on the expected values of the sample maximum of order statistics from a discrete uniform...

6
On the expected values of the sample maximum of order statistics from a discrete uniform distribution Sinan C ß alik * , Mehmet Gungor Department of Mathematics, Firat University, 23119 Elazı g, Turkey Abstract In this paper, the expected values of the sample maximum of order statistics from a discrete uniform distribution are given by using the sum SðN 1; nÞ. For n up to 15, algebraic expressions for the expected values are obtained. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Order statistics; Sum; Discrete uniform distribution; Expected values 1. Introduction Let X 1 ; X 2 ; ... ; X n be a random sample of size n from a discrete distributions with probability mass function pðxÞ (x ¼ 0; 1; 2; ...) and cumulative distribu- tion function P ðxÞ, and let X 1:n 6 X 2:n 6 6 X n:n be the order statistics ob- tained from the above sample. Let us denote the expected values EðX r:n Þ by l ð1Þ r:n (1 6 r 6 n). For convenience, let us denote l ð1Þ r:n simply by l r:n . In this paper, the expected values of the sample maximum of order statistics from a discrete uniform distribution are given by using the sum S ðN 1; nÞ as given in (5.1). For n up to 15, algebraic expressions for the expected values are obtained. * Corresponding author. E-mail address: scalik@firat.edu.tr (S. C ß alik). 0096-3003/$ - see front matter Ó 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2003.08.056 Applied Mathematics and Computation 157 (2004) 695–700 www.elsevier.com/locate/amc

Upload: sinan-calik

Post on 26-Jun-2016

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

Applied Mathematics and Computation 157 (2004) 695–700

www.elsevier.com/locate/amc

On the expected values of the samplemaximum of order statistics

from a discrete uniform distribution

Sinan C�alik *, Mehmet G€ung€or

Department of Mathematics, Firat University, 23119 Elazı�g, Turkey

Abstract

In this paper, the expected values of the sample maximum of order statistics from a

discrete uniform distribution are given by using the sum SðN � 1; nÞ. For n up to 15,

algebraic expressions for the expected values are obtained.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Order statistics; Sum; Discrete uniform distribution; Expected values

1. Introduction

Let X1;X2; . . . ;Xn be a random sample of size n from a discrete distributions

with probability mass function pðxÞ (x ¼ 0; 1; 2; . . .) and cumulative distribu-

tion function P ðxÞ, and let X1:n 6X2:n 6 � � � 6Xn:n be the order statistics ob-

tained from the above sample. Let us denote the expected values EðXr:nÞ by lð1Þr:n

(16 r6 n). For convenience, let us denote lð1Þr:n simply by lr:n.

In this paper, the expected values of the sample maximum of order statistics

from a discrete uniform distribution are given by using the sum SðN � 1; nÞ as

given in (5.1). For n up to 15, algebraic expressions for the expected values areobtained.

* Corresponding author.

E-mail address: [email protected] (S. C�alik).

0096-3003/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2003.08.056

Page 2: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

696 S. C�alik, M. G€ung€or / Appl. Math. Comput. 157 (2004) 695–700

2. Marginal distributions of order statistics

Let Fr:nðxÞ (r ¼ 1; 2; . . . ; n) denote the cumulative distribution function (cdf)

of Xr:n. Then it is easy to see that

Fr:nðxÞ ¼ PfXr:n 6 xg¼ Pfat least r of X1;X2; . . . ;Xn are at most xg

¼Xn

i¼r

Pfexactly i of X1;X2; . . . ;Xn are at most xg

¼Xn

i¼r

ni

� �½PðxÞi½1 � P ðxÞn�i

¼Z PðxÞ

0

n!ðr � 1Þ!ðn� rÞ! t

r�1ð1 � tÞn�rdt ð2:1Þ

for �1 < x < 1.

For discrete population, the probability mass function (pmf) of Xr:n

(r ¼ 1; 2; . . . ; n) may be obtained from (2.1) by differencing as

fr:nðxÞ ¼ Fr:nðxÞ � Fr:nðx� 1Þ

¼ n!ðr � 1Þ!ðn� rÞ!

Z PðxÞ

Pðx�1Þtr�1ð1 � tÞn�r

dt; ð2:2Þ

see [2–4].

In particular, we also have

f1:nðxÞ ¼ f1 � P ðx� 1Þgn � f1 � P ðxÞgn

and

fn:nðxÞ ¼ fP ðxÞgn � fP ðx� 1Þgn:

3. Expected value of Xr:n

The mth raw moments of Xr:n can be immediately written down as

lðmÞr:n ¼

X1x¼0

xmfr:nðxÞ;

where fr:nðxÞ is as given in (2.2).

We can use the transformation Xr:n¼d F �1ðUr:nÞ to be express the expected

value of Xr:n as

Page 3: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

S. C�alik, M. G€ung€or / Appl. Math. Comput. 157 (2004) 695–700 697

lr:n ¼n!

ðr � 1Þ!ðn� rÞ!

Z 1

0

F �1ðuÞur�1ð1 � uÞn�rdu;

see [2]. However, since F �1ðuÞ does not have a nice from for most of the dis-

crete distributions, this approach is often impractical. When the support B is asubset of nonnegative integers, which is the case with several standard discrete

distributions, one can use the cdf Fr:nðxÞ directly to obtain the expected values

of Xr:n.

Theorem 3.1. Let B, the support of the distribution, be a subset of nonnegativeintegers. Then

lr�n ¼X1x¼0

1½ � Fr:nðxÞ ð3:1Þ

whenever the expected values on the left-hand side is assumed to exist.

Proof. Let us note that if lr:n exists, mPfXr�n > mg ! 0 as m ! 1. Now con-

sider

Xmx¼0

xfr:nðxÞ ¼Xmx¼0

x½PfXr:n > x� 1g � PfXr:n > xg

¼Xm�1

x¼0

½ðxþ 1Þ � xPfXr:n > xg � mPfXr:n > mg:

On letting m ! 1, we obtain

lr:n ¼ limm!1

Xm�1

x¼0

PfXr�n > xg ¼X1x¼0

½1 � Fr:nðxÞ;

which establishes (3.1). Thus, we obtain (3.1). h

These expected values are obtained by Khatri [6] and Arnold et al. [2].

4. Order statistics from a discrete uniform distribution

Let the population random variable X be discrete uniform with support

B ¼ f1; 2; . . . ;Ng. We then write, X is discrete uniform ½1;N . Note that its pmf

is given by pðxÞ ¼ 1N, and its cdf is P ðxÞ ¼ x

N, for x 2 B. Consequently the cdf of

the r-th order statistics is given by

Fr:nðxÞ ¼Xn

i¼r

ni

� �xN

� �i1

�� xN

�n�i; x 2 B:

Page 4: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

698 S. C�alik, M. G€ung€or / Appl. Math. Comput. 157 (2004) 695–700

5. Special sums

In the theory of nonparametric statistics, particularly when we deal with

rank sums, we often need for the sums of powers of the first n positive integers;

namely, expression for

SðN � 1; nÞ ¼ 1n þ 2n þ � � � þ ðN � 1Þn ¼XN�1

x¼0

xn ð5:1Þ

for n ¼ 0; 1; 2; . . . The following theorem, we provide a convenient way of

obtaining these sums.

Theorem 5.1

Xk�1

n¼0

kn

� �SðN � 1; nÞ ¼ Nk � 1

for any positive N and k (see, [5]).

A disadvantage of this theorem is that we have to find the sums SðN � 1; nÞone at a time, first for n ¼ 0, then n ¼ 1, then n ¼ 2 and so forth. For instance,

for k ¼ 1 we get

1

0

� �SðN � 1; 0Þ ¼ N � 1

and, hence, SðN � 1; 0Þ ¼ 10 þ 20 þ � � � þ ðN � 1Þ0 ¼ N � 1. Similarly, for

k ¼ 2 we get

2

0

� �SðN � 1; 0Þ þ 2

1

� �SðN � 1; 1Þ ¼ N 2 � 1;

N � 1 þ 2SðN � 1; 1Þ ¼ N 2 � 1

and, hence, SðN � 1; 1Þ ¼ 11 þ 21 þ � � � þ ðN � 1Þ1 ¼ 12ðN � 1ÞN . Using the

same technique, we can find the sums

SðN � 1; 2Þ ¼ 1

6ðN � 1ÞNð2N � 1Þ;

SðN � 1; 3Þ ¼ 1

4ðN � 1Þ2N 2 and so on:

Page 5: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

S. C�alik, M. G€ung€or / Appl. Math. Comput. 157 (2004) 695–700 699

6. The expected values of the sample maximum of order statistics

In general, (3.1) expected values are not easy to evaluate analytically.

Sometimes the moments of sample extremes are tractable. Let us see what

happens in the case of discrete uniform distribution.

When X is a discrete uniform ½1;N random variable in the case of the

sample maximum, (3.1) yields

Table 1

The expected values of the sample maximum of order statistics

n ln:n

0 1

1N þ 1

2

24N 2 þ 3N � 1

6N

33N 2 þ 2N � 1

4N

424N 4 þ 15N 3 � 10N 2 þ 1

30N 3

510N 4 þ 6N 3 � 5N 2 þ 1

12N 3

636N 6 þ 21N 5 � 21N 4 þ 7N 2 � 1

42N 5

721N 6 þ 12N 5 � 14N 4 þ 7N 2 � 2

24N 5

880N 8 þ 45N 7 � 60N 6 þ 42N 4 � 20N 2 þ 3

90N 7

918N 8 þ 10N 7 � 15N 6 þ 14N 4 � 10N 2 þ 3

20N 7

1060N 10 þ 33N 9 � 55N 8 þ 66N 6 � 66N 4 þ 33N 2 � 5

66N 9

1122N 10 þ 12N 9 � 22N 8 þ 33N 6 � 44N 4 þ 33N 2 � 10

24N 9

122520N 12 þ 1365N 11 � 2730N 10 þ 5005N 8 � 858N 6 þ 9009N 4 � 4550N 2 þ 691

2730N 11

13390N 12 þ 210N 11 � 455N 10 þ 1001N 8 � 2145N 6 þ 3003N 4 � 2275N 2 þ 691

420N 11

1484N 14 þ 45N 13 � 105N 12 þ 273N 10 � 715N 8 þ 1287N 6 � 1365N 4 þ 691N 2 � 105

90N 13

1545N 14 þ 24N 13 � 60N 12 þ 182N 10 � 572N 8 þ 1287N 6 � 1820N 4 þ 1382N 2 � 420

48N 13

Page 6: On the expected values of the sample maximum of order statistics from a discrete uniform distribution

700 S. C�alik, M. G€ung€or / Appl. Math. Comput. 157 (2004) 695–700

ln:n ¼XNx¼0

½1 � Fn:nðxÞ ¼XN�1

x¼0

1h

� xN

� �ni¼ N � 1

Nn

XN�1

x¼1

xn

¼ N � SðN � 1; nÞNn

: ð6:1Þ

The sum on the right-hand side of (6.1) can be evaluated easily. For n up to15, algebraic expressions for the expected values are given in Table 1. Abra-

mowitz and Stegun [1, pp. 813–817] have tabulated it for several n and Nvalues.

Example 6.1. For N ¼ 100 and n ¼ 3, using the value of l3:3 in the Table 1, we

obtain

l3:3 ¼3N 2 þ 2N � 1

4N¼ 3ð100Þ2 þ 2ð100Þ � 1

4ð100Þ ¼ 75:4975:

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Function with Formulas, Graphs,

and Mathematical Tables, Dover, New York, 1965.

[2] B.C. Arnold, N. Balakrishnan, H.N. Nagaraja, A First Course in Order Statistics, John Wiley

and Sons, New York, 1992.

[3] N. Balakrishnan, C.R. Rao, Handbook of Statistics 16––Order Statistics: Theory and Methods,

Elsevier, New York, 1998.

[4] H.A. David, Order Statistics, John Wiley and Sons, New York, 1981.

[5] J.E. Freud, R.E. Walpole, Mathematical Statistics, Prestice-Hall International, Inc., London,

1962.

[6] C.G. Khatri, Distribution of order statistics for discrete case, Ann. Inst. Statist. Math. 14 (1962)

167–171.