on the lebesgue constant of the floater-hormann rational...

63
On the Lebesgue constant of the Floater-Hormann rational interpolants * Stefano De Marchi Department of Mathematics University of Padova Fribourg, November 3, 2015 * Joint work with L. Bos (Verona), K. Hormann (Lugano), G. Klein (Fribourg), J. Sidon (TelAviv) Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 1 / 47

Upload: others

Post on 10-Aug-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

On the Lebesgue constant of the Floater-Hormannrational interpolants ∗

Stefano De Marchi

Department of MathematicsUniversity of Padova

Fribourg, November 3, 2015

∗Joint work with L. Bos (Verona), K. Hormann (Lugano), G. Klein (Fribourg), J. Sidon (TelAviv)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 1 / 47

Page 2: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Outline

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 2 / 47

Page 3: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Motivations

Known things and aim

Known

Michael S. Floater and Kai Hormann, Barycentric rational interpolation withno poles and high rates of approximation, Numer. Math. 107(2) (2007),315–331.

Floater and Hormann rational interpolants, FHRI, is a family of rationalinterpolants that perform rational interpolations on equispaced andnon-equispaced points .

From their paper... “it seems to be perfectly stable in practice”... butnothing was proved about its stability.

The Lebesgue constant measures the stability of an interpolation process.

FHRI is also on Numerical Recepies, section 3.4.1

Aim

What’s about the growth of the Lebesgue constants for the FHRI?

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 3 / 47

Page 4: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Motivations

Known things and aim

Known

Michael S. Floater and Kai Hormann, Barycentric rational interpolation withno poles and high rates of approximation, Numer. Math. 107(2) (2007),315–331.

Floater and Hormann rational interpolants, FHRI, is a family of rationalinterpolants that perform rational interpolations on equispaced andnon-equispaced points .

From their paper... “it seems to be perfectly stable in practice”... butnothing was proved about its stability.

The Lebesgue constant measures the stability of an interpolation process.

FHRI is also on Numerical Recepies, section 3.4.1

Aim

What’s about the growth of the Lebesgue constants for the FHRI?

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 3 / 47

Page 5: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Lagrange form of the interpolant

Given a function f : [a, b]→ R, let g be its interpolant at the n + 1 (equispaced)interpolation points

a = x0 < x1 < · · · < xn = b.

Given a set of basis functions bi which satisfy the Lagrange property

bi (xj) = δij =

{1, if i = j ,

0, if i 6= j ,

the interpolant g can be written as g(x) =n∑

i=0

bi (x)f (xi ) =n∑

i=0

bi (x)yi .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 4 / 47

Page 6: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Barycentric form of the interpolant

Interpolation of 2 data points x0, x1,

g(x) =

∑1i=0 λi (x)yi∑1i=0 λi (x)

, λi (x) =(−1)i

x − xii = 0, 1

and

bi (x) =λi (x)∑1i=0 λi (x)

.

Interpolation of n + 1 data points

g(x) =

∑ni=0 λi (x)yi∑ni=0 λi (x)

, λi (x) =(−1)i

(x − xi ).

n∑i=0

λi (x) =1

x − x0︸ ︷︷ ︸>0

+−1

x − x1+

1

x − x2︸ ︷︷ ︸>0

+−1

x − x3+ · · ·︸ ︷︷ ︸

>0

x0 < x < x1

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 5 / 47

Page 7: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Barycentric form of the interpolant

Interpolation of 2 data points x0, x1,

g(x) =

∑1i=0 λi (x)yi∑1i=0 λi (x)

, λi (x) =(−1)i

x − xii = 0, 1

and

bi (x) =λi (x)∑1i=0 λi (x)

.

Interpolation of n + 1 data points

g(x) =

∑ni=0 λi (x)yi∑ni=0 λi (x)

, λi (x) =(−1)i

(x − xi ).

n∑i=0

λi (x) =1

x − x0︸ ︷︷ ︸>0

+−1

x − x1+

1

x − x2︸ ︷︷ ︸>0

+−1

x − x3+ · · ·︸ ︷︷ ︸

>0

x0 < x < x1

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 5 / 47

Page 8: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

Let 0 ≤ d ≤ n.

For each i = 0, 1, . . . , n− d let pi denote the unique polynomial of degree atmost d that interpolates a function f at d + 1 pts xi , . . . , xi+d

Then

g(x) =

n−d∑i=0

λi (x)pi (x)

n−d∑i=0

λi (x)

(1)

where λi (x) =(−1)i

(x − xi ) · · · (x − xi+d).

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 6 / 47

Page 9: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

Let 0 ≤ d ≤ n.

For each i = 0, 1, . . . , n− d let pi denote the unique polynomial of degree atmost d that interpolates a function f at d + 1 pts xi , . . . , xi+d

Then

g(x) =

n−d∑i=0

λi (x)pi (x)

n−d∑i=0

λi (x)

(1)

where λi (x) =(−1)i

(x − xi ) · · · (x − xi+d).

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 6 / 47

Page 10: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Basis functions

Assume [a, b] = [0, 1] and equispaced interpolation pts xi = i/n, i = 0, . . . , n.

As basis functions we take

bi (x) =(−1)iβix − xi

/ n∑j=0

(−1)jβjx − xj

, i = 0, . . . , n (2)

with β0, . . . , βn positive weights defined as

βj =

∑j

k=0

(dk

), if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 7 / 47

Page 11: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Basis functions

Assume [a, b] = [0, 1] and equispaced interpolation pts xi = i/n, i = 0, . . . , n.As basis functions we take

bi (x) =(−1)iβix − xi

/ n∑j=0

(−1)jβjx − xj

, i = 0, . . . , n (2)

with β0, . . . , βn positive weights defined as

βj =

∑j

k=0

(dk

), if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 7 / 47

Page 12: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

The weights βs

d = 0† 1, 1, . . . , 1, 1

d = 1‡ 1, 2, 2 . . . , 2, 2, 1

d = 2 1, 3, 4, 4, . . . , 4, 4, 3, 1

d = 3 1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1

d = 4 1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1

†Berrut’s rational interpolant‡d ≥ 1 Floater-Hormann’s rational interpolant

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 8 / 47

Page 13: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Some plots of the basis functions

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 9 / 47

Page 14: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Basis functions

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 10 / 47

Page 15: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Interpolation

Figure: FHRI compared with a cubic spline on 11 equispaced points for thefunction |x |, x ∈ [−1, 1]

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 11 / 47

Page 16: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Properties of the FHRI (cf. [FH, NumMath2007])

1. The FHRI can be written in barycentric form.

Indeed, in (1), letting wi = (−1)iβi , for the numerator we have

n−d∑i=0

λi (x)pi (x) =n∑

k=0

wk

x − xkf (xk)

where

wk =∑i∈Ik

(−1)ii+d∏

j 6=k,j=i

1

xk − xj

Ik = {i ∈ J, k − d ≤ i ≤ k}, J := {0, ..., n − d}.Similarly for the denominator

n−d∑i=0

λi (x) =n∑

k=0

wk

x − xk

It is a rational function of degree (n,n-d)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 12 / 47

Page 17: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The interpolant

Properties of the FHRI (continue)

2. The rational interpolant g(x) has no real poles. For d = 0 was proved byBerrut in 1998.

3. The interpolant reproduces polynomials of degree at most d , while does notreproduce rational functions (like Runge function)

4. Approximation error order O(hd+1) (for f ∈ Cd+2[0, 1]), also fornon-equispaced points.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 13 / 47

Page 18: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Lebesgue constant when d = 0

Remember: when d = 0, βj = 1, ∀j .We will derive upper and lower bounds for the Lebesgue function

Λn(x) =n∑

i=0

|bi (x)| =n∑

i=0

βi|x − xi |

/∣∣∣∣ n∑j=0

(−1)jβjx − xj

∣∣∣∣. (4)

so that we can estimate

Λ = maxx∈[0,1]

Λn(x) (Lebesgue constant) .

Theorem (BDeMH, JCAM11)

For any n ≥ 1, we have

cn log(n + 1) ≤ Λ ≤ 2 + log(n).

where cn = 2n/(4 + nπ) (limn→∞ cn = 2/π).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 14 / 47

Page 19: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Lebesgue constant when d = 0

Remember: when d = 0, βj = 1, ∀j .We will derive upper and lower bounds for the Lebesgue function

Λn(x) =n∑

i=0

|bi (x)| =n∑

i=0

βi|x − xi |

/∣∣∣∣ n∑j=0

(−1)jβjx − xj

∣∣∣∣. (4)

so that we can estimate

Λ = maxx∈[0,1]

Λn(x) (Lebesgue constant) .

Theorem (BDeMH, JCAM11)

For any n ≥ 1, we have

cn log(n + 1) ≤ Λ ≤ 2 + log(n).

where cn = 2n/(4 + nπ) (limn→∞ cn = 2/π).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 14 / 47

Page 20: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equallyspaced xj = jh = j · 1/n, j = 0, . . . , n.

Our goal is bounding below

Λn(x) =

n∑j=0

1

|x − j/n|∣∣∣∣∣n∑

j=0

(−1)j

x − j/n

∣∣∣∣∣=

n∑j=0

1

|2nx − 2j |∣∣∣∣∣n∑

j=0

(−1)j

2nx − 2j

∣∣∣∣∣:=

N(x)

D(x). (5)

by bounding N(x) from below and D(x) from above

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 15 / 47

Page 21: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equallyspaced xj = jh = j · 1/n, j = 0, . . . , n.Our goal is bounding below

Λn(x) =

n∑j=0

1

|x − j/n|∣∣∣∣∣n∑

j=0

(−1)j

x − j/n

∣∣∣∣∣=

n∑j=0

1

|2nx − 2j |∣∣∣∣∣n∑

j=0

(−1)j

2nx − 2j

∣∣∣∣∣:=

N(x)

D(x). (5)

by bounding N(x) from below and D(x) from above

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 15 / 47

Page 22: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

The Lebesgue function for d = 0 on equispaced points

Figure: Lebesgue functions on [0,1]: n=10 (11 pts) (left) and n=11 (right).The black and red signs indicate the points where the max is taken

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 16 / 47

Page 23: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: lower and upper bounds for N(x) and D(x)

Assume n = 2k and let x∗ = (n + 1)/2n = 1/2 + 1/(2n).

Bounds [JCAM2011]

N(x∗) ≥ 1

2(ln(2k + 3) + ln(2k + 1)) ≥ ln(2k + 1) = ln(n + 1)

D(x∗) ≤ π

2+

2

2k + 1=π

2+

2

n + 1.

Hence,

Λn(x∗) ≥ 2 ln(n + 1)

π + 4n+1

.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 17 / 47

Page 24: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: lower and upper bounds for N(x) and D(x)

Assume n = 2k and let x∗ = (n + 1)/2n = 1/2 + 1/(2n).

Bounds [JCAM2011]

N(x∗) ≥ 1

2(ln(2k + 3) + ln(2k + 1)) ≥ ln(2k + 1) = ln(n + 1)

D(x∗) ≤ π

2+

2

2k + 1=π

2+

2

n + 1.

Hence,

Λn(x∗) ≥ 2 ln(n + 1)

π + 4n+1

.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 17 / 47

Page 25: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0. Lower bound for Λ

The same is true when n is odd considering x∗ = 1/2, instead.

In summary, for any n ∈ N

Λ = max0≤x≤1

Λn(x) ≥ 2 ln(n + 1)

π + 4n+1

≥ 2 ln(n + 1)

π + 4n

= cn ln(n + 1) .

where cn = 2 n4+πn .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 18 / 47

Page 26: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0. Lower bound for Λ

The same is true when n is odd considering x∗ = 1/2, instead.

In summary, for any n ∈ N

Λ = max0≤x≤1

Λn(x) ≥ 2 ln(n + 1)

π + 4n+1

≥ 2 ln(n + 1)

π + 4n

= cn ln(n + 1) .

where cn = 2 n4+πn .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 18 / 47

Page 27: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: upper and lower bounds for N(x) and D(x)

Let xk < x < xk+1 for some k and let Nk(x) and Dk(x), N,D on the interval.

Bounds on the k-th interval [JCAM2011]

Nk(x) ≤ 1

n+

1

2nln(n)

Dk(x) ≥ 1

2n.

These bounds hold regardless the parity of n and k .

Combining the bounds fornumerator and denominator yields

Λ = maxk=0,...,n

(max

xk<x<xk+1

Λk(x)

)≤

1n + 1

2n log(n)12n

= 2 + log(n).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 19 / 47

Page 28: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

Case d = 0: upper and lower bounds for N(x) and D(x)

Let xk < x < xk+1 for some k and let Nk(x) and Dk(x), N,D on the interval.

Bounds on the k-th interval [JCAM2011]

Nk(x) ≤ 1

n+

1

2nln(n)

Dk(x) ≥ 1

2n.

These bounds hold regardless the parity of n and k . Combining the bounds fornumerator and denominator yields

Λ = maxk=0,...,n

(max

xk<x<xk+1

Λk(x)

)≤

1n + 1

2n log(n)12n

= 2 + log(n).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 19 / 47

Page 29: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d = 0

The Lebesgue constant for d = 0 on uniform pts

Figure: Lebesgue constant compared with its lower and upper bounds.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 20 / 47

Page 30: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

Lebesgue constant: case d ≥ 1

Notice that

βj ≤ 2d , ∀ j

For xk < x < xk+1 the numerator can be bound as follows

Nk(x) = (x − xk)(xk+1 − x)n∑

j=0

βj|x − xj |

≤ 2d(x − xk)(xk+1 − x)n∑

j=0

1

|x − xj |

≤ 2d

(1

n+

1

2nlog(n)

),

(6)

=⇒ that holds for any k .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 21 / 47

Page 31: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

Lebesgue constant: case d ≥ 1

Notice that

βj ≤ 2d , ∀ j

For xk < x < xk+1 the numerator can be bound as follows

Nk(x) = (x − xk)(xk+1 − x)n∑

j=0

βj|x − xj |

≤ 2d(x − xk)(xk+1 − x)n∑

j=0

1

|x − xj |

≤ 2d

(1

n+

1

2nlog(n)

),

(6)

=⇒ that holds for any k .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 21 / 47

Page 32: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

The denominator

Fundamental observation

(−1)jβj = wj d! hd (7)

Then,

Dk(x) = (x − xk)(xk+1 − x)

∣∣∣∣∣∣n∑

j=0

wj

x − xj

∣∣∣∣∣∣ d!hd .

Since [FH, NumerMath2007],

n∑j=0

wj

x − xj=

n−d∑i=0

λi (x) =⇒

∣∣∣∣∣∣n∑

j=0

wj

x − xj

∣∣∣∣∣∣ ≥ |λk(x)| .

Then,

Dk(x) = (x−xk)(xk+1−x)|λk(x)|d!hd =d!hd∏k+d

l=k+2(xl − x)≥ d!hd∏k+d

l=k+2(xl − xk)=

1

n.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 22 / 47

Page 33: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

The denominator

Fundamental observation

(−1)jβj = wj d! hd (7)

Then,

Dk(x) = (x − xk)(xk+1 − x)

∣∣∣∣∣∣n∑

j=0

wj

x − xj

∣∣∣∣∣∣ d!hd .

Since [FH, NumerMath2007],

n∑j=0

wj

x − xj=

n−d∑i=0

λi (x) =⇒

∣∣∣∣∣∣n∑

j=0

wj

x − xj

∣∣∣∣∣∣ ≥ |λk(x)| .

Then,

Dk(x) = (x−xk)(xk+1−x)|λk(x)|d!hd =d!hd∏k+d

l=k+2(xl − x)≥ d!hd∏k+d

l=k+2(xl − xk)=

1

n.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 22 / 47

Page 34: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

The lower bound

Theorem (Klein, Dec. 2010)

Let d ≥ 2 then,

Λ ≥ (2d + 1)!!

4(d + 1)!log(nd− 1).

Theorem (Bos, Dec. 2010)

Let d ≥ 1 then,

Λ ≥ 2

πlog(n + 2− 2d).

Note: this latter is better for d = 1.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 23 / 47

Page 35: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant The case d ≥ 1

The Lebesgue constant bounds for d ≥ 1

Theorem

Let d > 1 Then,

(2d + 1)!!

4(d + 1)!log( nd− 1)≤ Λ ≤ 2d−1(2 + log(n)

).

while for d = 12

πlog(n) ≤ Λ ≤ 2 + log(n).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 24 / 47

Page 36: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant Numerical results

Lebesgue functions

Figure: Lebesgue function for d = 1 (left) and d = 3 (right).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 25 / 47

Page 37: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant Numerical results

Lebesgue constants growth: I

Figure: Lebesgue constant growth d = 1 (left) and d = 3 (right).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 26 / 47

Page 38: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

The Lebesgue Constant Numerical results

Lebesgue constant growth: II

Figure: Lebesgue constant growth d = 8 (left) and d = 16 (right).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 27 / 47

Page 39: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Quasi-equispaced case

Quasi-equidistant nodes

Equispaced nodes perturbed by a randomly chosen δ ∈ (0, 1/2), that is

xj = j + δj , j = 0, . . . , n .

We also assume that there exist M ≥ 1 (independent on n) s.t. seth := max0≤j≤n−1(xj+1 − xj) and h∗ := min0≤j≤n−1(xj+1 − xj) then

h

h∗≤ M .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 28 / 47

Page 40: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Quasi-equispaced case

Quasi-equidistant nodes

Lemma (Bounds on the weights, HKDeM2012)

Wk ≤ |wk | ≤ MdWk

where

Wk =1

hdd!

∑i∈Jk

(d

k − i

), k = 0, 1, . . . , n

Moreover

Wk ≤2d

hdd!:= W

with equality iff d ≤ k ≤ n − d .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 29 / 47

Page 41: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Quasi-equispaced case

Quasi-equidistant nodes

Theorem (Bounds on the Λn, HKDeM2012)

Λn ≥1

2d+2Md+1

(2d + 1

d

(2 + log(2n + 1)) d=0

log( nd − 1) d ≥ 1

Λn ≤ (2 + M log(n)) ·

34M, d=0

2d−1Md , d ≥ 1

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 30 / 47

Page 42: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Quasi-equispaced case

Lebesgue functions for quasi-equidistant points

Figure: Lebesgue functions for 30 quasi-equidistant points perturbed at first,central, 5th and central points respectively, for d = 2

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 31 / 47

Page 43: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Definition

The set X = (Xn)n≥0 is a family of well-spaced nodes, if there exist R,C ≥ 1(independent on n) so that

xk+1 − xkxk+1 − xj

≤ C

k + 1− j, j = 0, ..., k k = 0, ..., n − 1,

xk+1 − xkxj − xk

≤ C

j − k, j = k + 1, ..., n k = 0, ..., n − 1,

1

R≤ xk+1 − xk

xk − xk−1≤ R, k = 1, ..., n − 1,

hold for each set Xn.

Note. When the nodes are equispaced R = C = 1. The definition include alsoChebyshev and extended Chebyshev nodes.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 32 / 47

Page 44: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Lebesgue constant growth for d = 0

Theorem (Bounds on the Λ and d = 0, BDeMHS2013)

If X = (Xn)n≥0 is a family of well-spaced nodes then

Λ(Xn) ≤ (R + 1)(1 + 2C log(n)) = c log(n), n ≥ 2 .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 33 / 47

Page 45: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

How to get well-spaced nodes?

Definition

We say that a function F ∈ C[0, 1] is a distribution function if it is a strictlyincreasing bijection on the interval [0, 1]

Given F we may associate the node sets

xk := F (k/n), k = 0, . . . , n .

=⇒ To generate points that realize the bound of the previous Theorem, F has tobe as follows

Definition

We say that a distribution is regular, if F ∈ C′[0, 1] and F ′ has a finite number ofzeros T = {t1, . . . , tl} ⊂ [0, 1] with finite multiplicities.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 34 / 47

Page 46: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

How to get well-spaced nodes?

Definition

We say that a function F ∈ C[0, 1] is a distribution function if it is a strictlyincreasing bijection on the interval [0, 1]

Given F we may associate the node sets

xk := F (k/n), k = 0, . . . , n .

=⇒ To generate points that realize the bound of the previous Theorem, F has tobe as follows

Definition

We say that a distribution is regular, if F ∈ C′[0, 1] and F ′ has a finite number ofzeros T = {t1, . . . , tl} ⊂ [0, 1] with finite multiplicities.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 34 / 47

Page 47: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

How to get well-spaced nodes?

Definition

We say that a function F ∈ C[0, 1] is a distribution function if it is a strictlyincreasing bijection on the interval [0, 1]

Given F we may associate the node sets

xk := F (k/n), k = 0, . . . , n .

=⇒ To generate points that realize the bound of the previous Theorem, F has tobe as follows

Definition

We say that a distribution is regular, if F ∈ C′[0, 1] and F ′ has a finite number ofzeros T = {t1, . . . , tl} ⊂ [0, 1] with finite multiplicities.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 34 / 47

Page 48: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Properties of regular distributions

Proposition

Let F be a regular distribution function. Then there exists a constant C > 0 suchthat

F [x , y ]

F [x , z ]≤ C

for all x , y , z ∈ [0, 1] s.t. x > y ≥ z .

Proposition

Let F be a regular distribution function. Then there exist an ε > 0 and R > 0such that

1

R≤ F [x , x + s]

F [x − s, x ]≤ R

for all s ∈ [0, ε] and x ∈ [s, 1− s].

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 35 / 47

Page 49: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Examples of regular distributions

1 F1(x) = x , that generates equispaced points.

2 F2(x) = log(1 + x(e − 1)), that generates logarithmically distributed points.Note that F2 is regular since F ′2 > 0.

3 F3(x) = (1− cos(πx))/2, that is regular since F ′3 has 2 simple zeros atx1 = 0, x2 = 1. This generates the Chebyshev extrema (orChebyshev-Lobatto points) mapped in [0, 1].

In this case, for δ = 1/2, ε = 1/4, we get C = 2π and R = 9π/2 and

Λ(Xn) ≤ (9π/2 + 1)(1 + 4π log(n))) .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 36 / 47

Page 50: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Non-regular distributions

1

F4(x) =

{0 x = 0exp(1− 1/x) 0 < x ≤ 1

which is non-regular since C∞ at x = 0

2

F5(x) =1

2

1− exp(1 + 1/(2x − 1)) 0 ≤ x < 1/21 x = 1/21 + exp(1− 1/(2x − 1)) 1/2 ≤ x ≤ 1

F ′(x) = 0 in x = 1/2 with infinite multiplicity.

The last is non regular for odd n while for even n seems to growthlogaritmically

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 37 / 47

Page 51: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Other non-regular nodes

We can also verify directly if a given family of nodes is well-spaced even if it isnot generated by a distribution.Extended Chebyshev nodes (on [0,1])

xk =1

2

1−cos(

2k+12n+2π

)cos(

π2n+2

) , k = 0, . . . , n

Proposition

For extended Chebyshev nodes we have

xk+1 − xkxk+1 − xj

≤ π2/2

k + 1− j, j = 0, . . . , k, k = 0, . . . , n − 1, ∀n .

1

2≤ xk+1 − xk

xk − xk−1≤ 2, k = 0, . . . , n − 1, ∀n .

=⇒ they satisfy the Definition of well-spaceness with C = π2/2 and R = 2

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 38 / 47

Page 52: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Other non-regular nodes

We can also verify directly if a given family of nodes is well-spaced even if it isnot generated by a distribution.Extended Chebyshev nodes (on [0,1])

xk =1

2

1−cos(

2k+12n+2π

)cos(

π2n+2

) , k = 0, . . . , n

Proposition

For extended Chebyshev nodes we have

xk+1 − xkxk+1 − xj

≤ π2/2

k + 1− j, j = 0, . . . , k , k = 0, . . . , n − 1, ∀n .

1

2≤ xk+1 − xk

xk − xk−1≤ 2, k = 0, . . . , n − 1, ∀n .

=⇒ they satisfy the Definition of well-spaceness with C = π2/2 and R = 2

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 38 / 47

Page 53: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

Well-spaced nodes

Lebesgue constant growth for EC nodes

Figure: Lebesgue constant for Berrut’s rational interpolant at n + 1 extendedChebyshev nodes for n = 1, . . . , 50.

giving the boundΛ(Xn) ≤ 3 + 3π2 log(n) .

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 39 / 47

Page 54: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

Numerical quadrature

On I = [−1, 1]

1 we computed integrals with the quadrature based on the FHRI, onequispaced points at different values of n and d

2 to speed up the quadrature, the quadrature weights were computed by aGaussian quadrature rule (Gautschi software in Matlab)

3 For d = 0 we have proven that [BDeM, EJA2011]

(a) bi (x) = sinc(n(x − xi )) normalized so that∑

i bi (x) = 1(b)

limn→∞

nαi = 1, αi =

∫ 1

0

bi (x)dx .

that is the quadrature process asymptotically converges.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 40 / 47

Page 55: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

Numerical quadrature

On I = [−1, 1]

1 we computed integrals with the quadrature based on the FHRI, onequispaced points at different values of n and d

2 to speed up the quadrature, the quadrature weights were computed by aGaussian quadrature rule (Gautschi software in Matlab)

3 For d = 0 we have proven that [BDeM, EJA2011]

(a) bi (x) = sinc(n(x − xi )) normalized so that∑

i bi (x) = 1(b)

limn→∞

nαi = 1, αi =

∫ 1

0

bi (x)dx .

that is the quadrature process asymptotically converges.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 40 / 47

Page 56: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

Numerical quadrature

On I = [−1, 1]

1 we computed integrals with the quadrature based on the FHRI, onequispaced points at different values of n and d

2 to speed up the quadrature, the quadrature weights were computed by aGaussian quadrature rule (Gautschi software in Matlab)

3 For d = 0 we have proven that [BDeM, EJA2011]

(a) bi (x) = sinc(n(x − xi )) normalized so that∑

i bi (x) = 1(b)

limn→∞

nαi = 1, αi =

∫ 1

0

bi (x)dx .

that is the quadrature process asymptotically converges.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 40 / 47

Page 57: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

bi e sinc

Figure: Comparison of bn−1 and sinc(n(x − xn−1)) for n = 10

err = 0.0101nw =(0.4899,1.1007, 0.9388,1.0475,0.9582,1.0402,0.9582,1.0475,0.9388,1.1007,0.4899)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 41 / 47

Page 58: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

Numerical quadrature

The table below shows the quadrature relative errors for d = 0 (left) and d = 3(right) at different n, for the Runge function. errS=quadrature relative error byusing cubic splines

n err (d=0) err (d=3) errS10 3.5e-3 1.1e-2 7.2e-330 1.1e-4 1.6e-6 5.9e-550 7.6e-6 2.6e-8 3.2e-7100 3.6e-7 7.9e-10 2.4e-8150 4.9e-7 1.0e-10 1.5e-9200 5.4e-7 2.4e-11 6.4e-11

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 42 / 47

Page 59: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

Numerical quadrature: an open problem

About the quadrature weights: Klein and Berrut have proven numerically that theweights are all positive at least for d ≤ n ≤ 1250 and 0 ≤ d ≤ 5. For other valuesof d and n, there might be a few negative weights, the number of which increasesslowly with d and n.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 43 / 47

Page 60: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

An application

A Matlab package

C. Bandiziol in her degree thesis (University of Padova, Feb. 2015) haveorganized all these results and applications in a Matlab package (to be availablesoon) that allows

Compute FHRI

Compute the Lebesgue constants

Compute integrals by the Direct and Indirect Rational Quadrature method(BK, BIT 2012)

Compute the Least-Square approximation by the FHRI

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 44 / 47

Page 61: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

References and announcement

References

1 J.-P. Berrut and H. D. Mittelmann, Lebesgue Constant Minimizing Linear Rational Interpolation of ContinuousFunctions over the Interval, Computers Math. Appl. 33(6) (1997), 77–86.

2 J.-P. Berrut. Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput.Math. Appl., 15(1) (1988), 1–16.

3 Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no poles and high rates of approximation,Numer. Math. 107(2) (2007), 315–331.

4 L. Bos, S. De Marchi and K. Hormann, On the Lebesgue constant of Berrut’s rational interpolant at equidistant nodes ,J. Comput. Appl. Math. 236 (2011), pp. 504–510.

5 L. Bos, S. De Marchi, K. Hormann and G. Klein, On the Lebesgue constant of barycentric rational interpolation atequidistant nodes, Numer. Math. 121(3) (2012), 461-471.

6 K. Hormann, G. Klein,S. De Marchi, Barycentric rational interpolation at quasi-equidistant nodes Dolomites ResearchNotes Approx, Vol 5 (2012), 1–6.

7 L. Bos, S. De Marchi, K. Hormann and J. Sidon, Bounding the Lebesgue constant of Berrut’s rational interpolant atgeneral nodes J. Approx. Theory Vol. 169 (2013), 7–22.

8 Cinzia Bandiziol, Interpolante di Floater-Hormann e sue applicazioni, degree thesis - University of Padova (2015), withsoftware in Matlab.

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 45 / 47

Page 62: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

References and announcement

4th Dolomites Workshop on Constructive Approximation and ApplicationsAlba di Canazei, 8-13 September 2016http://events.math.unipd.it/dwcaa16/

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 46 / 47

Page 63: On the Lebesgue constant of the Floater-Hormann rational ...demarchi/Slides/slidesFribourg2015.pdf · Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no

References and announcement

THANK YOUFOR YOUR KIND ATTENTION

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 47 / 47