m = 1000 replications, each n = 2500observations, volume parameters

    5.5 6 6.5 70

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    nu

    1.2 1.3 1.4 1.5 1.6 1.70

    1

    2

    3

    4

    5

    6

    7

    8

    alpha

    150 160 170 180 190 200 2100

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045

    0.05

    lambda

    Histograms : m 1000 replications each n 2500

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    24/33

    Histograms : m = 1000 replications, each n = 2500observations, return parameters

    0.25 0.2 0.15 0.1 0.05 0 0. 05 0.1 0. 15 0.20

    1

    2

    3

    4

    5

    6

    7

    8

    beta

    10 8 6 4 2 0

    x 104

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    rho

    0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.20

    0.5

    1

    1.5

    2

    mu

    0.082 0.084 0.086 0.088 0.09 0.092 0.0940

    50

    100

    150

    200

    250

    300

    sigma

    A first empirical analysis data

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    25/33

    A first empirical analysis data

    Closing price and volume

    IBM: March 23, 2003 March 23, 2008 [NYSE], 1259

    observations MSFT: April 11, 2003 Feb 4, 2008 [Nasdaq], 1212

    observations

    IBM data

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    26/33

    IBM dataPrice

    2004 2005 2006 2007 200870

    80

    90

    100

    110

    120

    130

    Volume

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    MSFT data

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    27/33

    MSFT dataPrice

    2004 2005 2006 2007 200820

    22

    24

    26

    28

    30

    32

    34

    36

    38

    Volume

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Estimation results

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    28/33

    Estimation results

    IBM stddev 6.17 0.339 1.42 0.079

    177.95 12.509

    0.435 0.254

    -0.015 0.072 0.087 0.002 -0.00056 0.0002

    MSFT stddev 4.496 0.247 67.895 3.773

    201.99 14.420

    0.4162 0.265

    -0.464 5.059 0.81 0.018 -0.025 0.013

    Interpretation: [. . . ]

    Unconditional return distributions

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    29/33

    Unconditional return distributionsTheoretical BNS (dashed) versus kernel estimates (solid)

    0.1 0.08 0.06 0.04 0.02 0 0.02 0.04 0.060

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0.15 0.1 0.05 0 0.05 0.10

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Log densities

    8 6 4 2 0 2 4 625

    20

    15

    10

    5

    0

    8 6 4 2 0 2 4 635

    30

    25

    20

    15

    10

    5

    0

    Autocorrelation function (volume)

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    30/33

    Autocorrelation function (volume)

    0 5 10 15 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Autocorrelation for variance

    ACF IBM

    estimated theoretical ACF

    0 5 10 15 20

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Autocorrelation for variance

    ACF MSFT

    estimated theoretical ACF

    BNS with Superposition of OU-processes [ . . . ]

    Model fit residual analysis

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    31/33

    Model fit residual analysis

    Volume: Usual (and exact) AR(1) analysis, though with funnyinnovations (Ui) iid,

    Vi e

    = Ui, Ui =titi1 e

    (tis)

    dZ(s)

    Returns: Not exact (?), Euler approximation

    . . .

    Further developments and directions 1

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    32/33

    Further developments and directions 1

    Superposition

    V(t) = w1V1(t)+ +wmVm(t), dVi(t) = iVi(t)dt+dZi(it)

    (X, V1, . . . , Vm) Markov affine Observations? V1. . . common factor (market volume,. . . )

    V2. . . idiosyncratic factor (asset volume,. . . )

    V3... ? (similar asset? ...?)

    Further developments and directions 2

  • 8/9/2019 On Trades, Volume, And the Martingale Estimating Function Approach for Stochastic Volatility Models With Jumps

    33/33

    p

    Number of trades (Lindberg!) Optimal martingale estimating functions

    Gn() =

    ni=1

    B(, Vi1) [i f(, Vi1)) f(, v) = E[i|Vi1 = v]

    Comparison with ML and related methods (for infinite activity)

    Comparison with GMM

    Hybrid approaches

    Other moments (trigonometric, c.f., Singleton, . . . )

    Other time-scales (!!!)

    Integrated analysis for asset and derivatives