on permutation tableaux of type a and bslc/wpapers/s64vortrag/kim.pdf1 / 28 on permutation tableaux...

140
1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris 7 64th SLC, Lyon, March 30, 2010

Upload: others

Post on 27-Oct-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

1 / 28

On permutation tableaux of type A and B

Jang Soo Kim(Joint work with Sylvie Corteel)

University of Paris 7

64th SLC, Lyon, March 30, 2010

Page 2: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

2 / 28

Permutation tableaux

First introduced by Postnikov in his study of totally nonnegativeGrassmanian.

Page 3: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

2 / 28

Permutation tableaux

First introduced by Postnikov in his study of totally nonnegativeGrassmanian.

There are many bijections between permutation tableaux andpermutations.

Page 4: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

2 / 28

Permutation tableaux

First introduced by Postnikov in his study of totally nonnegativeGrassmanian.

There are many bijections between permutation tableaux andpermutations.

A connection with partially asymmetric exclusion process (PASEP)

Page 5: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

2 / 28

Permutation tableaux

First introduced by Postnikov in his study of totally nonnegativeGrassmanian.

There are many bijections between permutation tableaux andpermutations.

A connection with partially asymmetric exclusion process (PASEP)

Type B Permutation tableaux defined by Lam and Williams

Page 6: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

3 / 28

Ferrers diagram

123

45

678

910

Page 7: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

3 / 28

Ferrers diagram

123

45

678

910

3

5

8

10

9 7 6 4 2 1

Page 8: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.

Page 9: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

Page 10: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

Page 11: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 0 1

10 NO

Page 12: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 1 0 0 10 0 1

10 NO

Page 13: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 1 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

10 YES!

Page 14: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 1 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

10 YES!

A restricted 0 is1...0

Page 15: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

4 / 28

Permutation tableauEach column has at least one 1.There is no configuration like

1...

1 · · · 0

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 1 0 0 10 0 1

10 NO

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

10 YES!

A restricted 0 is1...0

An unrestricted row has no restricted 0.

Page 16: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Page 17: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

Page 18: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

In the alternative representation,

Page 19: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

In the alternative representation,

Each column has exactly one

Page 20: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

In the alternative representation,

Each column has exactly one

No arrow points to another.

Page 21: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

In the alternative representation,

Each column has exactly one

No arrow points to another.

Unrestricted row ⇔ row without

Page 22: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

5 / 28

The alternative representation

Topmost 1 is

Rightmost restricted 0 is

0 0 1 0 0 10 0 0 1 1 10 0 0 0 10 1 1

1

0

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

In the alternative representation,

Each column has exactly one

No arrow points to another.

Unrestricted row ⇔ row without

First introduced by Viennot (alternative tableau) and studied more byNadeau

Page 23: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 312

4

7

101113

1, 10, 11, 13

Page 24: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

1, 12, 10, 11, 13

Page 25: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

9, 1, 12, 10, 11, 13

Page 26: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

9, 2, 7, 8, 1, 12, 10, 11, 13

Page 27: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

9, 4, 6, 2, 7, 8, 1, 12, 10, 11, 13

Page 28: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

9, 4, 6, 5, 2, 7, 8, 1, 12, 10, 11, 13

Page 29: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

6 / 28

The bijection Φ of Corteel and Nadeau

12 9 8 6 5 31

2

4

7

10

11

13

9, 4, 6, 5, 2, 7, 8, 3, 1, 12, 10, 11, 13

Page 30: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 1312 9 8 6 5 3

12

4

7101113

Page 31: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 13

The RL-minima (right-to-leftmimina) of π :

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

12 9 8 6 5 312

4

7101113

Page 32: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 13

The RL-minima (right-to-leftmimina) of π :

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The RL-maxima (right-to-leftmaxima) of σ :

σz }| {

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

12 9 8 6 5 312

4

7101113

Page 33: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 13

The RL-minima (right-to-leftmimina) of π :

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The RL-maxima (right-to-leftmaxima) of σ :

σz }| {

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

12 9 8 6 5 312

4

7101113

Proposition (Corteel & Nadeau, Nadeau)Let π = σ1τ and Φ(π) = T . Then

Page 34: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 13

The RL-minima (right-to-leftmimina) of π :

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The RL-maxima (right-to-leftmaxima) of σ :

σz }| {

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

12 9 8 6 5 312

4

7101113

Proposition (Corteel & Nadeau, Nadeau)Let π = σ1τ and Φ(π) = T . Then

the unrestricted rows of T ⇔ the RL-minima of π

Page 35: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

7 / 28

Statistics

Decompose π as σ1τ .

π =

σz }| {

4, 6, 5, 2, 8, 3, 1,

τz }| {

9, 7, 12, 10, 11, 13

The RL-minima (right-to-leftmimina) of π :

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The RL-maxima (right-to-leftmaxima) of σ :

σz }| {

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

12 9 8 6 5 312

4

7101113

Proposition (Corteel & Nadeau, Nadeau)Let π = σ1τ and Φ(π) = T . Then

the unrestricted rows of T ⇔ the RL-minima of π

the columns with 1 in the first row of T ⇔ the RL-maxima of σ

Page 36: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

8 / 28

Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1 = (x + y)(x + y + 1) · · · (x + y + n − 2).

Page 37: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

8 / 28

Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1 = (x + y)(x + y + 1) · · · (x + y + n − 2).

c(n, k) : the number π ∈ Sn with k cycles

(x + y)n−1 =X

i,j

c(n − 1, i + j)

i + ji

!

xiyj

#{T ∈ PT (n) : urr(T) − 1 = i, topone(T) = j} = c(n − 1, i + j)

i + ji

!

Page 38: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

8 / 28

Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1 = (x + y)(x + y + 1) · · · (x + y + n − 2).

c(n, k) : the number π ∈ Sn with k cycles

(x + y)n−1 =X

i,j

c(n − 1, i + j)

i + ji

!

xiyj

#{T ∈ PT (n) : urr(T) − 1 = i, topone(T) = j} = c(n − 1, i + j)

i + ji

!

If T ↔ π = σ1τ ,

urr(T) − 1 = RLmin(τ ) = i

topone(T) = RLmax(σ) = j

Page 39: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

8 / 28

Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1 = (x + y)(x + y + 1) · · · (x + y + n − 2).

c(n, k) : the number π ∈ Sn with k cycles

(x + y)n−1 =X

i,j

c(n − 1, i + j)

i + ji

!

xiyj

#{T ∈ PT (n) : urr(T) − 1 = i, topone(T) = j} = c(n − 1, i + j)

i + ji

!

If T ↔ π = σ1τ ,

urr(T) − 1 = RLmin(τ ) = i

topone(T) = RLmax(σ) = j

τ is a set of i cycles and σ is a set of j cycles.

Page 40: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

8 / 28

Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1 = (x + y)(x + y + 1) · · · (x + y + n − 2).

c(n, k) : the number π ∈ Sn with k cycles

(x + y)n−1 =X

i,j

c(n − 1, i + j)

i + ji

!

xiyj

#{T ∈ PT (n) : urr(T) − 1 = i, topone(T) = j} = c(n − 1, i + j)

i + ji

!

If T ↔ π = σ1τ ,

urr(T) − 1 = RLmin(τ ) = i

topone(T) = RLmax(σ) = j

τ is a set of i cycles and σ is a set of j cycles.

τ ∪ σ is a permutation of {2, 3, . . . , n} with i + j cycles.

Page 41: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

9 / 28

Another bijective proof

TheoremWe have

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1.

Page 42: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

9 / 28

Another bijective proof

TheoremWe have

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1.

Let x, y be any positive integers and let N = n + x + y − 2.

Page 43: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

9 / 28

Another bijective proof

TheoremWe have

X

T∈PT (n)

xurr(T)−1ytopone(T) = (x + y)n−1.

Let x, y be any positive integers and let N = n + x + y − 2.

Given T ∈ PT (n), we construct T ′ ∈ PT (N) as follows.

{x − 1

} y − 1

Page 44: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.

Page 45: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.

Page 46: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.2 The last x − 1 steps are west and the last x − 1 columns have ↑’s in the first

row.

Page 47: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.2 The last x − 1 steps are west and the last x − 1 columns have ↑’s in the first

row.

π′ = Φ(T ′) satisfies the following. (π′ = σ1τ )

Page 48: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.2 The last x − 1 steps are west and the last x − 1 columns have ↑’s in the first

row.

π′ = Φ(T ′) satisfies the following. (π′ = σ1τ )1 1, 2, . . . , y are RL-minima of π′

Page 49: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.2 The last x − 1 steps are west and the last x − 1 columns have ↑’s in the first

row.

π′ = Φ(T ′) satisfies the following. (π′ = σ1τ )1 1, 2, . . . , y are RL-minima of π′

2 N, N − 1, . . . , N − x + 2 are RL-maxima of σ

Page 50: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

10 / 28

Another bijective proof

{x − 1

} y − 1

T ′ satisfies the following.1 The first y steps are south and the first y rows are unrestricted.2 The last x − 1 steps are west and the last x − 1 columns have ↑’s in the first

row.

π′ = Φ(T ′) satisfies the following. (π′ = σ1τ )1 1, 2, . . . , y are RL-minima of π′

2 N, N − 1, . . . , N − x + 2 are RL-maxima of σ

N, N − 1, . . . , N − x + 2, 1, 2, . . . , y are arranged in this order in π′.

Page 51: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

11 / 28

Unrestricted Columns

An unrestricted column of T ∈ PT (n) is a column without 0 as follows.

1 · · · 0

Page 52: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

11 / 28

Unrestricted Columns

An unrestricted column of T ∈ PT (n) is a column without 0 as follows.

1 · · · 0

urc(T) : the number of unrestricted columns of T .

Page 53: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

11 / 28

Unrestricted Columns

An unrestricted column of T ∈ PT (n) is a column without 0 as follows.

1 · · · 0

urc(T) : the number of unrestricted columns of T .

Let

Pt(x) =X

n≥0

0

@

X

T∈PT (n)

turc(T)

1

A xn.

Page 54: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

11 / 28

Unrestricted Columns

An unrestricted column of T ∈ PT (n) is a column without 0 as follows.

1 · · · 0

urc(T) : the number of unrestricted columns of T .

Let

Pt(x) =X

n≥0

0

@

X

T∈PT (n)

turc(T)

1

A xn.

TheoremWe have

Pt(x) =1 + Et(x)

1 + (t − 1)xEt(x),

whereEt(x) =

X

n≥1

n(t)n−1xn.

Page 55: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

12 / 28

The case t = 2 : connected permutations

Corollary

X

n≥0

X

T∈PT (n)

2urc(T)xn =1x

1 −1

P

n≥0 n!xn

!

.

Page 56: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

12 / 28

The case t = 2 : connected permutations

Corollary

X

n≥0

X

T∈PT (n)

2urc(T)xn =1x

1 −1

P

n≥0 n!xn

!

.

π = π1 · · ·πn ∈ Sn is a connected permutation if there is no k < nsatisfying π1 · · ·πk ∈ Sk.

Page 57: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

12 / 28

The case t = 2 : connected permutations

Corollary

X

n≥0

X

T∈PT (n)

2urc(T)xn =1x

1 −1

P

n≥0 n!xn

!

.

π = π1 · · ·πn ∈ Sn is a connected permutation if there is no k < nsatisfying π1 · · ·πk ∈ Sk.

CP(n) : the set of connected permutations in Sn

X

n≥0

#CP(n)xn = 1 −1

P

n≥0 n!xn

Page 58: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

12 / 28

The case t = 2 : connected permutations

Corollary

X

n≥0

X

T∈PT (n)

2urc(T)xn =1x

1 −1

P

n≥0 n!xn

!

.

π = π1 · · ·πn ∈ Sn is a connected permutation if there is no k < nsatisfying π1 · · ·πk ∈ Sk.

CP(n) : the set of connected permutations in Sn

X

n≥0

#CP(n)xn = 1 −1

P

n≥0 n!xn

Corollary

X

T∈PT (n)

2urc(T) = #CP(n + 1).

Page 59: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

12 / 28

The case t = 2 : connected permutations

Corollary

X

n≥0

X

T∈PT (n)

2urc(T)xn =1x

1 −1

P

n≥0 n!xn

!

.

π = π1 · · ·πn ∈ Sn is a connected permutation if there is no k < nsatisfying π1 · · ·πk ∈ Sk.

CP(n) : the set of connected permutations in Sn

X

n≥0

#CP(n)xn = 1 −1

P

n≥0 n!xn

Corollary

X

T∈PT (n)

2urc(T) = #CP(n + 1).

Combinatorial proof?

Page 60: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

13 / 28

Shift-connected permutations

A shift-connected permutation is π = π1 · · ·πn ∈ Sn with πj = 1 forsome j ∈ [n] such that

Page 61: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

13 / 28

Shift-connected permutations

A shift-connected permutation is π = π1 · · ·πn ∈ Sn with πj = 1 forsome j ∈ [n] such that

there is no integer i < j with

πiπi+1 · · ·πj ∈ Sj−i+1

Page 62: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

13 / 28

Shift-connected permutations

A shift-connected permutation is π = π1 · · ·πn ∈ Sn with πj = 1 forsome j ∈ [n] such that

there is no integer i < j with

πiπi+1 · · ·πj ∈ Sj−i+1

SCP(n) : the set of shift-connected permutations in Sn

Page 63: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

13 / 28

Shift-connected permutations

A shift-connected permutation is π = π1 · · ·πn ∈ Sn with πj = 1 forsome j ∈ [n] such that

there is no integer i < j with

πiπi+1 · · ·πj ∈ Sj−i+1

SCP(n) : the set of shift-connected permutations in Sn

Proposition

#CP(n) = #SCP(n)

Page 64: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.

Page 65: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Page 66: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Decompose π asπ = στ (k + 1)ρ

Page 67: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Decompose π asπ = στ (k + 1)ρ

Define

σ+ = σ

+1 · · ·σ+

k , σ+i = σi + 1

π′ = τσ

+1ρ

Page 68: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Decompose π asπ = στ (k + 1)ρ

Define

σ+ = σ

+1 · · ·σ+

k , σ+i = σi + 1

π′ = τσ

+1ρ

Example

Page 69: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Decompose π asπ = στ (k + 1)ρ

Define

σ+ = σ

+1 · · ·σ+

k , σ+i = σi + 1

π′ = τσ

+1ρ

Example

Let π ∈ Sn \ CP(n) be

π =

σz }| {

4, 2, 5, 1, 3,

τz}|{

7 ,

k + 1z}|{

6 ,

ρz}|{

9, 8

Page 70: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

14 / 28

A bijection between Sn \ CP(n) and Sn \ SCP(n)Given π = π1 · · ·πn ∈ Sn \ CP(n), define π

′ ∈ Sn \ SCP(n) as follows.Find the smallest integer k < n such that

σ = π1 · · ·πk ∈ Sk

Decompose π asπ = στ (k + 1)ρ

Define

σ+ = σ

+1 · · ·σ+

k , σ+i = σi + 1

π′ = τσ

+1ρ

Example

Let π ∈ Sn \ CP(n) be

π =

σz }| {

4, 2, 5, 1, 3,

τz}|{

7 ,

k + 1z}|{

6 ,

ρz}|{

9, 8

Then π′ ∈ Sn \ SCP(n) is

π′ =

τz}|{

7 ,

σ+

z }| {

5, 3, 6, 2, 4,

1z}|{

1 ,

ρz}|{

9, 8

Page 71: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Page 72: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Proposition

Page 73: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Proposition

For π = Φ(T),

Page 74: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Proposition

For π = Φ(T),

T has a column which has a 1 only in the first row if and only if

Page 75: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Proposition

For π = Φ(T),

T has a column which has a 1 only in the first row if and only if

π 6∈ SCP(n)

Page 76: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

15 / 28

A combinatorial proof of∑

T∈PT (n)

2urc(T) = #CP(n + 1)

PropositionP

T∈PT (n) 2urc(T) is the number of T ∈ PT (n + 1) without a column containing1 only in the first row.

Proposition

For π = Φ(T),

T has a column which has a 1 only in the first row if and only if

π 6∈ SCP(n)

Proposition

X

T∈PT (n)

2urc(T) = #SCP(n + 1) = #CP(n + 1)

Page 77: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

16 / 28

The case t = −1 : sign-imbalance

Corollary

P−1(x) =X

n≥0

X

T∈PT (n)

(−1)urc(T)xn =1 − x

1 − 2x + 2x2

=12·

11 − (1 + i)x

+1

1 − (1 − i)x

«

Page 78: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

16 / 28

The case t = −1 : sign-imbalance

Corollary

P−1(x) =X

n≥0

X

T∈PT (n)

(−1)urc(T)xn =1 − x

1 − 2x + 2x2

=12·

11 − (1 + i)x

+1

1 − (1 − i)x

«

DefinitionFor T ∈ PT (n), define the sign of T by

sgn(T) = (−1)urc(T).

Page 79: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

16 / 28

The case t = −1 : sign-imbalance

Corollary

P−1(x) =X

n≥0

X

T∈PT (n)

(−1)urc(T)xn =1 − x

1 − 2x + 2x2

=12·

11 − (1 + i)x

+1

1 − (1 − i)x

«

DefinitionFor T ∈ PT (n), define the sign of T by

sgn(T) = (−1)urc(T).

Corollary

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

Page 80: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

17 / 28

Relation between the sign-imbalance of SYT

The sign of a standard Young tableau is defined as follows.

sgn

1 2 5

3 4

!

= sgn(12534) = 1

Page 81: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

17 / 28

Relation between the sign-imbalance of SYT

The sign of a standard Young tableau is defined as follows.

sgn

1 2 5

3 4

!

= sgn(12534) = 1

Stanley conjecturedX

T∈SYT (n)

sgn(T) = 2⌊n2⌋

Page 82: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

17 / 28

Relation between the sign-imbalance of SYT

The sign of a standard Young tableau is defined as follows.

sgn

1 2 5

3 4

!

= sgn(12534) = 1

Stanley conjecturedX

T∈SYT (n)

sgn(T) = 2⌊n2⌋

Proved by Lam and Sjöstrand independently

Page 83: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

17 / 28

Relation between the sign-imbalance of SYT

The sign of a standard Young tableau is defined as follows.

sgn

1 2 5

3 4

!

= sgn(12534) = 1

Stanley conjecturedX

T∈SYT (n)

sgn(T) = 2⌊n2⌋

Proved by Lam and Sjöstrand independently

Generalized to skew SYTs by Kim

Page 84: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

17 / 28

Relation between the sign-imbalance of SYT

The sign of a standard Young tableau is defined as follows.

sgn

1 2 5

3 4

!

= sgn(12534) = 1

Stanley conjecturedX

T∈SYT (n)

sgn(T) = 2⌊n2⌋

Proved by Lam and Sjöstrand independently

Generalized to skew SYTs by Kim

If n 6≡ 2 mod 4,˛

˛

˛

˛

˛

˛

X

T∈PT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

T∈SYT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

= 2⌊n2⌋.

Page 85: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

18 / 28

Shifted Ferrers diagram

3

5

8

10

9 7 6 4 2 1

−9

−7

−6

−4

−2

−1

3

5

8

10

9 7 6 4 2 1

The yellow cells are the diagonal cells.

Page 86: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

18 / 28

Shifted Ferrers diagram

3

5

8

10

9 7 6 4 2 1

−9

−7

−6

−4

−2

−1

3

5

8

10

9 7 6 4 2 1

The yellow cells are the diagonal cells.

The row containing the diagonal cell in Column d is labeled with −d.

Page 87: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.

Page 88: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.There is no configuration like

1...

1 · · · 0

or 1 · · · 0

Page 89: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.There is no configuration like

1...

1 · · · 0

or 1 · · · 0

Page 90: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.There is no configuration like

1...

1 · · · 0

or 1 · · · 0

0

0 0

1 0 10 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 0 1

NO

Page 91: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.There is no configuration like

1...

1 · · · 0

or 1 · · · 0

0

0 0

1 0 10 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 0 1

NO

0

0 0

1 0 0

0 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 1 1

NO

Page 92: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

19 / 28

Type B permutation tableauxEach column has at least one 1.There is no configuration like

1...

1 · · · 0

or 1 · · · 0

0

0 0

1 0 10 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 0 1

NO

0

0 0

1 0 0

0 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 1 1

NO

0

0 0

1 0 10 0 0 0

0 0 0 1 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 1 1

YES!

Page 93: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Page 94: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Rightmost restricted 0 is

Page 95: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Rightmost restricted 0 is

Cut off the diagonal cells.

Page 96: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Rightmost restricted 0 is

Cut off the diagonal cells.

Page 97: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Rightmost restricted 0 is

Cut off the diagonal cells.

0

0 0

1 0 10 0 0 0

0 0 0 0 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 10 1 1

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

No arrow points to another.

Page 98: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

20 / 28

The alternative representationTopmost 1 is

Rightmost restricted 0 is

Cut off the diagonal cells.

0

0 0

1 0 10 0 0 0

0 0 0 0 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 10 1 1

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

No arrow points to another.

The diagonal line acts like a mirror!

Page 99: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

21 / 28

A theorem of Lam and Williams

Theorem (Lam and Williams)

X

T∈PT B(n)

xurr(T)−1zdiag(T) = (1 + z)n(x + 1)n−1

Page 100: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

21 / 28

A theorem of Lam and Williams

Theorem (Lam and Williams)

X

T∈PT B(n)

xurr(T)−1zdiag(T) = (1 + z)n(x + 1)n−1

diag(T) : the number of diagonal cells with 1

Page 101: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

21 / 28

A theorem of Lam and Williams

Theorem (Lam and Williams)

X

T∈PT B(n)

xurr(T)−1zdiag(T) = (1 + z)n(x + 1)n−1

diag(T) : the number of diagonal cells with 1

urr(T) : the number of unrestricted rows, i.e. without

1...0

and 0

Page 102: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

21 / 28

A theorem of Lam and Williams

Theorem (Lam and Williams)

X

T∈PT B(n)

xurr(T)−1zdiag(T) = (1 + z)n(x + 1)n−1

diag(T) : the number of diagonal cells with 1

urr(T) : the number of unrestricted rows, i.e. without

1...0

and 0

TheoremX

T∈PT B(n)

xurr(T)−1ytop0,1(T)zdiag(T) = (1 + z)n(x + y)n−1

Page 103: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

22 / 28

Generalization of a theorem of Lam and WilliamsFor T ∈ PT B(n) with the topmost nonzero row labeled m,

top0,1(T) = (# 1s in Row m except in the diagonal)

+ (# rightmost restricted 0s in Column −m)

= # arrows in Row m and Column −m

0

0 0

1 0 10 0 0 0

0 0 0 0 10 0 0 0 0 0

0 0 0 0 0 1

1 0 1 10 0 0 1

0 1 1

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

Page 104: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

–8−6

−3

−2

1

45

7

11

10 9 8 6 3 2

–8,4,11

Page 105: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

7, 10,−8, 4, 11

Page 106: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

9, 7, 10,−8, 4, 11

Page 107: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

9, 7, 10, –3, 5 − 8, 4, 11

Page 108: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

9, 7, 10,−3, 5 − 8, 6, 4, 11

Page 109: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

9, 7, 10, 1,−3, 5 − 8, 6, 4, 11

Page 110: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

23 / 28

A type B extension of Corteel and Nadeau’s bijection

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

9, 7, 10, 2, 1,−3, 5 − 8, 6, 4, 11

Page 111: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 112: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 113: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of T

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 114: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 115: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = m

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 116: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 117: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|each element of τ is < |m|

Then,

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 118: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|each element of τ is < |m|

Then,1 Columns without

↔ negative integers in π

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 119: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|each element of τ is < |m|

Then,1 Columns without

↔ negative integers in π

2 Unrestricted rows of T↔ RL-minima of π

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 120: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|each element of τ is < |m|

Then,1 Columns without

↔ negative integers in π

2 Unrestricted rows of T↔ RL-minima of π

3 Columns with in Row m↔ RL-maxima of σ

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 121: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

24 / 28

Some properties of the type B bijection

Proposition

π = ΦB(T)

Row m is the topmost nonzerorow of TDecompose π = στmρ

min(π) = mthe last element of σ is > |m|each element of τ is < |m|

Then,1 Columns without

↔ negative integers in π

2 Unrestricted rows of T↔ RL-minima of π

3 Columns with in Row m↔ RL-maxima of σ

4 Rows with in Column |m|↔ RL-minima of τ

−10

−9

−8

−6

–3−2

1

457

11

10 9 8 6 3 2

π =

σz }| {

9, 7, 10,

τz }| {

6, 2, 1, –3, 5,

mz}|{

−8 ,

ρz }| {

4, 11

Page 122: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

25 / 28

GeneralizationTheorem

X

T∈PT B(n)

xurr(T)−1ytop0,1(T)zdiag(T) = (1 + z)n(x + y)n−1

Page 123: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

25 / 28

GeneralizationTheorem

X

T∈PT B(n)

xurr(T)−1ytop0,1(T)zdiag(T) = (1 + z)n(x + y)n−1

Page 124: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

25 / 28

GeneralizationTheorem

X

T∈PT B(n)

xurr(T)−1ytop0,1(T)zdiag(T) = (1 + z)n(x + y)n−1

m

|m| {

y − 1

{

x − 1

Page 125: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

Page 126: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

Page 127: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

Page 128: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

TheoremThe zigzag map on the alternative representation is the same as ϕ ◦ Φ.

Page 129: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

TheoremThe zigzag map on the alternative representation is the same as ϕ ◦ Φ.

Example

Page 130: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

TheoremThe zigzag map on the alternative representation is the same as ϕ ◦ Φ.

Example

Φ(T) = 4, 6, 5, 2, 8, 3, 1, 9, 7, 11, 12, 10

Page 131: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

26 / 28

Zigzag maps

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 10 1 1

10

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

12 9 8 6 5 31

2

4

7

10

11

13

TheoremThe zigzag map on the alternative representation is the same as ϕ ◦ Φ.

Example

Φ(T) = 4, 6, 5, 2, 8, 3, 1, 9, 7, 11, 12, 10

ϕ ◦ Φ(T) = (4, 6, 5, 2, 8, 3, 1)(9, 7)(11, 12, 10)

Page 132: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

27 / 28

The zigzag map on the type B alternative representation

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

TheoremThe zigzag map on the type B alternative representation is ϕ ◦ ΦB.

Page 133: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

27 / 28

The zigzag map on the type B alternative representation

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

TheoremThe zigzag map on the type B alternative representation is ϕ ◦ ΦB.

Example

Page 134: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

27 / 28

The zigzag map on the type B alternative representation

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

TheoremThe zigzag map on the type B alternative representation is ϕ ◦ ΦB.

Example

ΦB(T) = 9, 7, 10, 6, 2, 1,−3, 5, –8, 4, 11

Page 135: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

27 / 28

The zigzag map on the type B alternative representation

−10

−9

−8

−6

−3

−2

1

4

5

7

11

10 9 8 6 3 2

TheoremThe zigzag map on the type B alternative representation is ϕ ◦ ΦB.

Example

ΦB(T) = 9, 7, 10, 6, 2, 1,−3, 5, –8, 4, 11

ϕ ◦ ΦB(T) = (9, 7, 10, 6, 2, 1,−3, 5,−8)(4)(11)

Page 136: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

28 / 28

Further study

Find a combinatorial proof of the following:

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

Page 137: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

28 / 28

Further study

Find a combinatorial proof of the following:

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

If n 6≡ 2 mod 4, then˛

˛

˛

˛

˛

˛

X

T∈PT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

T∈SYT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

= 2⌊n2⌋.

Page 138: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

28 / 28

Further study

Find a combinatorial proof of the following:

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

If n 6≡ 2 mod 4, then˛

˛

˛

˛

˛

˛

X

T∈PT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

T∈SYT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

= 2⌊n2⌋.

Find a type B analog of the above formula.

Page 139: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

28 / 28

Further study

Find a combinatorial proof of the following:

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

If n 6≡ 2 mod 4, then˛

˛

˛

˛

˛

˛

X

T∈PT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

T∈SYT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

= 2⌊n2⌋.

Find a type B analog of the above formula.

Page 140: On permutation tableaux of type A and Bslc/wpapers/s64vortrag/kim.pdf1 / 28 On permutation tableaux of type A and B Jang Soo Kim (Joint work with Sylvie Corteel) University of Paris

28 / 28

Further study

Find a combinatorial proof of the following:

X

T∈PT (n)

sgn(T) =(1 + i)n + (1 − i)n

2=

8

<

:

(−1)k · 22k, if n = 4k or n = 4k + 1,

0, if n = 4k + 2,(−1)k+1 · 22k+1

, if n = 4k + 3.

If n 6≡ 2 mod 4, then˛

˛

˛

˛

˛

˛

X

T∈PT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

X

T∈SYT (n)

sgn(T)

˛

˛

˛

˛

˛

˛

= 2⌊n2⌋.

Find a type B analog of the above formula.

Thank you for your attention!