on the following slides, the yellow sections identify the main points; underlined words =...

24
UNIT 12 - BIOTECHNOLOGY On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing Maggie Bartlett, NHGRI

Upload: clinton-green

Post on 27-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

UNIT 12 - BIOTECHNOLOGY

On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange.

Preparation for DNA sequencingMaggie Bartlett, NHGRI

Page 2: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Biotechnological advances in recent years has led to an increase in our understanding of genes and improve our ability to move and manipulate genetic information in an organism. High tech equipment allows researchers to do amazing things! This unit will discuss biotechnologies such as gene splicing, cloning and review equipment and careers relating to this growing field of medical science.

NHGRI researcher using a pipette to load DNA into a gel.Maggie Bartlett, NHGRI

BACKGROUND

Page 3: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

DNA Fingerprinting Used in law enforcement (and as seen

on CSI), DNA fingerprinting compares the separation of segments of DNA to find a match.

http://www.teacherthomas.com/wp-content/uploads/2010/03/GelElectrophoresis.gif

The DNA is cut into fragments by enzymes and separated by a process called gel electrophoresis to match individuals (to a crime or family member).

The patterns, like fingerprints, are individual and unique.

Video

Page 4: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Genetic Engineering

Scientists have the can now cut ‘n paste genes in DNA. EX When a gene of a firefly is

inserted into a tobacco plant, the tobacco plant will produce the proteins to glow.

Genetic engineering is the ability cut (or cleave) DNA from one organism and insert in to the DNA of another organism (of the same species or a different species).

http://upload.wikimedia.org/wikipedia/en/8/80/Glowing_tobacco_plant.jpg

Page 5: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

What is Recombinant DNA? Recombinant DNA is

made by recombining fragments of DNA from different sources.

Such technology creates organisms that contain DNA from another organism, creating a transgenic organism. [AKA genetically modified

organism, GMO] EX modified tobacco plant

"Genetically modified organisms (GMO)." Biotechnology: Changing Life Through Science. Detroit: U*X*L, 2010. Science in Context. Web. 22 Jan. 2014.

Page 6: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

How do you Produce a Transgenic Organism?

http://fhs-bio-wiki.pbworks.com/f/1267556976/plantplasmidtechn.jpg

#1

• Isolate the foreign gene of interest using restriction enzymes to cut DNA at specific points Animation

#2

• Attach the DNA fragment to a carrier (AKA vector) [A vector, such as a virus or needle, is used to move the genes]

#3• Transfer it to a host

organism

Page 7: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

How do Restriction Enzymes Work?

Restriction enzymes are bacterial enzymes that have the ability to cut both strands of the DNA molecule at a specific nucleotide sequence. Typically palindromic

sequences (EX AATT and TTAA)

(Psst: palindrome- reads the same forwards as backwards; “race car”)

http://www.ptbeach.com/cms/lib02/NJ01000839/Centricity/Domain/113/en.gif

Page 8: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Restriction Enzymes Cont.

If the same enzyme is used to cleave DNA from BOTH organisms, the two pieces of DNA will have matching sticky ends and will join together at these ends [they will join together again based on the GCAT rule].

http://snhs-plin.barry.edu/cell-biology-lab/Restriction_Digest_MIT_Lippert_files/100000000000052F000003E8CBEA8CE5.jpg

Page 9: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

What are Vectors? A vector is the means by which DNA from

another species can be carried into the host cell.

Vectors can be biological [EX Virus or plasmid] or mechanical [EX micropipette shown below].

IVF treatment sperm being injected into an egg. Photograph: Getty Images/Science Photo Library RF

Page 10: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Vectors Cont. Plasmids are small rings of DNA found in

prokaryotes are used as vectors to carry the DNA from one organism to another.

Video

http://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Plasmid_(english).svg/300px-Plasmid_(english).svg.png

Page 11: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Knowledge CheckThe diagram below shows the steps involved in inserting recombinant DNA in to an organism. How can the diagram help us visualize the steps in making a transgenic organism? What is the vector in the diagram? What is the host organism? Turn and talk to your neighbor.

Page 12: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

"Recombinant DNA Technology." Biotechnology: Changing Life Through Science. Vol. 2: Agriculture. Detroit: U*X*L, 2007. 468-472. Gale Virtual Reference Library. Web. 9 Jan. 2013.

How recombinant DNA is used to create a

variety of end products, from

genetically engineered plants to drugs to specialized

bacteria.

Illustration by GGS Inc. 

Page 13: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

What is PCR?

Using Polymerase Chain Reaction machine (PCR) – lab technicians can make millions of copies of DNA outside of living organisms.

Heat is used to separate the DNA and an enzyme (DNA polymerase) replicates the DNA [just as it would inside the nucleus]. The both genetic material and

appropriate enzymes are added to a PCR machine.

Millions of copies [clones] are made in less than a day.

Video

http://www.genomics.agilent.com/files/Media/8800_withHelix.jpg

Page 14: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

What is a Clone?

A clone is an exact genetic copy of an organism. In 1958: cloned carrot. In 1964: cloned frog tadpole. In 1997, scientists cloned the

first mammal, Dolly the sheep.

Since then, they have successfully cloned other mammals [goats, mice, cattle, pigs, a horse].

Dr. Hinrichs, a veterinarian and professor at Texas A&M University and Eric Palmer, Chairman of Cryozootech posing with Paris Texas, the first cloned horse in the United States from adult horse skin cells.

"Cloned Horse in United States." Gale Opposing Viewpoints in Context. Detroit: Gale, 2010. Gale Opposing Viewpoints In

Context. Web. 11 Jan. 2013.

Page 15: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Cloning & Somatic Cell Nuclear Transfer

In somatic cell nuclear transfer, the genetic material from a donor cell is inserted into a nucleus-free egg.

The egg is stimulated to initiate cell division and then transferred in to a surrogate to “clone” the organism. With Dolly, genetic material was introduced into 277

eggs and only 29 cells remained alive. In 2008: San Diego-based Stemagen announced the

formation of embryonic cells after the transfer of nuclei from human skin cells into “empty” human eggs.

Animation

Page 16: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

htt

p:/

/ww

w.p

rolif

elo

uis

iana.o

rg/u

plo

ad

s/im

ag

es/

Nucl

ear-Tr

ansf

er.jp

g

Page 17: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Human Cloning Cloning organisms,

while controversial, but is not as controversial as the thought of human cloning.

There are some who argue that cloning is “unnatural”, while others cite cloning as a useful tool for medicine.

Human Cloning Article

The first cloned cat, named "cc," (short for "copycat") is proudly displayed by doctors Mark Westhusin (right) and Tae Young (left) of the College of Veterinary Medicine at Texas A&M University on Febuary 8, 2002.  

Page 18: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Human Cloning Cont. Therapeutic cloning is one type of cloning

that does not intend to create a human being, but only to use the cells derived from the nuclear transfer to harvest stem cells [destroys the embryo <14 days old]. Embryonic stem cells were first isolated from mouse

embryos in the 1980s. Human embryonic stem cells were not isolated until

1998. 

Page 19: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

What is a Stem Cell? Stem cells are

undifferentiated (pluripotent) cells [capable of differentiation] that can develop in to more specialized cells; two types: Embryonic: from the

inner cell mass of an embryo [blastocyst stage - 4 days post fertilization] 

Somatic: more rare, have been found in cord blood, bone marrow, brain, eyes, muscle, among others; often fail to survive outside of the body

Karim Si-Tayeb changes media for stem cells while working in the Duncan lab, where they are producing and maintaining induced pluripotent stem cells (iPS) and embryonic stem cells (ES), 2008. Rick Wood/McClatchy-Tribune Photos.

Page 20: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

http://stemcells.nih.gov/info/basics/pages/basics6.aspx

Page 21: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Stem Cells Cont. Stem cells have proposed applications –

1. Study human development2. Study new medications [rather than

testing animals or humans]3. Cell therapies [EX using stem cells to

repair ailing organs, treating diseases including Alzheimer's, strokes, spinal cord injuries]

Video - Controversy Video Video - Stem Cell Therapy

htt

p:/

/new

sblo

g.m

ayocl

inic

.org

/20

12

/11

/29

/ste

m-c

ell-

10

1-m

ayo-c

linic

-exp

ert

-answ

ers

-co

mm

only

-ask

ed

-quest

ions/

Page 22: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

"Public opinion about embryonic stem cell research, 2001-10." Genetics and Genetic Engineering. Barbara Wexler. 2011 ed. Detroit: Gale, 2010. Information Plus Reference Series. Gale Opposing

Viewpoints In Context. Web. 22 Jan. 2013.

Page 23: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

“In the 1980s, studies on monkeys and rats showed that when fetal brain tissue rich in stem cells was implanted into the brains of diseased animals, there was a regeneration of functional brain cells and a reduction or elimination the symptoms of the disease.” "Stem Cells."

Embryonic stem cells (ESCs) are shown using a colored

scanning electron micrograph (SEM). Research using ESCs is controversial as it requires the

destruction of an embryo. Magnification: x3000 when

printed at 10 centimeters wide.

© Steve Gschmeissner/SPL/Getty

Images.

htt

p:/

/ic.

gale

gro

up

.com

/ic/

scic

/Im

ag

esD

eta

ilsPa

ge/I

mag

esD

eta

ilsW

ind

ow

?tota

l=1

5&

query

=B

S+

stem

+ce

lls&

pro

dI

d=

SC

IC&

win

dow

state

=norm

al&

mod

e=

vie

w&

limit

er=

AC

+y&

dis

pla

yG

roup

Nam

e=

Imag

es&

curr

Pag

e=

1&

sort

By=

rele

vance

%2

Cd

esc

end

ing

&act

ion=

e&

catI

d=

&vie

w=

docD

isp

lay&

docu

mentI

d=

GA

LE%

7C

PC

42

05

13

67

72

Page 24: On the following slides, the yellow sections identify the main points; Underlined words = vocabulary! Hyperlinks are in orange. Preparation for DNA sequencing

Citations"Clone and Cloning." The Gale Encyclopedia of Science. Ed. K. Lee Lerner and Brenda Wilmoth

Lerner. 4th ed. Vol. 2. Detroit: Gale, 2008. 959-962. Gale Virtual Reference Library. Web. 21 Jan. 2013.

"Cloning, Human." Biotechnology: Changing Life Through Science. Vol. 1: Medicine. Detroit: U*X*L, 2007. 65-69.Gale Virtual Reference Library. Web. 22 Jan. 2013.

"Embryonic stem cells." Biotechnology: In Context. Ed. Brenda Wilmoth Lerner and K. Lee Lerner. Detroit: Gale, 2012. In Context Series. Gale Science In Context. Web. 22 Jan. 2013.

"Introduction to Should the Government Fund Embryonic Stem Cell Research?: At Issue." Should the Government Fund Embryonic Stem Cell Research? Ed. Amy Francis. Detroit: Greenhaven Press, 2009. At Issue. Gale Opposing Viewpoints In Context. Web. 22 Jan. 2013.

"Public opinion about embryonic stem cell research, 2001-10." Genetics and Genetic Engineering. Barbara Wexler. 2011 ed. Detroit: Gale, 2010. Information Plus Reference Series. Gale Opposing Viewpoints In Context. Web. 22 Jan. 2013.

"Stem Cell Research." MCT Photos. McClatchy-Tribune Information Services, 2010.Gale Opposing Viewpoints In Context. Web. 22 Jan. 2013.

"Stem Cells." The Gale Encyclopedia of Science. Ed. K. Lee Lerner and Brenda Wilmoth Lerner. 4th ed. Vol. 5. Detroit: Gale, 2008. 4162-4164. Gale Virtual Reference Library. Web. 22 Jan. 2013.

"Therapeutic Cloning." Biotechnology: Changing Life Through Science. Vol. 1: Medicine. Detroit: U*X*L, 2007. 267-270. Gale Virtual Reference Library. Web. 22 Jan. 2013.

"Wanted: Neanderthal Clone Baby Geneticist Seeks Adventurous Surrogate Mother." International Business Times - US ed. 21 Jan. 2013.Infotrac Newsstand. Web. 22 Jan. 2013.

De Stasio, Elizabeth A. "Cloning Organisms." Genetics. Ed. Richard Robinson. Vol. 1. New York: Macmillan Reference USA, 2003. 161-165. Gale Virtual Reference Library. Web. 22 Jan. 2013.

Hoyle, Brian Douglas. "Stem Cell Cloning." Biotechnology: In Context. Ed. Brenda Wilmoth Lerner and K. Lee Lerner. Detroit: Gale, 2012. In Context Series. Gale Science In Context. Web. 21 Jan. 2013.

Lewis, Ricki. "Cloning: Ethical Issues." Genetics. Ed. Richard Robinson. Vol. 1. New York: Macmillan Reference USA, 2003. 158-161. Gale Virtual Reference Library. Web. 22 Jan. 2013.

Magner, Lois N., Stephanie Watson, and Elaine Wacholtz. "At this stage of our knowledge, are claims that therapeutic cloning could be the cure for diseases such as diabetes and Parkinson's premature and misleading." Science in Dispute. Vol. 2. Detroit: Gale, 2002. 227-236. Gale Virtual Reference Library. Web. 22 Jan. 2013.

McGee, Glenn. "Human Cloning." Encyclopedia of Science, Technology, and Ethics. Ed. Carl Mitcham. Vol. 2. Detroit: Macmillan Reference USA, 2005. 938-942. Gale Virtual Reference Library. Web. 22 Jan. 2013.