on approximating the smallest enclosing bregman balls

57
On Approximating the Smallest Enclosing Bregman Balls Frank Nielsen 1 Richard Nock 2 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory [email protected] 2 University of Antilles-Guyanne DSI-GRIMAAG [email protected] March 2006 F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Upload: frank-nielsen

Post on 19-Jan-2015

117 views

Category:

Technology


4 download

DESCRIPTION

Slides for On Approximating the Smallest Enclosing Bregman Balls See also http://www.youtube.com/watch?v=ROdWANRAYHQ

TRANSCRIPT

Page 1: On Approximating the Smallest Enclosing Bregman Balls

On Approximating the Smallest EnclosingBregman Balls

Frank Nielsen1 Richard Nock2

1Sony Computer Science Laboratories, Inc.Fundamental Research Laboratory

[email protected]

2University of Antilles-GuyanneDSI-GRIMAAG

[email protected]

March 2006

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 2: On Approximating the Smallest Enclosing Bregman Balls

Smallest Enclosing Balls

ProblemGiven S = {s1, ..., sn}, compute a simplified description, calledthe center, that fits well S (i.e., summarizes S).

Two optimization criteria:MINAVG Find a center c∗ which minimizes the average

distortion w.r.t S: c∗ = argminc∑

i d(c, si).

MINMAX Find a center c∗ which minimizes the maximaldistortion w.r.t S: c∗ = argminc maxi d(c, si).

Investigated in Applied Mathematics:

Computational geometry (1-center problem),Computational statistics (1-point estimator),Machine learning (1-class classification),

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 3: On Approximating the Smallest Enclosing Bregman Balls

Smallest Enclosing Balls in Computational Geometry

Distortion measure d(·, ·) is the geometric distance:

Euclidean distance L2.c∗ is the circumcenter of S for MINMAX,

Squared Euclidean distance L22.

c∗ is the centroid of S for MINAVG (→ k -means),Euclidean distance L2.

c∗ is the Fermat-Weber point for MINAVG.

Centroid Circumcenter Fermat-WeberMINAVG L2

2 MINMAX L2 MINAVG L2

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 4: On Approximating the Smallest Enclosing Bregman Balls

Core-sets for MINMAX Ball

→ Introduced by Badoiu and Clarkson [BC’02]

Approximating MINMAX [BC’02]: ||c− c∗|| ≤ εr∗

A ε-approximation for the MINMAX ball can be found in O(dnε2 )

time using algorithm BC. [for point/ball sets]

Algorithm BC(S, T )

Input: S = {s1, s2, ..., sn}Output: Circumcenter c such that ||c− c∗|| ≤ r∗√

T

Choose at random c ∈ Sfor t = 1, 2, ..., T do

C Find furthest pointBs← arg maxs′∈S ‖c− s′‖2C Update circumcenter Bc← t

t+1c + 1t+1s

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 5: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Initialization

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 6: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 1

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 7: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 2

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 8: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 3

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 9: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 4

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 10: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 5

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 11: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 6

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 12: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 7

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 13: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 8

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 14: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Iteration 9

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 15: On Approximating the Smallest Enclosing Bregman Balls

Demo Algorithm BC: Summary

After 10 iterations, we visualize the ball traces and the core-set.

Ball traces Core-set

Core-set’s size is independent of the dimension d .(depends only on 1

ε )F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 16: On Approximating the Smallest Enclosing Bregman Balls

Distortions: Bregman Divergences

DefinitionBregman divergences are parameterized (F ) families ofdistortions.Let F : X −→ R, such that F is strictly convex and differentiableon int(X ), for a convex domain X ⊆ Rd .Bregman divergence DF :

DF (x, y) = F (x)− F (y)− 〈x− y,∇F (y)〉 .

∇F : gradient operator of F〈·, ·〉 : Inner product (dot product)

(→ DF is the tail of a Taylor expansion of F )

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 17: On Approximating the Smallest Enclosing Bregman Balls

Visualizing F and DF

xy

F (·)

DF (x,y)

〈x− y,∇F (y)〉

DF (x, y) = F (x)− F (y)− 〈x− y,∇F (y)〉 .

(→ DF is the tail of a Taylor expansion of F )

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 18: On Approximating the Smallest Enclosing Bregman Balls

Bregman Balls

Two Bregman balls:Bc,r = {x ∈ X : DF ( c , x) ≤ r},B′c,r = {x ∈ X : DF (x, c ) ≤ r}Euclidean Ball: Bc,r = {x ∈ X : ‖x− c‖22 ≤ r} = B′c,r

(r : squared radius. L22: Bregman divergence F (x) =

∑di=1 x2

i )

Lemma [NN’05]The smallest enclosing Bregman ball Bc∗,r∗ of S is unique.

Theorem [BMDG’04]The MINAVG Ball for Bregman divergences is the centroid .

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 19: On Approximating the Smallest Enclosing Bregman Balls

Applying BC for divergences yields poor result

−→ design a tailored algorithm for divergences.

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 20: On Approximating the Smallest Enclosing Bregman Balls

Bregman BC Algorithm

BBC generalizes BC to Bregman divergences(analysis in [NN’05]).

Algorithm BBC(S, T )

Choose at random c ∈ Sfor t = 1, 2, ..., T doC Furthest point w.r.t. DF B

s← arg maxs′∈S DF (c, s′)C Circumcenter update B

c←∇−1F

(t

t+1∇F (c) + 1t+1∇F (s)

)Observations

BBC(L22) is BC.

DF (c, x) is convex in c but not necessarily the ball’sboundary ∂Bc,r(depends on x given c; see Itakura-Saito ball).

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 21: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Initialization

DF (p, q) =d∑

i=1

(pi

qi− log

pi

qi− 1), [F (x) = −

d∑i=1

log xi ]

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 22: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 1

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 23: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 2

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 24: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 3

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 25: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 4

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 26: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 5

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 27: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 6

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 28: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 7

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 29: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 8

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 30: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Itakura-Saito): Iteration 9

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 31: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC(Itakura-Saito): Summary

n = 100 points (d = 2)

Sampling Ball All iterations Core-set

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 32: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Initialization

DF (p, q) =d∑

i=1

(pi logpi

qi− pi + qi), [F (x) = −

d∑i=1

xi log xi ]

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 33: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 1

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 34: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 2

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 35: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 3

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 36: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 4

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 37: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 5

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 38: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 6

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 39: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 7

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 40: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 8

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 41: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC (Kullbach-Leibler): Iteration 9

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 42: On Approximating the Smallest Enclosing Bregman Balls

Demo BBC(Kullbach-Leibler): Summary

n = 100, d = 2.

Sampling Ball All iterations Core-set

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 43: On Approximating the Smallest Enclosing Bregman Balls

Fitting Bregman Balls

For a same dataset (drawn from a 2D Gaussian distribution)

Euclidean ball (L22),

Itakura-Saito ball,Kullbach-Leibler ball (as known as Information ball).

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 44: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 1

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 45: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 2

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 46: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 3

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 47: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 4

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 48: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 5

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 49: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 6

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 50: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 7

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 51: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 8

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 52: On Approximating the Smallest Enclosing Bregman Balls

BBC: Iteration 9

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 53: On Approximating the Smallest Enclosing Bregman Balls

BBC: After 10 iterations

Squared Euclidean Itakura-Saito Kullbach-Leibler

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 54: On Approximating the Smallest Enclosing Bregman Balls

Experiments with BBC

Kullbach-Leibler ball, 100 runs(n = 1000, T = 200 on the plane: d = 2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

Plain curves (BBC): DF (c∗,c)+DF (c,c∗)2 .

Dashed curves: Upperbound ||c− c∗|| from [BC’02]: 1T for L2

2.

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 55: On Approximating the Smallest Enclosing Bregman Balls

Bregman divergences↔ Functional averages

Bijection (core-sets) [NN’05]Domain F (s) DF (c, s) cj (1 ≤ j ≤ d)

L22 norm Arithmetic mean

IRd Pdj=1 s2

jPd

j=1 (cj − sj )2 Pm

i=1 αi si,j

(IR+,∗)d Information/Kullbach-Leibler divergence Geometric mean/ d-simplex

Pdj=1 sj log sj − sj

Pdj=1 cj log(cj /sj ) − cj + sj

Qmi=1 s

αii,j

Itakura-Saito divergence Harmonic mean(IR+,∗)d −

Pdj=1 log sj

Pdj=1 (cj /sj ) − log(cj /sj ) − 1 1/

Pmi=1 (αi /si,j )

Mahalanobis divergence Arithmetic meanIRd sT Cov−1s (c − s)T Cov−1(c − s)

Pmi=1 αi si,j

p ∈ IN\{0, 1} Weighted power mean

IRd /IR+d(1/p)

Pdj=1 sp

jPd

j=1

cpjp +

(p−1)spj

p − cj sp−1j

�Pmi=1 αi s

p−1i,j

�1/(p−1)

Bregman divergences↔ Family of exponential distributions[BMDG’04].

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 56: On Approximating the Smallest Enclosing Bregman Balls

References

[BC’02] M. Badoiu and K. L. Clarkson, Core-sets for balls,Manuscript, 2002.(MINMAX core-set and (1 + ε)-approximation)

[NN’04] F. Nielsen and R. Nock, Approximating SmallestEnclosing Balls, ICCSA 2004.(Survey on MINMAX)

[BMDG’04] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh,Clustering with Bregman Divergences, SDM 2004.(Bregman divergences and k -means)

[NN’05] R. Nock and F. Nielsen, Fitting the SmallestEnclosing Bregman Ball, ECML 2005.(Bregman Balls)

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls

Page 57: On Approximating the Smallest Enclosing Bregman Balls

Linux R© and Windows R© codes

Available from our Web pages:

http://www.csl.sony.co.jp/person/nielsen/BregmanBall/

http://www.univ-ag.fr/∼rnock/BregmanBall/

Command line executable: cluster

-h display this help-B choose Bregman divergence

(0: Itakura-Saito, 1: Euclidean, 2: Kullbach-Leibler (simplex), 3: Kullbach-Leibler (general), 4: Csiszar)

-d dimension-n number of points-k number of theoretical clusters-g type of clusters

(0: Gaussian, 1: Ring Gaussian, 2: Uniform, 3: Gaussian with small σ, 4: Uniform Bregman)

-S number of runs... ...

F. Nielsen and R. Nock On Approximating the Smallest Enclosing Bregman Balls