olsson moa, lignin, biodiesel, oxidativ...

41
Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Fakulteten för hälsa, natur- och teknikvetenskap Miljö- and energisystem Moa Olsson Preparation of Lignin Diesel Experimental and Statistical Study of the Biodiesel Preparation Process from a Pulp- and Paper Industry Residual Product Framställning av Lignindiesel Experimentell och Statistisk Studie av Framställningsprocessen av Biodiesel från en Restprodukt från Pappers- och Massaindustrin Examensarbete 30 hp Civilingenjörsprogrammet Energi- och Miljöteknik Juni 2015 Handledare: Lars Nilsson Examinator: Roger Renström

Upload: dangnhu

Post on 23-Apr-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

 

Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60

[email protected] www.kau.se

 

 

Fakulteten för hälsa, natur- och teknikvetenskap Miljö- and energisystem

Moa Olsson

Preparation of Lignin Diesel

Experimental and Statistical Study of the Biodiesel

Preparation Process from a Pulp- and Paper Industry Residual Product

Framställning av Lignindiesel

Experimentell och Statistisk Studie av Framställningsprocessen av Biodiesel från en Restprodukt från Pappers- och Massaindustrin

Examensarbete 30 hp

Civilingenjörsprogrammet Energi- och Miljöteknik

Juni 2015 Handledare: Lars Nilsson Examinator: Roger Renström

Page 2: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

2

Summary The  use  of  fossil  fuels  is  depleting  the  petroleum  resources  and  the  emissions  exhausted  during  the  use  is  contributing  to  the  planets  temperature  rise,  glaciers  reciding  and  rised  sea  level  etc.  In  a  global  perspective,  the  liquid  petroleum  fuels  are  dominating  the  fuel  market.  In  the  coming  ten  years,  the  use  of  liquid  fuels  is  expected  to  grow.      In  this  work  a  method  of  preparing  a  biodiesel  microemulsion  between  petroleum  diesel  and  kraft  lignin  has  been  examined.  Lignin  is  a  renewable  by-­‐product  from  the  pulp-­‐  and  paper  industry,  extracted  from  black  liquor.  In  its  natural  appearance,  lignin  is  not  soluble  in  water  and  has  to  be  modified  to  work  as  the  hydrophilic  phase  in  the  microemulsion.  The  modification  is  achieved  in  a  oxidative  ammonolysis  process.  As  an  indication  of  how  well  the  modification  is  performing,  the  amount  of  dissolved  lignin  in  water  were  measured.  The  influence  by  the  reaction  time,  pH-­‐value  and  water  content  on  the  amount  of  dissolved  lignin  were  examined  in  a  statistical  model  in  the  software  MODDE.  A  screening  examination  was  performed  to  find  the  most  influential  factors.  The  MODDE  model  was  optimized  and  could  thereafter  be  used  as  a  predictive  tool  and  predict  the  outcome  of  responses  within  the  experimental  range.  Ultrasonication  was  used  to  create  the  microemulsion.  A  stabilization  test  was  performed  by  observing  the  created  lignin  diesel  samples  during  three  weeks.  The  operational  cost  of  producing  lignin  diesel  was  calculated  based  on  the  chemical  cost  and  the  cost  of  electricity  consumed  during  the  production  process.    A  microemulsion  was  not  created  between  diesel  and  modified  lignin,  rather  an  emulsion  was  achieved.  The  highest  amount  of  dissolved  lignin  in  the  oxidative  ammonolysis  process  were  99.77  %.  The  most  influential  factor  was  the  pH-­‐value  in  the  oxidative  ammonolysis  process.  The  water  content  also  affected  the  amount  of  dissolved  lignin,  while  the  reaction  time  factor  within  its  range  did  not  affect  the  amount  of  dissolved  lignin.  The  statistical  model  design,  execution  and  predictive  ability  were  evaluated  in  MODDE  and  given  a  satisfying  grade.  In  the  stability  test,  a  separation  in  the  bottom  of  the  samples  were  observed  after  0.5  h  time.  After  one  week,  there  was  a  small  colour  gradient  in  the  top  of  one  of  the  samples.  After  two  weeks,  the  same  colour  gradient  were  observed  in  all  of  the  samples.  In  none  of  the  samples,  a  total  phase  separation  was  observed  under  the  three  weeks.                                  

Page 3: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

3

Sammanfattning Användningen  av  fossila  bränslen  utarmar  jordens  petroleum  resurser  och  under  användning  utsöndras  emissioner  som  bland  annat  bidrar  till  den  globala  uppvärmningen,  smältande  glaciärer  och  höjda  havsnivåer.  Globalt  sätt  dominerar  de  flytande  petroleum  bränslena  bränslemarknaden  och  dess  användning  förväntas  inom  de  närmsta  tio  åren  öka.    I  detta  examensarbete  undersöks  och  testas  en  metod  för  framställning  av  lignindiesel.  Lignindieseln  består  av  petroleumdiesel  och  lignin,  vilka  hålls  ihop  med  hjälp  av  en  mikroemulsion.  Lignin  är  en  förnybar  restprodukt  från  pappers-­‐  och  massaindustrin  som  utvinns  från  svartlut.  I  naturligt  utförande  är  lignin  inte  blandbart  med  vatten  och  behöver  därför  modifieras  för  att  kunna  agera  som  hydrofil  fas  i  mikroemulsionen.  Modifieringen  görs  genom  en  oxidativ  ammonolysprocess.  Som  indikation  på  hur  modifieringen  verkade  på  ligninet  mättes  mängden  löst  lignin  i  vatten.  Påverkan  av  faktorerna  reaktionstid,  pH-­‐värde  och  vatteninnehåll  på  ligninets  löslighet  i  vatten  undersöktes  i  en  statistisk  modell  som  gjordes  i  programvaran  MODDE.  Den  statistiska  modellens  design,  utförande  och  predikteringskapacitet  utvärderades.  En  screeningundersökning  utfördes  för  att  identifiera  hur  de  olika  faktorerna  påverkade  lignets  löslighet  i  vatten.  Modellen  i  MODDE  optimerades  och  kunde  därefter  användas  som  en  predikterande  modell  inom  undersökningens  omfattning.  Ultraljudssonikering  användes  för  att  skapa  mikroemulsionen.  Ett  stabiliseringstest  gjordes  genom  att  de  olika  lignindieslarna  placerades  i  provrör  som  observerades  under  tre  veckors  tid.  Driftkostnaden  i  form  av  kemikaliekostnad  och  kostnad  för  konsumerad  elektricitet  under  produktionen  beräknades.    En  mikroemulsion  kunde  inte  framställas.  Dock  skapades  en  emulsion  mellan  diesel  och  modifierat  lignin.  Den  högsta  halten  av  löst  lignin  i  vatten  var  99.77  %.  pH-­‐värdet  under  reaktionen  var  den  faktor  som  påverkade  ligninets  löslighet  mest.  Vatteninnehållet  i  det  modifierade  ligninet  påverkade  också  lösligheten  samtidigt  som  reaktionstiden  inte  påverkade  lösligheten  nämnvärt  inom  det  givna  spannet.  Den  statistiska  modellens  design  och  utförande  var  tillfredställande  och  den  prediktiva  kapaciteten  var  mycket  bra.  Stabilitetstestet  visade  att  en  separation  observerades  i  botten  ett  av  lignindieselproverna  efter  0.5  h.  Efter  en  vecka  observerades  en  liten  färggradient  i  toppen  av  ett  av  provrören.  Efter  två  veckor  syntes  samma  sorts  färggradient  i  alla  lignindieselproverna.  Inget  av  lignindieselproverna  undergick  fullständig  fasseparation  under  the  tre  veckornas  separationstest.                      

Page 4: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

4

Foreword This  article  represents  the  result  of  my  master  thesis  in  Energy-­‐  and  Environmental  Technology  at  Karlstad  University.  The  work  were  executed  at  COWI  Sweden’s  office  in  Karlstad  and  the  experimental  work  were  performed  at  Karlstad  University.      There  are  several  people  and  institutions  that  have  been  contributing  to  this  thesis.  I  would  therefore  like  to  thank:    Alina  Hagelqvist,  my  mentor  at  COWI,  for  her  commitment  and  excellent  support.  I  would  also  like  to  thank  all  the  employees  at  COWI’s  office  for  the  warm  welcome  and  the  opportunity  to  execute  my  master  thesis  there.    Lars  Nilsson,  my  mentor  at  Karlstad  University,  for  his  big  engagement  and  help  during  the  work.      Pia  Eriksson,  Mikael  Andersén  and  Gunnar  Henriksson  at  the  chemical  engineering  department  at  Karlstad  University  for  being  able  to  work  in  their  laboratory,  information  and  help  during  the  process.    Mats  Andreasson  and  Urban  Jonsson  at  BYCOSIN,  for  their  help  with  material  and  information.    Christopher  Lindgren  at  Cleanflow  Black,  for  providing  material.    Niklas  Berglin  and  Per  Tomani  at  LignoBoost,  for  their  contribution  with  material  and  the  visit  at  Bäckhammar  Mill.    Julia  Botström  for  excellent  team  work  and  cooperation.    At  last,  I  would  like  to  thank  my  family  for  their  support.    The  thesis  has  been  presented  to  an  audience  with  knowledge  within  the  subject  and  has  later  been  discussed  in  a  seminar.  The  author  has  actively  been  acting  as  an  opponent  to  another  student’s  thesis.    Moa  Olsson                            

Page 5: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

5

Table of Content SUMMARY  .........................................................................................................................................................  2  SAMMANFATTNING  .......................................................................................................................................  3  FOREWORD  ......................................................................................................................................................  4  TABLE  OF  CONTENT  ......................................................................................................................................  5  LIST  OF  FIGURES  ............................................................................................................................................  6  LIST  OF  TABLES  ..............................................................................................................................................  7  1.   INTRODUCTION  ......................................................................................................................................  8  1.1.   DIESEL  AND  BIODIESEL  ..........................................................................................................................................  9  1.2.   LIGNIN  ...................................................................................................................................................................  10  1.2.1.   Alternative  lignin  applications  ..............................................................................................................  12  

1.3.   OXIDATIVE  AMMONOLYSIS  .................................................................................................................................  12  1.4.   MICROEMULSION  .................................................................................................................................................  12  1.4.1.   Ultrasonification  ..........................................................................................................................................  15  

1.5.   STATISTICAL  MODEL  ...........................................................................................................................................  15  1.5.1.   Model  design  ..................................................................................................................................................  15  1.5.2.   Evaluation  of  raw  data  .............................................................................................................................  15  1.5.3.   Regression  analysis  and  model  interpretation  ...............................................................................  16  

1.6.   AIMS  AND  OBJECTIVES  ........................................................................................................................................  18  2.   METHOD  .................................................................................................................................................  18  2.1.   EXPERIMENTS  ......................................................................................................................................................  18  2.1.1.   Chemicals  ........................................................................................................................................................  18  2.1.2.   Equipment  ......................................................................................................................................................  18  2.1.3.   Laboratory  method  .....................................................................................................................................  19  

2.2.   DESIGN  OF  EXPERIMENTS  ..................................................................................................................................  21  2.2.1.   Factor  and  response  design  ....................................................................................................................  21  2.2.2.   Experimental  plan  .......................................................................................................................................  22  2.2.3.   Optimization  ..................................................................................................................................................  22  

2.3.   CALCULATION  OF  OPERATIONAL  COST  ............................................................................................................  23  3.   RESULTS  .................................................................................................................................................  24  3.1.   SOLUBILITY  ...........................................................................................................................................................  24  3.2.   REGRESSION  MODEL  ...........................................................................................................................................  24  3.2.1.   Evaluation  of  raw  data  .............................................................................................................................  24  3.2.2.   Optimization  ..................................................................................................................................................  27  3.2.3.   Use  of  model  ...................................................................................................................................................  30  

3.3.   STABILIZATION  TEST  OF  LIGNIN  DIESEL  ..........................................................................................................  31  3.4.   OPERATIONAL  COST  ............................................................................................................................................  33  

4.   DISCUSSION  ...........................................................................................................................................  34  5.   CONCLUSION  .........................................................................................................................................  37  6.   REFERENCES  ..........................................................................................................................................  38          

Page 6: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

6

List of Figures  FIGURE  1.  LIQUID  FUEL  CONSUMPTION  IN  THE  TRANSPORT  SECTOR  IN  SWEDEN  2013.  .................................................................  8  FIGURE  2.  AN  EXAMPLE  OF  A  LIGNIN  MOLECULE  FROM  SOFTWOOD  (HENRIKSSON  2010).  ..........................................................  10  FIGURE  3.  THE  DIFFERENT  MONOMERS  THAT  TOGETHER  FORMS  THE  LIGNIN  POLYMER(HENRIKSSON  2010).  .......................  11  FIGURE  4.  EMULSIFIER  WITH  ITS  HYDROPHOBIC  AND  HYDROPHILIC  PARTS.  ....................................................................................  13  FIGURE  5.  SURFACTANT  FORMATION  AROUND  A  WATER  DROPLET  SURROUNDED  WITH  OIL.  ........................................................  14  FIGURE  6.  CCF  STRUCTURE.  .....................................................................................................................................................................  15  FIGURE  7.  SYMMETRICAL  AND  UNSYMMETRICAL  MODEL.  ...................................................................................................................  16  FIGURE  8.  PROCESS  FLOW  CHART,  STEP  1  AND  2.  .................................................................................................................................  19  FIGURE  9.  REPLICATE  PLOT.  .....................................................................................................................................................................  25  FIGURE  10.  SCATTERPLOT,  DISSOLVED  LIGNIN  DEPENDING  ON  RUN  ORDER.  ...................................................................................  25  FIGURE  11.  SCATTER  PLOT,  DISSOLVED  LIGNIN  DEPENDING  ON  REACTION  TIME.  ...........................................................................  25  FIGURE  12.  SCATTER  PLOT,  DISSOLVED  LIGNIN  DEPENDING  ON  PH-­‐VALUE.  ....................................................................................  26  FIGURE  13.  SCATTER  PLOT,  DISSOLVED  LIGNIN  DEPENDING    ON  WATER  CONTENT.  .......................................................................  26  FIGURE  14.  HISTOGRAM  OF  DISSOLVED  LIGNIN.  ...................................................................................................................................  26  FIGURE  15.  BOX-­‐WHISKER  PLOT  OF  DISSOLVED  LIGNIN.  ....................................................................................................................  27  FIGURE  16.  R2/Q2  PLOT.  ..........................................................................................................................................................................  27  FIGURE  17.  COEFFICIENT  PLOT  OF  FACTORS.  ........................................................................................................................................  28  FIGURE  18.  COEFFICIENT  PLOT,  EXCLUDED  VERSION.  ..........................................................................................................................  28  FIGURE  19.  NORMAL  PROBABILITY  PLOT  OF  RESIDUALS.  ....................................................................................................................  29  FIGURE  20.  R2/Q2  PLOT  AFTER  POINT  EXCLUSION.  .............................................................................................................................  30  FIGURE  21.  RESPONSE  CONTOUR  PLOT.  .................................................................................................................................................  30  FIGURE  22.  STABILIZATION  TEST  AND  COMPARISON  BETWEEN  THE  SONIFIED  LIGNIN  DIESEL  SAMPLES  AT  TIME:  A)  0  H,  B)  

0.5  H,  C)  18  H,  D)  48  H,  E)  1  WEEK,  F)  2  WEEKS,  G)  3  WEEKS.  ..............................................................................................  31  FIGURE  23.  BOTTOM  SEPARATION  IN  THE  SONIFIED  LIGNIN  DIESEL  SAMPLES,  TIME  18  H.  ...........................................................  32  FIGURE  24.  BOTTOM  SEPARATION  IN  THE  SONIFIED  LIGNIN  DIESEL  SAMPLES,  TIME  1  WEEK.  ......................................................  32  FIGURE  25.  DISTURBED  LIGNIN  DIESEL  SAMPLES  AT  TIME  0.5  H.  ......................................................................................................  33  FIGURE  26.  DIESEL  PRICE  VARIATION  DURING  THE  YEARS  1981  -­‐  2014.  .......................................................................................  34        

Page 7: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

7

List of Tables TABLE  1.  CHEMICALS,  STEP  1.  .................................................................................................................................................................  20  TABLE  2.  CHEMICALS,  STEP  2.  .................................................................................................................................................................  21  TABLE  3.  EXPERIMENTAL  PLAN.  ..............................................................................................................................................................  22  TABLE  4.  CHEMICAL  COST  PER  LITRE.  .....................................................................................................................................................  23  TABLE  5.  EXPERIMENTS  AMOUNT  OF  DISSOLVED  PERCENTAGE  OF  LIGNIN.  ......................................................................................  24  TABLE  6.  ANOVA  TABLE,  DISSOLVED  LIGNIN.  ......................................................................................................................................  29      

Page 8: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

8

1. Introduction Today,  the  use  of  fossil  fuels  is  exhausting  the  petroleum  resources  on  earth,  while  the  use  itself  leads  to  green  house  gas  emissions.  This  leads  to  many  negative  effects  including  climate  change,  receding  of  glaciers  and  raised  sea  level  etc.  Fossil  fuels  are  limited  in  the  access  to  crude  oil,  which  is  a  non-­‐renewable  and  therefore  limited  resource.  According  to  (Shafiee  &  Topal  2009),  the  depletion  time  of  crude  oil  was  earlier  calculated  incorrectly.  The  depletion  time  is  estimated  as  35  years  in  their  report,  which  is  a  shorter  time  than  previous  calculations.    In  a  global  perspective,  the  market  of  liquid  fuels  is  dominated  by  the  fossil  fuels.  Even  though  the  use  of  natural  gas  is  expected  to  grow,  the  use  of  oil  and  coal  is  expected  to  grow  continuously.  In  2035,  the  use  of  fossil  fuels  is  estimated  to  represent  75  %  of  the  total  use  of  liquid  fuel  in  the  world.  Renewable  fuels  are  expected  to  increase  their  market  share  to  8  %  of  the  total  fuel  use  until  year  2035.  In  2013,  the  market  share  for  renewable  fuels  was  3  %  of  the  total  fuel  use.  In  Sweden  during  2013,  5.4  million  m³  diesel  fuel  were  delivered  to  consumers.  A  large  part  of  that  amount  of  fuel  was  used  in  the  transport  sector,  where  the  diesel  and  biodiesel  use  were  53  %  respective  3  %,  which  is  presented  in  Figure  1.  (Svenska  Petroleum  &  Biodrivmedel  Institutet  2014)    

 Figure  1.  Liquid  fuel  consumption  in  the  transport  sector  in  Sweden  2013.  

In  Sweden,  the  total  energy  use  within  the  transport  sector  in  2013  reached  120  TWh,  which  is  the  lowest  amount  during  the  period  2005  –  2013.  In  2013,  the  use  of  petroleum  diesel  was  45.03  TWh,  which  corresponds  to  4.5  million  m3  diesel  and  37.5  %  of  the  total  amount  of  energy  used  that  year.  In  the  same  year,  the  used  amount  of  biodiesel  was  5.42  TWh,  which  correspond  to  0.55  million  m3  biodiesel  and  4.5  %  of  the  total  amount.  (Energimyndigheten  2014)    Non-­‐renewable  fuels  cause  emissions  during  use.  The  earth  now  faces  big  challenges  with  the  increased  earth  temperature  and  the  depletion  of  natural  resources.  Finding  alternative  fuels  to  replace  the  petroleum  based  fuels  or  making  the  non-­‐renewable  fuels  more  effective  are  two  possible  solutions  of  the  problem.  Different  techniques  have  been  developed  and  examined  for  producing  biodiesel.  Either  to  use  directly  in  an  engine  or  as  diluted  into  petroleum  diesel.    (Sun  et  al.  2014)  have  developed  a  method  for  diluting  kraft  lignin  into  fossil  diesel  using  microemulsion.  Kraft  lignin  is  a  residue  from  the  pulp-­‐  and  paper  industry.  Black-­‐liquor  is  normally  combusted  in  order  to  create  combined  heat  and  power  in  the  recovery  boiler.  Technologies  have  been  

52%  

1%  3%  

7%  

37%  

Diesel  fuel  

Natural  gas  

Biodiesel  HVO  

Other  renewable  fuels  

Gasoline  

Page 9: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

9

developed  to  separate  kraft  lignin  from  the  black-­‐liquor.  (Laurichesse  &  Avérous  2014;  Doherty  et  al.  2011)  writes  that  since  there  is  a  surplus  of  kraft  lignin  today,  research  is  performed  to  find  alternative  usages  for  the  material.  In  cases  where  the  recovery  boiler  is  a  bottleneck  in  the  pulp  production,  lignin  can  be  extracted  for  increasing  the  pulp  production.    The  Swedish  energy  politics  is  highly  affected  of  the  decisions  that  are  taken  in  the  European  Union.  The  European  Union  commission  directive  regulates  the  quality  of  petrol  and  diesel  fuels  (Directive  2011/63/EU).  In  Sweden  the  law  of  engine  fuels  regulates  which  engine  fuel  qualities  that  can  be  sold.  It  is  difficult  to  interpret  the  actual  laws  in  in  this  area.  It  is  not  clear  what  applies  in  this  work.  There  is  an  opportunity  that  there  could  be  a  tax  relief  for  the  renewable  part  in  the  lignin  diesel,  which  would  be  tax  free.  But  according  to  the  Swedish  tax  agency,  this  is  not  certain.  An  alternative  way  is  to  produce  and  sell  the  modified  lignin  In  packages  in  the  size  of  one  litre  or  smaller,  since  this  would  be  a  tax  free  product.  This  would  be  a  problem  though,  since  the  emulsifiers  are  not  included  in  the  product  and  complex  equipment  would  be  necessary  to  create  the  microemulsion.  (Swedish  Tax  Agency  2015)  

1.1. Diesel and biodiesel Diesel  oil  is  a  fossil  and  lipophilic  fuel  that  is  produced  from  crude  oil.  The  product  properties  depend  on  its  composition  of  hydrocarbons.  Diesel  has  higher  density  than  gasoline  and  is  used  in  diesel-­‐engines  where  the  ignition  happens  through  compression  which  separates  it  from  the  gasoline  engine  where  the  ignition  is  done  through  a  spark.  Emissions  such  as  CO,  CO2,  NOx,  hydrocarbons,  SOx,  N2O  and  particles  are  exhausted  when  diesel  is  used  in  a  diesel  engine.  (Arnäs  1997)      Biodiesel  is  used  in  a  diesel  engine  in  the  same  way  as  regular  diesel.  The  difference  between  these  fuels  is  that  biodiesel  is  completely  or  partially  renewable.  Biodiesel  has  similar  properties  as  diesel  when  tested  in  a  diesel  engine.  The  emissions  are  primarily  CO,  CO2,  NOx,  SOx  and  particles.  Emissions  of  non-­‐combusted  hydrocarbons  and  NOx  tend  to  be  higher  from  biodiesel  than  regular  diesel.  (Basha  et  al.  2009;  Sun  et  al.  2014)    Biodiesel  is  a  secondary  biofuel,  which  means  that  the  biomass  raw  material  has  to  be  processed  before  use.  This  differs  from  the  primary  biofuels  which  are  used  in  their  original  form  and  not  processed.  Biodiesels  can  be  divided  into  three  different  groups  depending  on  the  raw  material  and  process  used.  The  groups  are  the  first,  second  and  third  generation  of  biodiesels.    The  first  generation  contains  biodiesel  produced  from  substrates  like  seeds,  grains  or  sugars.  The  second  generation  of  substrates  are  lignocellulosic  biomass  and  the  third  generation  is  processed  from  algae  and  sea  weeds.  In  this  work  the  production  of  a  second  generation  biodiesel  is  examined.  These  substrates  does  not  compete  with  food  production,  which  the  substrates  from  the  first  generation  would  do.  There  is  still  though,  a  competition  between  the  food  production  regarding  plantage  area.  The  most  commonly  tested  biodiesel  is  vegetable  oil,  which  is  produced  from  the  first  generation  of  substrates  .  Vegetable  oil  can  be  used  as  a  biodiesel  directly  or  blended  into  petroleum  diesel.  This  creates  a  competition  with  the  production  of  food,  which  increases  the  prices  on  both  food  and  vegetable  oil  biodiesel.  The  use  of  vegetable  oil  in  an  engine  is  a  problem  due  to  the  oils  high  viscosity.  To  avoid  the  high  viscosity  biodiesel  is  mainly  processed  by  four  techniques;  microemulsion,  pyrolysis,  catalytic  cracking  and  transesterification.  (Nigam  &  Singh  2011)  

Page 10: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

10

1.2. Lignin Lignin  is  a  polymer  with  hydrophobic  properties  that  glues  the  celluloses  microfibers  together  with  the  hemicellulose  and  gives  the  cell  walls  their  wooden  properties.  Lignin  strengthens  the  stem  in  the  plant  and  gives  the  cell  walls  its  water-­‐resistant  properties,  which  is  used  to  transport  water  inside  the  plant.  The  tight  structure  of  lignin  on  the  plant  is  protecting  the  tree  from  bacterial  digestion.    (Chabannes  et  al.  2001;  Henriksson  2010;  Sarkanen  &  Ludwig  1971)      

   

Figure  2.  An  example  of  a  lignin  molecule  from  softwood  (Henriksson  2010).  

In  the  pulping  process  the  wood  fibers  are  separated  from  each  other  when  the  lignin  is  removed  in  a  mechanical  or  chemical  process.  In  the  chemical  process,  most  of  the  lignin  is  removed  through  adding  chemicals  which  induce  degradation  of  the  lignin  molecules.  Hydrogen  sulfide  and  hydroxide-­‐ions  make  the  lignin  water  soluble  and  then  it  can  easily  be  washed  away.  (Henriksson  2010)    Based  on  its  complex  structure  (Figure  2)  of  aromatic  and  aliphatic  hydrocarbons,  the  lignin  is  divided  into  different  groups.  The  aromatic  parts  contain  benzene  rings  and  the  aliphatic  parts  contain  hydrocarbon  chains.  Lignin  is  mainly  polymerized  from  three  different  monolignols;  p-­‐coumaryl  alcohol,  coniferyl  and  sinapyl  alcohol.  The  different  monolignols  are  showed  in  Figure  3.  The  monolignols  differ  from  each  other  in  the  amount  of  methoxy  groups  that  are  attached  to  the  benzene  rings.  (Henriksson  2010)    

Page 11: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

11

   Figure  3.  The  different  monomers  that  together  forms  the  lignin  polymer(Henriksson  2010).  

Generally  hardwood  consists  principally  of  coniferyl  and  sinapyl  units  with  just  a  small  amount  of  p-­‐coumaryl  units.  Softwood  mainly  consists  of  coniferyl  alcohol,  smaller  amounts  of  p-­‐coumaryl  alcohol  and  almost  no  sinapyl.  Lignin  from  hardwood  tend  to  have  straighter  and  less  branched  molecules  than  lignin  from  softwood.  This  results  in  a  simplified  production  of  kraft  pulp  from  hardwood.  Another  factor  that  differs  between  lignin  from  softwood  and  hardwood,  is  the  methoxy  groups.  The  methoxy  groups  are  present  in  a  smaller  amount  in  softwood.  (Boerjan  et  al.  2003;  Sjöström  1993;  Henriksson  2010)    (Sjöström  1993)  writes  that  lignin  is  poorly  soluble  in  most  solvents,  which  causes  trouble  when  the  macromolecular  properties  of  lignin  are  investigated.  Therefore,  few  attempts  have  been  made  to  characterize  pure  lignin  and  more  research  has  been  made  on  the  soluble  reaction  products  of  lignin.  The  reaction  products  generally  have  low  viscosity,  which  imply  a  compact  and  spherical  structure  among  the  soluble  lignin  molecules.  According  to  (Henriksson  2015),  lignin  is  not  soluble  in  diesel  oil.  This  makes  the  preparation  of  lignin  diesel  complex.    One  method  for  extracting  the  kraft  lignin  from  the  black-­‐liquor  is  called  Lignoboost.  50  -­‐  70  %  of  the  kraft  lignin  can  be  extracted  trough  this  method.  The  black-­‐liquor  is  taken  from  the  evaporation  plant.  The  kraft  lignin  is  deposited  by  gradually  lowering  the  black-­‐liquor’s  pH  by  adding  CO₂.  Filtration  is  used  to  drain  the  kraft  lignin.  The  kraft  lignin  is  dissolved  in  recycled  water  and  acid  which  results  in  a  slurry.  Cakes  of  almost  pure  kraft  lignin  are  formed  when  the  slurry  is  drained  and  washed  with  acidic  wash  water.  The  remaining  black-­‐liquor  is  returned  to  the  black-­‐liquor  cycle.  (Valmet  2014)  Another  method  for  extracting  lignin  from  black  liquor  is  the  method  from  the  company  Cleanflow  Black.  The  difference  from  the  Lignoboost  process  is  that  a  ceramic  pipe  with  small  holes  in  is  used.  The  black  liquor  flows  through  the  pipe  and  with  low  pressure  inside  the  pipe,  the  lignin  is  extracted  as  small  molecules  through  the  small  holes.  This  gives  a  finer  lignin  powder  with  smaller  molecules.  (Henriksson  2015)    Today  kraft  lignin  is  burned  in  the  recovery  boiler  to  create  combined  power  and  heat  to  the  mill.    (Eriksson  &  Harvey  2004)  study  the  possibility  to  use  biomass  fuels  from  pulp  and  paper  mills  to  produce  energy.  The  surplus  of  biofuel  is  calculated  using  a  model  based  on  the  average  Swedish  market.  The  calculations  show  that  178.4  MW  surplus  of  biomass  fuels  exist  in  a  pulp  and  paper  mill.  (Olsson  et  al.  2006)  examine  how  kraft  lignin  separation  influences  the  combined  heat  and  power  production  in  the  recovery  

Page 12: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

12

boiler.  When  kraft  lignin  is  separated,  the  amount  of  produced  combined  heat  and  power  energy  is  reduced.  Two  models  were  designed  to  describe  a  typical  Scandinavian  pulp  mill.  The  difference  between  the  models  were  the  amount  of  process  water  used  in  the  mills.  The  produced  quantity  of  heat  and  power  decreased  with  30  %  per  year  when  the  amount  of  separated  kraft  lignin  was  as  largest,  which  was  when  36000  ton  lignin  per  year  was  taken  out  of  the  production.    This  amount  corresponds  to  an  energy  content  of  500  GWh  per  year.  

1.2.1. Alternative lignin applications Because  of  its  beneficial  properties,  lignin  is  a  current  research  subject.  (Berghel  et  al.  2013)  used  kraft  lignin  as  an  additive  in  preparation  of  pellets,  which  increase  the  products  mechanical  durability  and  length.  (Herreros  et  al.  2014)  examine  how  cyklohexanol  extracted  from  kraft  lignin  affects  the  emissions  when  mixed  into  diesel  and  used  in  a  diesel  engine.  This  was  proved  to  decrease  the  amounts  of  particles  in  the  emissions  but  increase  the  amount  of  nitrogen  oxides  and  carbonmonoxide.  (Baumlin  et  al.  2006)  and  (Osada  et  al.  2006)  use  different  methods  to  successfully  produce  hydrogen  and  synthesis  gas  respective  carbon  dioxide  and  methane  gas  out  of  kraft  lignin.  (El  Mansouri  et  al.  2011)  use  kraft  lignin  in  the  production  of  phenol  formaldehyde,  Bakelite.  Kraft  lignin  was  proved  to  be  a  good  alternative  material.    (Pan  &  Saddler  2013)  add  kraft  lignin  in  the  production  of  polyurethane  foam  in  order  to  replace  some  of  the  petroleum  material  that  otherwise  was  used.  The  polyurethane  foam  with  a  kraft  lignin  content  of  19  –  23  %  showed  satisfying  properties.    (Li  et  al.  2014)  produce  active  carbon  from  kraft  lignin  which  is  favourable  since  it  is  an  economically  and  environmentally  beneficial  product.  (Dallmeyer  et  al.  2013)  produce  a  non-­‐woven  fabric  with  lignin  content.  The  material  has  shape-­‐memory  and  changes  shape  when  exposed  to  moisture.  When  the  exposure  stops,  the  material  return  to  its  original  form.  This  can  be  useful  in  different  applications.  

1.3. Oxidative ammonolysis (Sun  et  al.  2014)  use  hydrogen  peroxide  and  ammonium  hydroxide  in  order  to  modify  kraft  lignin.  Their  main  reason  is  to  make  the  lignin  water  soluble,  hydrophilic,  in  order  to  be  able  to  use  it  in  a  water-­‐in-­‐oil  microemulsion  together  with  diesel.  The  functional  groups  that  are  bound  to  the  aromatic  rings  are  replaced.  This  decreases  the  number  of  ether-­‐  and  alcoholic  groups  while  the  carbon-­‐oxygen,  carbon-­‐nitrogen  and  carbon-­‐nitrogen-­‐hydrogen  groups  increase.  According  to  (Sun  et  al.  2014),  this  could  increase  the  hydrophilic  properties  of  the  kraft  lignin.  (Capanema  et  al.  2001a)  write  that  the  reaction  mechanism  of  the  oxidative  ammonolysis  of  lignin  has  not  been  established  by  scientists  because  of  its  complexity.  The  oxidative  ammonolysis  can  be  used  in  order  to  break  the  molecular  bonds  inside  the  big  and  complex  lignin  molecule  to  make  smaller  molecules  and  then  adding  some  functional  groups.  This  would  be  beneficial  when  using  the  lignin  diesel  in  an  engine  (Holby  2015).      (Capanema  et  al.  2006;  Capanema  et  al.  2001a)  means  that  an  increased  pH-­‐value  and  a  longer  reaction  time  dissolves  more  lignin  into  water  during  the  oxidative  ammonolysis  reaction.

1.4. Microemulsion Microemulsions  are  homogenous  compounds  consisting  of  water,  oil  and  emulsifier.  A  microemulsion  is  a  dispersed  system  where  the  small  particles  are  in  the  size  from  nano-­‐  to  micrometer  scale.    The  small  particles  do  not  catch  light  and  therefore,  the  

Page 13: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

13

microemulsion  appears  transparent  of  bluish  (Myers  2006).  The  small  particles  are  not  soluble  in  the  other  phase.  At  the  microscopic  level,  the  compound  consists  of  different  domains  of  oil  and  water  kept  together  with  an  amphiphilic  molecular  membrane.  (Holmberg  &  John  Wiley  &  Sons  2003)    (Holmberg  &  John  Wiley  &  Sons  2003)  writes  that  within  a  specific  temperature  interval  the  microemulsion  is  thermodynamically  stable,  depending  on  temperature  and  the  content  of  surface  active  substances.  Outside  this  interval,  the  phases  occur  separated  as  one  water-­‐repellent  and  one  water-­‐soluble  phase.  When  the  conditions  return  to  the  stable  range,  the  microemulsion  will  regenerate.      A  microemulsion  is  spontaneously  formed  when  the  two  liquid  phases  are  combined  with  one  or  more  surface  active  substances.  The  surface  active  species  consists  of  two  parts,  one  hydrophilic  part  and  one  hydrophobic  part.    This  is  presented  in  Figure  4.  The  hydrophilic  part  attracts  water  and  liquids  with  water-­‐like  properties.  The  hydrophobic  part  is  water  repellent  and  therefore  poorly  soluble  in  water.    The  hydrophilic  and  hydrophobic  part  turns  to  the  water  respectively  oil  phase  in  the  compound,  which  creates  the  stable  structure  shown  in  Figure  5.  The  surface  active  compounds  have  both  hydrophilic  and  hydrophobic  properties  and  is  therefore  called  emulsifier  or  surfactant.  (Larsson  2008)    

 Figure  4.  Emulsifier  with  its  hydrophobic  and  hydrophilic  parts.  

According  to    (Holmberg  &  John  Wiley  &  Sons  2003),  the  driving  force  that  makes  the  emulsifiers  willing  to  adsorb  to  a  surface  is  the  released  energy  by  the  interface.  In  most  of  the  cases  an  extra  emulsifier  is  needed  to  make  microemulsions  form  spontaneously,  a  co-­‐emulsifier.  Different  structures  are  formed  in  the  microemulsion  depending  on  the  water-­‐oil  ratio  and  the  choice  of  emulsifiers.  One  method  for  systematic  choose  of  emulsifier  is  by  the  HBL-­‐value.  HBL  stands  for  hydrophilic-­‐  lipophilic  balance  and  describes  at  which  degree  an  emulsifier  is  hydrophilic  or  hydrophobic  (Griffin  1949).  The  HBL-­‐value  is  calculated  according  to  Equation  (1)  (Griffin  1954).  

Page 14: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

14

 𝐻𝐵𝐿 = 20 1− !

!       (1)  

 In  Equation  (1),  S  stands  for  the  saponification  value  and  A  stands  for  the  acidity  constant,  which  measures  how  much  base  that  is  needed  to  saponify  one  unit  of  fat  respectively  neutralize  one  unit  chemical  substance.  The  HBL-­‐value  in  a  water-­‐in-­‐oil  (W/O)  microemulsion  should  be  between  4  –  6  units.    (Griffin  1949)      

 Figure  5.  Surfactant  formation  around  a  water  droplet  surrounded  with  oil.  

Diesel  consists  of  many  different  aliphatic  and  aromatic  hydrocarbons.  These  hydrocarbons  complicate  the  formation  of  W/O  microemulsions  when  low  concentrations  of  one  emulsifier  is  used.  Therefore  combinations  of  emulsifier  and  co-­‐emulsifiers  are  preferably  used  in  these  situations  to  make  the  microemulsion  more  stable.  Midrange  carbon  chains  can  be  used  as  co-­‐emulsifiers  to  facilitate  the  formation  process.  (Holmberg  &  John  Wiley  &  Sons  2003)    For  practical  use  as  part  in  fuels  with  the  purpose  of  supporting  a  sustainable  development,  the  emulsifier  should  easily  burn  without  emitting  smoke.  It  should  neither  contain  sulfur  or  nitrogen.  This  is  limiting  the  choice  of  emulsifiers  since  it  only  can  contain  carbon,  hydrogen  and  oxygen  to  fulfill  the  demands.  The  emulsifiers  are  classified  depending  on  their  hydrophilic  group.  With  these  criteria  non-­‐ionic-­‐,  polyol-­‐  and  sugar  emulsifiers  by  different  kinds  are  usable.  (Kayali  et  al.  2015)    (Lif  &  Holmberg  2006)  writes  that  the  large  amount  of  surfactant  that  is  used  to  create  the  microemulsion  outweigh  the  benefit  with  thermodynamic  stability  because  of  its  high  costs.  In  another  publication  (Kayali  et  al.  2015)  show  that  a  microemulsion  by  the  W/O  type  reduces  emissions  such  as  NOx,  soot  and  CO₂  when  used  in  a  diesel  engine.  When  the  engine  was  running  at  low  speed,  the  emissions  of  CO  were  also  reduced.    (Ahmad  &  Gollahalli  1994)  writes  that  water  blended  into  diesel  through  microemulsion  reduces  the  emissions  by  NOx  and  CO  during  use  in  a  diesel  engine.    (Kayali  et  al.  2015)  also  write  that  the  amount  of  emulsifier  that  is  used  to  create  the  microemulsion  is  reasonable  and  a  good  alternative  when  developing  alternative  fuels  because  of  its  potential  of  reducing  the  mainly  air  pollutants  that  is  emitted  during  use  in  a  diesel  engine.  

Page 15: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

15

1.4.1. Ultrasonification Ultrasonification  technique  has  recently  been  used  with  the  purpose  of  creating  stable  emulsions  by  decomposition  of  the  chemical  species  (Schramm  2005).  The  ultrasonification  creates  an  ultrasound  wave  propagation  in  the  liquid.  This  makes  the  liquid  flow  in  the  same  direction  as  the  propagation,  which  is  called  acoustic  streaming.  The  high  power  ultrasonic  preparation  of  a  solution  creates  cavitation  bubbles  and  the  collapse  of  these  bubbles.  During  the  collapse  of  the  bubbles,  high  speed  microjets  ,  microstreaming  and  shockwaves  are  produced.  The  effects  of  these  activities  is  that  the  preparation  of  oil-­‐in-­‐water  emulsions  is  more  effective  according  to  (Imazu  &  Kojima  2013).  (Sargolzaei  et  al.  2011)  writes  that  when  the  bubbles  collapse  near  the  interface  of  the  two  immiscible  liquids,  this  helps  the  phases  to  disrupt  into  each  other.    

1.5. Statistical model MODDE   is   a   software   that   is   used   to   create   experimental   plans,   screen   the   influential  factors   and  predict   the  outcome  of   future  experiments  within   the   same  variable   span.  The   process   for   creating   a   predictive   model   can   be   described   in   mainly   three   steps;  value   the   raw   data,   regressions   analysis,   interpretation   of   the   model   and   finally  regression  model  application.  (Eriksson  2008)  

1.5.1. Model design In  this  work,  a  response  surface  model  is  created  in  the  software  MODDE.  This  model  enables  screening  investigations  and  determines  the  yield  of  the  factors  significance  after  optimization.  The  model  can  be  used  as  a  predictive  tool  for  further  investigations  within  same  range  of  factors.  The  design  used  in  this  work  were  the  CCF  design,  which  is  a  central  composite  face-­‐centred  design.  This  means  that  there  is  one  middle  point.  For  understanding  how  the  factors  affects  the  middle  point,  each  factor  has  three  levels.  which  gives  a  graphic  picture  of  a  cube  as  shown  in  Figure  6.  The  practical  consequence  of  this  is  that  each  factor  will  vary  with  three  different  values.  (Eriksson  2008)      

 Figure  6.  CCF  structure.  

1.5.2. Evaluation of raw data The  raw  data  was  evaluated  using  the  plot  of  replications  in  MODDE.  The  plot  of  replication  is  a  graphic  tool  that  shows  the  response  value  for  each  experiment.  Observing  this  plot  can  reveal  any  deviating  values,  which  if  not  excluded  can  make  the  

Page 16: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

16

model  useless.  If  the  variance  between  the  values  is  big  the  model  can  also  be  impracticable.  (Eriksson  2008)    The  condition  number  describes  how  well  the  design  performance  of  the  experiment  is  executed.    The  conditions  described  as  the  ratio  between  the  longest  and  shortest  design  diagonal  values  of  the  experiments,  as  shown  in  Figure  7.  A  symmetrical  model  is  preferred  for  achieving  a  good  spectrum  of  the  experiments.  There  are  some  guide  lines  when  it  comes  to  the  condition  number.  For  achieving  a  good  optimization  design,  the  condition  number  should  be  lower  than  eight.  The  geometry  of  the  model  is  shown  in  the  scatter  plot,  which  also  is  a  valuable  tool  after  finding  the  condition  number.  The  scatter  plot  shows  whether  the  design  is  symmetrical  or  not.  Even  though  the  geometry  is  skewed,  the  design  can  be  used  if  the  condition  number  is  low.  The  scatter  plot  is  more  useful  in  investigations  with  few  factors  and  responses.  It  is  even  an  impractical  tool  in  situations  where  there  are  more  that  4  factors  and/or  4  responses.  (Eriksson  2008)  

 Figure  7.  Symmetrical  and  unsymmetrical  model.  

The  histogram  is  a  tool  that  describes  the  statistical  properties  of  the  raw  data.  It  is  beneficial  to  have  normally  distributed  data.  Together  with  the  descriptive  statistics  of  response,  a  lot  of  information  can  be  gained  from  the  statistic  information  of  the  model.  (Eriksson  2008)  

1.5.3. Regression analysis and model interpretation If  the  plot  of  replications  does  not  show  any  deviating  values,  the  next  step  in  the  process  is  the  regression  analysis  and  model  interpretation  step.  One  important  tool  for  this  step  is  the  R2/Q2  tool.  This  tool  consists  of  two  parameters,  R2  and  Q2.  R2  is  called  the  goodness  of  fit  and  is  a  value  used  for  measuring  how  good  the  regression  model  can  be  made  to  fit  the  raw  data.  This  parameter  has  values  between  0  –  1  where  the  value  1  corresponds  to  a  perfect  model.  A  disadvantage  with  the  R2  parameter  is  that  it  can  be  arbitrarily  modified  to  the  value  1  by  including  more  terms  into  the  model.  The  parameter  Q,  which  is  called  the  goodness  of  prediction,  is  an  indicator  of  the  models  ability  to  predict  outcomes  of  experiments.  This  is  a  better  validity  of  a  regression  model  

Page 17: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

17

than  the  R2  value  because  it  estimates  the  final  goal  of  modelling,  prediction.  The  Q2  value  lies  between  –∞  and  1,  where  1  indicates  a  perfect  model.  To  determine  whether  a  regression  model  is  useful  or  not,  the  combination  of  the  R2  and  Q2  values  is  examined.  These  values  should  both  be  close  to  the  value  1  and  the  difference  between  them  should  maximum  be  0,2  –  0,3  units.  Generally  the  value  of  Q2>0.5  is  seen  as  good  and  Q2>0.9  indicates  that  an  excellent  model  has  been  created.(Eriksson  2008)    The  coefficient  plot  is  a  tool  that  is  used  for  model  interpretation  and  cleaning  among  the  raw  data.  When  the  R2/Q2  analysis  is  satisfied,  the  coefficient  plot  is  scrutinized.  In  this  plot  the  small  value  factors  are  seen  as  insignificant.  Those  factors  have  small  influence  on  the  response  factors  and  can  be  eliminated  in  order  to  get  better  prediction  ability.  The  large  value  bars  have  big  influence  on  the  response  factor  and  those  are  supposed  to  be  used  for  getting  the  wanted  result.  (Eriksson  2008)    Multi  linear  regression  (MLR)  is  a  statistic  model  that  describes  a  process  or  a  condition.  The  model  examines  if  there  is  a  statistical  relation  between  the  response  variable  y  and  the  independent  variables  x1,  x2,  …,  xn.  This  relation  is  described  in  Equation  (2).    𝑦 = 𝛽! + 𝛽! ∗ 𝑥!…+ 𝛽! ∗ 𝑥! + 𝜀       (2)    In   Equation   (2)   βn   represents   the   regression   coefficient   and   ε   is   the   random   error  between  the  expected  and  the  observed  y-­‐value.  Classically  the  error  term  is  assumed  to  follow  the  normal  distribution  E(ε)=0  and  the  constant  variance  Var(ε)=σ2.  The  purpose  of  using  MLR  is  creating  a  temporary  relation  between  the  response  variable  y  and  the  independent  variables  x1,  x2,  …,  xn.  Furthermore  the  opportunity   to  predict  how  the  y-­‐value  varies  with  different   combinations  of   x1,   x2,  …,   xn.  The  model  enables  evaluating  which  independent  variables  that  are  more  important  than  others.  This  means  that  the  response  variable  can  be  explained  more  effectively  and  precisely.  (Yan  &  Su  2009)    The  regression  analysis  in  this  work  is  examined  by  two  methods,  ANOVA  and  normal  probability  plot  of  residuals.  ANOVA  is  short  for  analysis  of  variance.  ANOVA  is  used  for  analyzing  variances  through  statistical  methods.  When  a  hypothesis  is  established,  its  significance  can  be  tested  through  the  use  of  random  samples  and  standard  deviation.(Hassmén,  Peter  &  Koivula,  Nathalie  1996)    In  MODDE,  ANOVA  does  two  tests  that  are  calculating  different  types  of  variability  in  the  response  data  and  the  probability  value,  p.  The  first  test  estimates  the  significance  of  the  regression  model.  The  p  value  for  this  test  is  satisfying  when  p  <  0.05.  The  other  test  is  measuring  the  lack  of  fit  value,  which  describes  the  model  error  and  replicate  error.  The  lack  of  fit  test  can  only  be  performed  when  replicate  experiments  have  been  performed.  (Eriksson  2008)    The  normal  probability  plot,  N-­‐plot,  is  used  for  finding  deviating  experiments  and  responses.  In  the  plot,  the  horizontal  axis  corresponds  to  the  numerical  response  values  divided  by  the  standard  deviation.  The  vertical  axis  corresponds  to  the  normal  probability  in  the  distribution  of  the  residuals.  A  straight  line  that  has  to  go  through  the  point  (0,  0.50)  is  drawn  by  eye  through  the  majority  of  the  values.  Points  in  the  plot  that  do  not  lie  close  to  that  line  can  be  suspected  as  deviating  values.  On  the  horizontal  axis  the  areas  lower  than  -­‐4  and  higher  than  4  are  exclusion  areas.  This  means  that  values  

Page 18: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

18

that  are  in  this  area  should  be  excluded  from  the  model  because  these  values  are  considered  as  statistically  significant  deviating  values.  The  values  that  are  within  the  ±4  area  and  outside  the  ±3  area  on  the  horizontal  axis  have  to  be  carefully  considered,  since  these  values  can  be  considered  as  extreme  values.  Deviating  values  that  are  found  can  be  excluded  from  the  model.  In  order  to  have  a  useful  regression  model,  the  amounts  of  points  in  the  N-­‐plot  have  to  be  at  least  12  –  15  points.  (Eriksson  2008)  

1.6. Aims and objectives The  aim  of  the  study  is  to  prepare  a  lignin  diesel  by  creating  a  microemulsion  between  petroleum  diesel  and  modified  kraft  lignin.  The  lignin  diesel  has  earlier  been  prepared  by  (Sun  et  al.  2014)  and  the  method’s  feasibility  is  tested.    To  achieve  the  aim  of  the  study,  the  following  objectives  should  be  met:  

• Evaluate  if  oxidative  ammonolysis  can  be  used  for  dissolving  lignin  into  water.  • Examine  if  a  microemulsion  can  be  created  between  modified  lignin  and  

petroleum  diesel.    • Analyse  how  the  amount  of  dissolved  in  water  is  affected  by  variations  in  pH-­‐

value,  reactions  time  and  water  content.  • Create  a  statistical  model  which  describes  how  the  lignin’s  solubility  in  water  is  

affected  by  variations  during  the  reaction  in  pH-­‐value,  reaction  time  and  water  content.  

• Evaluate  if  the  statistical  model  can  be  used  for  prediction  of  the  outcome  of  experiments  within  the  same  range.  

• Calculate  the  operational  cost  for  producing  the  lignin  diesel,  including  costs  of  chemicals  and  the  electricity  consumption  during  the  production.  

2. Method In  this  section,  the  methods  in  this  work  are  described  in  the  following  sections.  The  sections  are  divided  into  three  main  parts;  the  experimental  part  of  the  work,  the  creation  of  the  statistical  model  and  the  theoretical  operational  cost  estimation.  

2.1. Experiments In  the  following  section  the  experimental  method  are  described  divided  into  the  sections;  chemicals,  equipment  and  laboratory  method.  

2.1.1. Chemicals In  the  experiments  all  of  the  chemicals  except  for  diesel  and  lignin  were  taken  from  Karlstad  University  department  of  chemical  engineering.  The  chemicals  that  were  used  were  hydrogen  peroxide  with  concentration  30  %,  ammonium  hydroxide  with  concentration  25  %  and  sodium  hydroxide  with  concentration  1  mole/litre.  The  surfactants  that  were  used  were  SPAN-­‐80  and  n-­‐butanol.  Distilled  water  was  obtained  from  the  university’s  distilled  water  production.  The  diesel  that  was  used  was  tax-­‐free  diesel  received  from  BYCOSIN  in  Karlstad.  Lignin  in  powder  form  was  received  from  Cleanflow  Black  AB’s  production.    

2.1.2. Equipment In  the  experiments,  a  water  bath,  OBN  28,  from  Heto  together  with  a  temperature  controller  device,  HMT  200,  from  Heto  were  used.  Stirring  devices,  IKA  RW  20  DZM.n  from  Buch  &  Holm  were  used.  The  reaction  vessel  was  a  three-­‐necked  flask  with  

Page 19: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

19

rounded  bottom.  The  reaction  vessel  has  a  volume  of  800  ml.  A  pH-­‐meter  (model  3320)  from  Jenway,  equipped  with  one  pH-­‐meter  electrode  and  one  temperature  electrode  was  used  to  measure  the  pH-­‐value  and  temperature.  The  filter  paper  that  is  used  in  the  experiments  is  MUNKTELL  Analytical  Filter  Papers  of  quality  5,  which  is  a  qualitative  filter  paper  with  weight  130  g/m2.  The  filter  paper  has  a  filtration  speed  of  1000  ml/min  through  a  100  cm2  area.    The  combined  drying  and  heating  chamber  used  was  of  the  brand  Binder.  The  sonication  device  used  was  Branson  Sonifier  450  with  a  3  mm  tapered  microtip  from  Branson  Ultrasonics  Corporation.  

2.1.3. Laboratory method Figure  8  presents  a  flow  chart  that  describes  the  process  of  creating  the  lignin  diesel.  This  process  was  divided  into  two  steps.  The  first  step  was  the  process  in  which  the  lignin  powder  was  modified  through  oxidative  ammonolysis.  The  second  step  was  creating  the  microemulsion  with  diesel,  modified  lignin  and  emulsifiers.    

 

 Figure  8.  Process  flow  chart,  step  1  and  2.  

In  the  oxidative  ammonolysis,  three  batches  were  made.  According  to  the  experimental  plan,  each  batch  had  different  pH-­‐value.  The  batches  were  made  with  the  same  amounts  of  hydrogen  peroxide,  ammonium  hydroxide,  distilled  water  and  lignin  powder.  This  is  presented  in  Table  1.    

Page 20: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

20

 Table  1.  Chemicals,  step  1.  

Chemical   Portion  (weight  unit)  Lignin   1  Distilled  water     10  Ammonium  hydroxide   1,8  Hydrogen  peroxide   0,15    First,  the  water  bath  was  set  to  65°C  and  the  reaction  vessel  was  placed  in  the  water  bath.  Lignin  powder  was  placed  in  the  reaction  vessel.  Distilled  water  was  poured  into  the  closed  vessel  through  the  neck  during  agitation.  While  the  lignin-­‐mixture  was  tempered,  ammonium  hydroxide  was  mixed  together  with  hydrogen  peroxide  in  a  round  flask  using  a  magnetic  stirrer.  When  the  lignin-­‐mixture  had  reached  the  temperature  of  65°C,  parts  of  the  mixed  ammonium  hydroxide  and  hydrogen  peroxide  were  poured  into  the  reaction  vessel  every  five  minutes.  All  of  the  ammonium  hydroxide-­‐hydrogen  peroxide-­‐mixture  was  carefully  added  into  the  reaction  vessel  after  20  minutes.  (Sun  et  al.  2014)    The  pH-­‐value  varied  in  the  batches  and  the  different  values  were  9.7,  10.85  and  12  pH-­‐units.    Without  any  pH  modification,  all  three  of  the  batches  had  the  pH-­‐value  9.7.  In  the  batches  where  the  pH-­‐value  was  supposed  to  be  10.85  and  12,  sodium  hydroxide  was  added  until  the  desired  pH-­‐value  was  reached.      The  vessel  was  kept  in  the  water  bath  with  agitation  during  varying  reaction  time.  The  different  reaction  times  were  given  the  discrete  values  of  18,  21  and  24  hours.  At  these  different  times,  samples  were  taken  out  of  the  reaction  vessel.      The  last  parameter  to  vary  was  the  amount  of  water  in  the  modified  lignin.  Evaporation  was  used  to  obtain  the  desired  amounts  of  water  content.    The  water  content  was  calculated  in  comparison  with  the  original  amount  of  water  in  the  modified  lignin  when  the  samples  were  taken  out  of  the  vessel  and  the  water  content  were  100  %,  74.5  %  and  49  %.    The  water  content  was  calculated  based  to  the  sample  weight  and  the  amounts  of  added  lignin,  water  and  in  some  samples  sodium  hydroxide.  To  predict  the  time  at  which  the  water  content  should  contain  the  right  amount  of  water,  the  evaporation  rate  was  calculated.  The  modified  lignin  samples  containing  the  water  content  100  %  were  placed  in  a  fume  hood  during  one  hour  in  order  for  the  ammonia  gas  to  take  off.  The  modified  samples  were  placed  in  small  reservoirs  with  lids.  The  samples  were  then  filtrated  with  a  pre-­‐weighed  filter  paper.  The  filter  papers  were  after  filtration  placed  in  an  oven  at  105°C  during  4  h  for  drying.  After  4  h,  the  filter  paper  was  weighed  and  then  the  amount  of  dissolved  lignin  was  calculated  using  the  added  amount  of  lignin  powder  in  the  beginning  of  step  one.    In  the  second  step  of  the  process,  the  amounts  of  chemicals  that  were  used  are  described  in  Table  2  (Sun  et  al.  2014).  Not  all  of  the  samples  from  step  1  were  used  in  step  2.  Three  samples  were  selected  to  be  used  in  step  2.  The  samples  from  step  one  with  the  highest  dissolution  ratio  in  each  batch  were  selected.    

Page 21: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

21

Table  2.  Chemicals,  step  2.  

Chemical   Vol  %  Diesel   82,4  SPAN-­‐80   6  n-­‐butanol   1,6  Modified  Lignin   10    In  step  2,  diesel  was  poured  in  a  vessel  without  lid.  SPAN-­‐80  and  n-­‐butanol  were  added  during  agitation  (Schramm  2005).  When  the  mixture  was  evenly  mixed,  the  modified  lignin  was  slowly  dropped  into  the  vessel  using  a  pipette.  After  one  hour  with  vigorous  agitation,  one  sample  was  taken  out  of  each  batch  and  placed  in  a  sampling  tube.  (Sargolzaei  et  al.  2011)    After  one  hour,  the  batches  were  placed  in  a  Styrofoam  container  filled  with  ice  in  order  to  prevent  the  temperature  from  rising  during  the  sonication  process  (Branson  Ultrasonics  Corporation  2011).  The  sonifier  tip  was  placed  one  cm  under  the  microemulsion  surface  in  the  vessel.  The  vessel  had  a  diameter  of  10  cm  and  the  total  volume  of  lignin  diesel  in  the  vessel  was  500  ml.  The  sonication  device  was  set  to  a  continuous  pulse  with  the  power  of  100  W.  The  sample  was  sonified  during  10  minutes  (Imazu  &  Kojima  2013).  Samples  were  taken  out  and  put  in  sampling  tubes,  which  were  placed  in  a  rack.      The  stabilization  test  was  performed  by  observation  of  the  samples  during  three  weeks  time.  Photos  were  taken  of  the  sampling  tubes  at  different  time  intervals.  The  photos  were  observed  in  order  to  see  any  changes  in  the  samples  over  time.(Panapisal  et  al.  2012)  

2.2. Design of experiments The  experimental  plan  was  developed  in  the  software  MODDE  7.  The  process  of  model  creation  is  described  below  in  the  subsections;  parameters,  experimental  plan,  statistical  plan.    

2.2.1. Factor and response design A  response  surface  model  was  chosen.  After  some  initial  experiments,  three  different  factors  were  determined  to  have  great  influence  in  the  oxidative  ammonolysis  process.  Those  factors  were  reaction  time,  pH-­‐value  and  water  content  after  the  oxidative  ammonolysis  process  and  these  were  added  into  the  factor  spread  sheet  in  MODDE.    All  factors  were  quantitative  factors  and  therefore,  a  value  range  was  set.  The  factors  were  also  controllable  by  changing  the  experimental  settings.  For  the  reaction  time,  the  lower  boundary  value  was  set  at  18  h,  which  was  based  on  logistical  reasons.  The  upper  boundary  was  set  at  24  h,  which  was  based  on  the  investigations  made  by  (Capanema  et  al.  2001a)  where  reaction  activity  was  examined  during  1455  minutes.  The  pH-­‐value  was  measured  in  the  standard  oxidative  ammonolysis  without  addition  of  sodium  hydroxide,  and  this  value  was  set  to  the  lower  limit  in  the  pH-­‐factor.    (Capanema  et  al.  2006)  tested  oxidative  ammonolysis  at  the  pH-­‐value  12.7.  To  be  sure  that  the  pH-­‐value  was  reachable,  the  upper  level  was  set  to  a  pH-­‐value  of  12  units.  The  water  content’s  upper  limit  was  set  to  100  %  of  the  original  amount  of  water  in  the  test.    (Sun  et  al.  2014)  write  that  the  modified  lignin  was  poured  into  the  microemulsion  preparation.  

Page 22: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

22

This  information  was  used  to  define  the  lower  limit  of  the  water  content.  An  experiment  was  performed  to  examine  by  which  amount  of  water  content  the  modified  lignin  was  in  fluid  form.  The  experiment  showed  that  the  modified  lignin  could  be  poured  at  the  water  content  49  %  of  the  original  amount,  which  was  set  as  the  lower  limit  in  MODDE.      Since  the  solubility  of  lignin  in  water  affects  the  ability  of  creating  a  microemulsion  between  the  modified  lignin  and  diesel,  this  was  set  as  the  response  factor  in  MODDE.  The  measurement  of  the  dissolved  lignin  is  described  in  the  laboratory  method  section.    

2.2.2. Experimental plan When  these  parameters  were  added  into  the  MODDE  software  an  experimental  plan  was  presented.  The  plan  described  which  combination  of  these  factors  that  was  to  be  used  during  the  laboratory  work.  The  amount  of  design  runs  were  set  as  15  experiments,  which  are  presented  in  Table  3.  No  replicate  experiments  were  performed.    Table  3.  Experimental  plan.  

Experiment  number  

Experiment  name  

Reaction  time  (h)  

pH-­‐value   Water  content  (%)  

1   N1   18   9.7   49  2   N2   24   9.7   49  3   N3   18   12   49  4   N4   24   12   49  5   N5   18   9.7   100  6   N6   24   9.7   100  7   N7   18   12   100  8   N8   24   12   100  9   N9   18   10.85   74.5  10   N10   24   10.85   74.5  11   N11   21   9.7   74.5  12   N12   21   12   74.5  13   N13   21   10.85   49  14   N14   21   10.85   100  15   N15   21   10.85   74.5      MODDE  also  suggested  a  run  order  for  the  experiments.  This  run  order  was  not  followed  because  of  the  simplification  when  three  batches  of  different  pH-­‐values  could  be  produced  instead  of  15  different  batches.  

2.2.3. Optimization When  the  amount  of  dissolved  lignin  was  calculated  after  the  laboratory  work,  the  values  were  added  into  the  response  column  in  MODDE.  The  following  process  of  creating  a  useful  model  for  prediction  is  described  below.    The  raw  data  were  entered  and  examined  in  MODDE  software.  First,  the  replicate  plot  was  examined  for  finding  possible  extreme  values.  If  those  were  to  be  found  in  this  plot,  their  exclusion  was  considered.  Second,  the  condition  number  in  the  first  design  was  examined.  If  it  was  lower  than  the  boundary  value  eight  and  no  changes  were  performed.  The  scatter  plot’s  symmetries  were  examined  and  evaluated.  The  histogram  

Page 23: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

23

of  response  was  used  for  evaluating  the  statistical  information  of  the  raw  data.  The  histogram  was  compared  to  a  normal  distributed  curve  and  evaluated.    When  the  evaluation  of  raw  data  was  finished,  the  model  interpretation  and  regression  analysis  were  the  next  steps  in  the  process  of  creating  a  predictive  model.  The  R2/Q2  plot  was  examined.  If  the  values  were  not  sufficient,  exclusion  of  values  was  considered.  The  coefficient  plot  was  examined  in  order  to  reveal  any  factors  that  either  affect  the  response  factor  or  do  not  affect  the  response  factor.  The  factors  with  small  bars  were  excluded.  For  evaluating  the  models  predictive  ability,  the  ANOVA  table  and  its  reference  values  were  analysed.  The  normal  probability  plot  of  residuals  and  its  warning  boundary  values  were  analysed.  Possible  factors  in  the  region  outside  the  -­‐4  <  x  <  4,  were  to  be  immediately  excluded  while  the  points  in  the  region  between  ±3  and  ±4  were  carefully  considered  before  evaluating.    

2.3. Calculation of operational cost The  operational  costs  were  calculated  depending  on  the  material  cost  of  chemicals.  The  prices  were  obtained  from  (Sigma-­‐Aldrich  2015),  which  are  presented  in  Table  4.    The  quality  of  the  distilled  water  is  assumed  be  chemically  purified  water,  its  price  being  assumed  to  be  the  same  as  Swedish  tap  water.  No  cost  data  for  kraft  lignin  were  obtained  because  of  confidentiality.  The  price  of  lignin  powder  was  calculated  using  the  assumption  that  1  MWh  outtaken  amount  of  lignin  in  the  recovery  boiler  is  replaced  with  1  MWh  of  forest  by-­‐products.  The  price  of  forest  by-­‐products  (Skogsstyrelsen  2014)  was  used  to  calculate  the  corresponding  lignin  price.  The  operational  cost  of  1  litre  lignin  diesel  was  calculated  using  the  lignin  and  chemical  prices  and  the  electrical  cost.  The  lignin  diesel  operational  cost  when  ordered  in  bulk  volume  were  calculated  based  on  the  assumption  that  ordering  bulk  volume  reduces  the  price  to  a  level  of  10  %  of  the  original  price  per  litre  (Andersén  2015).  This  does  not  include  the  distilled  water  and  lignin  powder  since  those  prices  are  assumed  not  to  vary  in  bulk  order.      The  amount  of  electricity  used  in  the  production  of  lignin  diesel  were  obtained  from  (Botström  2015).  The  calculated  amount  of  electricity  was  0.008265  kWh  per  produced  litre  lignin  diesel.  The  electricity  price  was  obtained  from  (Statistics  Sweden  2015)  and  describes  the  average  price  for  industrial  consumers  during  the  period  July  –  December  2014.  Depending  on  the  annual  consumption,  the  price  for  electricity  varies  between  0.43  –  1.23  SEK/kWh.  The  electricity  cost  was  added  to  the  calculated  chemical  cost  to  get  the  operational  cost.  The  cost  variation  in  historical  diesel  prices  were  examined  and  compared  with  the  lignin  diesel  operational  cost.    Table  4.  Chemical  cost  per  litre.  

Chemical   Amount  per  litre  lignin  diesel  (l/l)  

Price  (SEK/l)  

Lignin  Powder   0.0105   1.56  Distilled  Water   0.0738   0.025  Ammonium  Hydroxide   0.0148   365.04  Hydrogen  Peroxide   0.0009   600.00  SPAN-­‐80   0.0600   1650.83  n-­‐butanol   0.0160   548.55  Diesel   0.8240   13.60  

Page 24: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

24

3. Results In  this  section,  the  results  of  the  work  are  presented.  The  first  subsection  is  the  solubility  test  continue  with  the  statistical  analysis  and  stabilization  test  of  the  produced  lignin  diesel.  The  operational  costs  are  presented  in  the  end  of  this  section.  

3.1. Solubility The  amount  of  dissolved  lignin  in  the  different  samples  from  step  1  in  the  process  is  presented  in  Table  5.    Table  5.  Experiments  amount  of  dissolved  percentage  of  lignin.  

Experiment   Reaction  time  (h)   pH-­‐value   Water  content  (%)   Dissolved  lignin  (%)  

N1   18   9.7   49   48.21  N2   24   9.7   49   50.62  N3   18   12   49   99.37  N4   24   12   49   98.49  N5   18   9.7   100   62.84  N6   24   9.7   100   80.03  N7   18   12   100   98.79  N8   24   12   100   99.77  N9   18   10.85   74.5   92.68  N10   24   10.85   74.5   95.67  N11   21   9.7   74.5   74.08  N12   21   12   74.5   99.20  N13   21   10.85   49   83.69  N14   21   10.85   100   97.16  N15   21   10.85   74.5   94.08    It  is  clear  that  the  samples  where  the  pH-­‐value  was  higher,  had  the  highest  solubility  of  lignin.  The  amount  of  dissolved  lignin  varies  from  almost  100  %  to  about  half  of  that  percentage.  The  values  that  are  closest  to  100  %  in  Table  5,  are  the  experiments  from  the  batches  with  the  higher  pH-­‐values.  The  lowest  dissolved  values  is  represented  as  the  batch  with  the  pH-­‐value  of  9.7  units.  This  is  the  most  apparent  trend  at  this  point  of  the  model  evaluation.  The  samples  used  in  step  2,  which  were  the  best  values  from  each  batch  in  step  1,  were  sample  N6,  N8  and  N14.    

3.2. Regression model The  statistical  analysis  is  divided  into  three  parts;  evaluation  of  raw  data,  model  optimization  and  use  of  model.  The  results  from  all  of  these  steps  are  presented  in  the  following  subsections.  

3.2.1. Evaluation of raw data The  replicate  plot  is  showed  in  Figure  9.    

Page 25: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

25

 Figure  9.  Replicate  plot.  

In  Figure  9,  there  are  not  extreme  values  and  the  software  does  not  declare  any  warning  messages  about  the  values.  Therefore,  no  changes  were  made  among  the  raw  data.  The  condition  number  without  any  changes  in  the  raw  data  is  4.3973.  Which  indicates  a  good  model  since  it  is  lower  than  eight.  The  scatter  plots  is  shown  in  Figure  10  -­‐  13.    

 Figure  10.  Scatterplot,  dissolved  lignin  depending  on  run  order.  

 Figure  11.  Scatter  plot,  dissolved  lignin  depending  on  reaction  time.  

Page 26: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

26

 Figure  12.  Scatter  plot,  dissolved  lignin  depending  on  pH-­‐value.  

 Figure  13.  Scatter  plot,  dissolved  lignin  depending    on  water  content.  

In  Figure  10  -­‐  13,  the  values  are  not  perfectly  symmetrical  in  their  first  performance.  Figure  9  has  mostly  spread  values.  Figure  11  and  13  has  a  very  symmetrical  look.  Figure  12  is  not  that  symmetrical  but  still  the  values  are  collected  into  three  areas  of  the  plot.  The  overall  evaluation  indicates  is  a  good  symmetry.  In  combination  with  the  low  condition  number  this  indicates  that  the  model  is  well-­‐conditioned.    

 Figure  14.  Histogram  of  dissolved  lignin.  

The  histogram  that  describes  the  statistical  properties  of  the  model  is  shown  in  Figure  14.  The  data  and  bars  in  Figure  13  is  normal  distributed  but  skewed  to  the  right.  This  is  also  visible  is  Figure  15,  which  presents  the  statistical  data  in  a  Box-­‐Whisker  plot.        

Page 27: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

27

 Figure  15.  Box-­‐Whisker  plot  of  dissolved  lignin.  

Figure  15  is  telling  us  the  same  information  as  Figure  14,  just  with  a  different  graphical  tool.  In  fig  14  and  15  the  data  is  skewed.  This  means  that  the  response  values  in  the  allowed  range  has  values  in  the  higher  part  of  the  range.  

3.2.2. Optimization  

 Figure  16.  R2/Q2  plot.  

Figure  16  shows  the  R2/Q2  plot  in  the  original  performance  without  any  changes.  The  R2  bar  is  close  to  the  value  1.  This  indicates  an  excellent  model  in  the  factor  of  goodness  of  fit.  As  expected,  the  Q2  is  lower  than  the  R2  bar.  Since  the  Q2  value  is  higher  that  0.5  units  

Page 28: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

28

and  this  is  a  good  value  of  the  goodness  of  prediction.  The  difference  in  values  between  the  bars  is  approximately  0.23.  The  value  is  lower  than  0.3,  which  is  preferable.    

 Figure  17.  Coefficient  plot  of  factors.  

Figure  17  shows  the  coefficient  plot.  The  small  bars  indicate  that  the  corresponding  factors  do  not  affect  the  response  factor.  These  factors  were  excluded  from  the  model  and  the  refined  coefficient  plot  is  presented  in  Figure  18.  The  exclusion  decreased  the  difference  between  R2  and  Q2  bars,  and  lowered  the  condition  number  to  3.9193.  The  reaction  time  alone  does  not  affect  the  response  value.  Neither  in  pair  with  itself,  the  pH-­‐value  factor  or  the  water  content  factor,  the  reaction  time  factor  had  influence  on  the  response  factor.  The  pH-­‐value  has,  according  to  Figure  18,  the  highest  influence  on  the  response  factor.  The  water  content  factor  also  affects  the  response  factor,  but  not  as  much  as  the  pH-­‐value  factor.    

 Figure  18.  Coefficient  plot,  excluded  version.  

Table  6  presents  the  ANOVA  table  based  on  the  response  values.  The  important  number  to  observe  in  this  table  is  the  probability  value,  p.  p  was  calculated  as  0.000  in  the  ANOVA  analysis,  this  is  a  very  good  value.  The  lack  of  fit  test  could  not  be  performed  since  no  replicate  runs  were  included  in  the  model.    

Page 29: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

29

Table  6.  ANOVA  table,  dissolved  lignin.    

Dissolved  Lignin  

DF   SS   MS  (variance)   F   p   SD  

Total   14   10.8943   0.778163        Constant   1   10.4894   10.4894                      Total  correction  

13   0.404869   0.0311438       0.176476  

Regression   6   0.400695   0.0667825   111.993   0.000   0.258423  Residual   7   0.00417417   0.000596309       0.0244194                Lack  of  fit   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐  (Model  Error)  

           

Pure  Error   -­‐-­‐   -­‐-­‐   -­‐-­‐       -­‐-­‐  (Replicate  Error)  

           

                N  =  15   Q2  =   0.950   Cond.  

No.  =  3.7607    

  DF  =  8   R2  =   0.990   Y-­‐miss  =   0         R2  Adj.  =   0.981   RSD  =   0.0244      Figure  19  presents  the  normal  probability  plot  of  residuals.  All  of  the  points  are  inside  the  ±3  area  except  from  point  5  which  is  outside  the  ±4  area  on  the  horizontal  scale.  This  point  was  excluded,  which  lowered  the  condition  number  to  3.7607.  This  changed  the  R2/Q2  even  more,  which  is  presented  in  Figure  20.  The  Q2  bar  is  above  the  0.9  limit.    

 Figure  19.  Normal  probability  plot  of  residuals.  

Page 30: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

30

 Figure  20.  R2/Q2  plot  after  point  exclusion.  

 

3.2.3. Use of model In  Figure  21  the  response  contour  plot  is  presented.    

 Figure  21.  Response  contour  plot.  

 Figure  21  shows  the  correlation  and  influence  the  factors  have  on  the  response  value.  The  water  content  and  the  pH-­‐value  factors  are  presented  at  the  vertical  respective  the  horizontal  axis.  The  three  pictures  represent  the  different  reaction  times.  The  small  boxes  attached  to  the  lines  are  the  amount  of  dissolved  lignin  at  that  line.  The  scale  indicates  the  highest  amount  of  dissolved  lignin  in  the  red  area  and  the  smallest  values  are  coloured  blue.  In  all  of  the  three  plots,  the  highest  amount  of  dissolved  lignin  is  in  the  upper  right  corner.  There  is  a  small  curve  in  the  upper  right  corner,  which  indicates  that  there  is  a  small  interaction  between  the  two  factors.    The  solution  grade  of  lignin  in  water  in  the  experimental  range  can  be  described  by  Equation  (3).    

Page 31: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

31

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑔𝑟𝑎𝑑𝑒 = 0.943555+ 0.00494926 ∗ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒 + 0.162092 ∗ 𝑝𝐻 +0.0759666 ∗𝑊𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑡𝑒𝑛𝑡 − 0.0803827 ∗ 𝑝𝐻! − 0.0425337 ∗𝑊𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑡𝑒𝑛𝑡! −0.0763526 ∗ 𝑝𝐻 ∗𝑊𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑡𝑒𝑛𝑡         (3)                          In  Equation  (3)  the  parameters  reaction  time,  pH-­‐value  and  water  content  is  varying  within  the  same  range  as  used  as  boundary  values  in  MODDE.                                

3.3. Stabilization test of lignin diesel The  lignin  diesel  samples  that  were  taken  out  to  the  stability  test  are  presented  in  Figure    22  with  different  time  intervals.      

 Figure  22.  Stabilization  test  and  comparison  between  the  sonified  lignin  diesel  samples  at  time:  a)  0  h,  b)  0.5  h,  c)  18  h,  d)  48  h,  e)  1  week,  f)  2  weeks,  g)  3  weeks.  

In  Figure  22,  picture  a),  the  first  picture  of  all  three  samples  is  presented.  The  picture  is  taken  at  the  time  which  is  referred  to  as  time  zero.  Because  of  some  process  time,  the  samples  are  4  h,  2  h  and  0  h  old,  from  left  to  right  in  the  picture.  The  samples  are  taken  from  different  batches  and  the  pH-­‐values  are  12,  10.85  and  9.7  respectively,  left  to  right.  In  picture  a),  there  is  a  difference  in  the  tone  between  the  samples,  where  the  sample  to  the  left  has  the  lightest  colour.    The  colours  in  each  test  are  even  in  the  vertical  direction.  No  separation  occurs  in  the  samples.  Picture  b)  shows  the  three  tests  at  the  time  0.5  h.  The  samples  have  more  tone  between  them  compared  to  time  zero  but  there  is  still  a  difference  between  their  colours.  In  each  test,  the  colour  in  vertical  direction  is  even.  The  samples  have  some  separation  in  the  bottom  of  the  samples.  Picture  c)  presents  the  tests  18  hours  after  time  zero.  The  colour  in  the  samples  have  a  more  even  tone  between  the  different  samples,  compared  to  time  zero.  There  is  a  separation  at  the  bottom  of  the  sample,  which  is  presented  more  closely  in  Figure  23.  It  is  hard  to  decide  whether  the  separated  phase  is  solid  particles  or  viscous  fluid.  The  colour  in  vertical  direction  is  even  in  every  sample.    

Page 32: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

32

 

Figure  23.  Bottom  separation  in  the  sonified  lignin  diesel  samples,  time  18  h.  

Picture  d)    in  Figure  22  is  taken  at  the  time  48  h.  The  colour  is  even  between  the  tests  though  there  are  a  separation  in  the  bottom  of  the  samples.  The  difference  from  the  earlier  stabilization  pictures  is  that  there  are  small  colour  gradients  at  the  top  of  the  samples.  The  gradient  is  more  apparent  at  upper  part  of  the  sample  to  the  right,  which  has  the  pH-­‐value  of  9.7  pH-­‐units.  After  one  week,  picture  e)  is  taken.  The  small  gradient  in  the  sample  to  the  right  has  increased  to  an  even  more  apparent  colour.  There  is  still  a  separation  in  the  bottom  of  the  sample,  which  compared  with  the  time  zero  samples  have  not  changed  in  size.  The  samples  have  an  even  tone  in  comparison  to  each  other.        A  closer  picture  at  the  separated  bottom  part  after  one  week  is  shown  in  Figure  24.      

 

Figure  24.  Bottom  separation  in  the  sonified  lignin  diesel  samples,  time  1  week.  

After  two  weeks,  picture  f)  in  Figure  22  is  taken.  There  are  separations  at  the  top  and  bottom  in  all  three  of  the  samples.  Colour  gradients  are  also  visible  in  all  three  samples.  The  sample  to  the  right  has  the  most  distinct  colour  gradient.  In  picture  g),  the  samples  after  three  weeks  of  stabilization  is  presented.  The  vertical  direction  colour  gradients  in  the  samples  have  been  more  apparent  compared  to  picture  f).  There  are  separations  in  the  top  and  bottom  of  the  samples,  which  have  not  grown  in  size.  All  of  the  samples  have  a  muddy  appearance  which  is  an  indication  that  a  microemulsion  has  not  been  created  (Myers  2006).  The  unstable  samples  are  also  a  proof  that  a  microemulsion  has  not  been  created,  rather  an  emulsion.  

Page 33: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

33

 Figure  25.  Disturbed  lignin  diesel  samples  at  time  0.5  h.  

As  a  comparison  to  the  sonified  samples  in  Figure  22,  Figure  25  presents  samples  from  the  same  batches  that  are  not  sonified,  only  stirred.  The  time  in  Figure  25  is  0.5  h,  which  can  be  compared  to  the  samples  in  Figure  22  picture  b).  All  of  the  samples  are  separated  with  an  apparent  colour  gradient  in  the  vertical  direction  and  a  separated  phase  in  the  bottom  of  the  samples.  The  samples  also  have  different  tones  in  comparison  to  each  other,  where  the  left  sample  is  much  lighter  than  the  other  two.  The  differences  between  the  signified  samples  and  the  only  agitated  samples  are  significant.    

3.4. Operational cost The  operational  cost  per  litre  produced  lignin  diesel  when  ordering  the  chemicals  in  litre  size  including  electricity  was  124,96  SEK.  If  the  lignin  diesel  is  produced  in  large  scale  and  the  chemicals  therefore  can  be  ordered  in  bulk  size,  the  price  per  litre  including  electricity  cost  would  be  minimum  as  small  as  to  12,51  SEK.  Figure  26  presents  the  variation  in  diesel  price  from  1981  to  2014.  The  prices  refers  to  stock  sales  by  tanker  directly  to  large  consumers’  facility.  In  the  total  diesel  price  value  added  tax,  tax,  product  cost  and  gross  margin  are  included.  In  Figure  26,  the  gross  margin  acts  as  a  regulate  factor  for  obtaining  the  clean  fossil  fuel  cost  since  almost  all  diesel  fuels  contain  5  %  low  interspersion.  (Svenska  Petroleum  &  Biodrivmedel  Institutet,  SPBI)    

Page 34: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

34

 Figure  26.  Diesel  price  variation  during  the  years  1981  -­‐  2014.  

4. Discussion The  response  contour  plot  shows  that  a  higher  pH-­‐value  with  contribution  of  a  higher  water  content  are  the  most  influential  factors.  The  solubility  study  also  reveals  that  the  batch  with  the  highest  pH-­‐value  has  the  highest  solubility.  This  is  the  same  result  that  (Capanema  et  al.  2006)  presents  in  their  examination  of  the  oxidative  ammonolysis  reaction.  (Sun  et  al.  2014)  do  not  mention  any  variation  in  the  pH-­‐value.  The  results  in  this  study  reveal  that  the  method  that  (Sun  et  al.  2014)  use  has  to  be  modified  to  dissolve  a  large  amount  of  lignin  into  water.  The  three  different  plots  in  Figure  19  look  similar.  This  indicates  that  the  reaction  time  factor  does  not  contribute,  which  differs  from  the  result  (Capanema  et  al.  2001b)  presents.      It  is  clear  that  the  sonication  gives  a  more  stable  lignin  diesel  compared  to  the  lignin  diesel  that  was  only  stirred.  What  is  achieved  is  rather  three  emulsions  than  three  microemulsions.  The  muddy  colour,  opacity  and  instability  reveals  that  this  is  the  case  (Myers  2006).  When  comparing  the  stabilization  pictures  from  this  work  with  the  ones  presented  by  (Sun  et  al.  2014),  the  difference  is  significant.  Lignindiesel  with  the  same  stabilization  as  obtained  by  (Sun  et  al.  2014)  can  not  be  obtained  from  the  given  information  in  the  paper.    Regarding  the  operational  costs,  the  production  cost  in  a  small  scale  production  is  expensive  and  does  not  give  any  economical  incitements.  If  the  lignin  diesel  could  be  produced  in  bulk  size,  the  price  per  litre  would  decrease  significantly.  If  the  lignin  diesel  price  would  be  lower  than  the  petroleum  diesel  price,  there  would  be  an  economical  incitement  for  buying  the  lignin  diesel  instead  of  the  petroleum  diesel.  If  the  lignin  diesel  were  tested  in  an  engine  and  the  lignin  diesel  resulted  in  less  energy  output  than  the  regular  diesel,  this  would  at  a  certain  level  not  be  economically  beneficial  and  the  economical  incitements  would  disappear.  Since  the  diesel  price  has  been  varying  during  the  past  15  years,  the  petroleum  diesel  price  compared  to  the  lignin  diesel  price  is  very  unpredictable.  The  diesel  price  varies  with  the  oil  price.  If  the  oil  price  is  increasing,  the  lignin  diesel  would  be  more  beneficial  compared  to  the  petroleum  diesel.  If  the  oil  price  was  low,  this  would  benefit  the  petroleum  diesel.  Governmental  regulation  could,  in  certain  forms  like  tax  deductions,  subventions  or  allowances,  lower  the  lignin  diesel  price.  With  the  operational  cost  presented  in  this  work,  governmental  regulations  are  necessary  for  making  the  lignin  beneficial.  The  electricity  cost  does  not  affect  the  

0  

5  

10  

15  

2001-­‐01  

2001-­‐11  

2002-­‐09  

2003-­‐07  

2004-­‐05  

2005-­‐03  

2006-­‐01  

2006-­‐11  

2007-­‐09  

2008-­‐07  

2009-­‐05  

2010-­‐03  

2011-­‐01  

2011-­‐11  

2012-­‐09  

2013-­‐07  

2014-­‐05  

2015-­‐03  Price  (SEK/liter)  

Historic  diesel  price  data,  2001  -­‐  2014  

Value  Added  Tax  

Tax  

Product  Cost  

Gross  Margin  

Page 35: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

35

operational  costs  much  and  the  variation  in  electricity  price  depending  on  annual  electricity  consumption  does  not  influence  the  operational  costs  in  this  number  of  decimals,  therefore  only  one  price  per  production  size  were  included  in  this  work.  The  electricity  costs  variation  does  not  affect  the  operational  price  significantly.      One  explanation  of  the  muddy  and  unstable  lignin  diesel  could  be  that  during  the  agitation  in  step  2,  too  much  air  entrapment  took  place  in  the  samples  which  gave  the  samples  their  muddy  appearance  (Schramm  2005).  (Sun  et  al.  2014)  used  a  emulsion  pump  instead  of  sonication,  this  could  have  facilitated  the  creation  of  a  microemulsion.  (Sun  et  al.  2014)  used  lignin  from  poplar,  which  structure  differs  from  the  lignin  used  in  this  work.      The  stabilization  tests  could  be  performed  with  a  more  precise  testing  method  since  the  current  measurements  are  hard  to  evaluate.  The  observation  method  does  not  reveal  important  information  about  the  lignin  diesel  samples.  As  an  example  of  this,  the  characteristics  of  the  separated  phase  are  not  possible  to  determine  from  just  observing  the  samples.  Neither,  an  evaluating  grading  system  of  the  samples  stability  has  been  established.  The  emulsion  stability  could  be  evaluated  as  in  (Imazu  &  Kojima  2013;  Hu  et  al.  2011).  It  would  also  be  interesting,  as  earlier  mentioned,  to  determine  the  achieved  molecular  size  in  the  lignin  diesel.  Which  size  and  which  actions  that  could  decrease  the  particle  size  further  in  order  to  create  a  microemulsion  could  be  examined.  Further  research  should  be  performed  on  finding  different  methods  that  could  optimize  the  creation  of  a  stable  microemulsion.  An  example  could  be  calculating  the  HBL-­‐value  for  each  sample,  since  this  differs  among  the  samples  with  the  method  described  in  (Griffin  1954).    There  has  been  no  replicate  experiments  performed  and  included  in  the  statistical  model.  Since  one  objective  with  using  MODDE  was  to  examine  the  repeatability  of  the  experiment,  the  lack  of  replicate  experiment  is  a  significant  error  in  the  work.  As  another  result  of  this,  no  Lack  of  fit  test  could  be  performed.  The  model  error  and  replicate  error  could  therefore  not  be  examined.  This  is  an  important  part  in  the  purpose  of  evaluating  the  models  credibility  and  get  an  indication  of  whether  the  model  is  well  executed  or  not.  It  also  evaluates  the  model’s  predictive  properties.  Since  the  repeatability  of  the  work  was  not  examined,  the  results  of  the  statistical  study  should  be  seen  as  indications  of  the  outcome  of  the  experiments  rather  than  quantitative  results.  In  further  experiments,  replicate  experiments  should  be  included  in  the  model  to  gain  this  information  about  the  model.  (Eriksson  2008)    The  different  values  of  solubility  are  presented  in  the  replicate  plot.  The  values  in  the  plot  are  based  on  the  measured  amount  of  dissolved  lignin  in  the  filtrated  samples.  Since  the  statistical  MODDE  model  is  based  on  the  response  values,  any  error  during  the  filtration  and  weighing  is  included  in  the  statistical  model.      The  original  performance  of  the  model,  which  is  presented  in  the  R2/Q2  plot,  Figure  14,  indicated  a  satisfying  model  with  a  good  predictive  ability.  In  the  R2/Q2  plot  where  some  factors  and  points  were  removed,  Figure  18,  the  model  is  even  better  and  has  a  better  capacity  to  predict  results  that  could  describe  the  actual  system  satisfactorily.  After  the  changes,  the  condition  number  is  lower.  This  strengthens  the  reliability  of  the  model.  In  the  ANOVA  table,  Table  6,  the  regression,  p,  value  is  very  low,  which  indicates  that  the  

Page 36: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

36

significance  of  the  regression  model  is  very  satisfying.  This  indicates  that  the  model  is  well  performed  and  its  predictive  power  is  good.    In  the  first  scatter  plot,  Figure  8,  where  the  dissolved  lignin  depends  on  the  run  order,  the  values  are  very  spread  out.  This  could  be  a  result  of  the  changed  run  order  that  was  made.  In  Figure  9,  where  the  amount  of  dissolved  lignin  depends  on  reaction  time  there  is  a  symmetrical  pattern.  This  indicates  a  good  parameter  setting  of  the  reaction  time  factor  or  the  probability  that  the  reaction  time  factor  did  not  influenced  the  response  factor.  The  scatter  plot  where  the  dissolved  amount  of  lignin  depends  on  the  pH-­‐value,  Figure  10,  does  not  have  a  symmetrical  geometry  and  this  indicates  that  a  higher  pH-­‐value  gives  a  higher  solubility.  The  higher  and  lower  boundary  values  could  be  changed  to  get  a  better  model  in  this  case  but  since  this  is  the  pH-­‐factor  which  is  limited  to  a  14  units  scale  this  probably  would  not  affect  the  scatter  plot  and  making  it  better.  One  solution  could  be  including  several  response  factors  or  changing  the  response  factor.  The  scatter  plot  where  the  amount  of  dissolved  lignin  depends  on  the  water  content,  Figure  11,  is  symmetrical  which  indicates  a  well  executed  boundary  value  choice  of  the  water  content  factor.  Eventually,  this  is  an  indication  on  the  factors  lower  affection  on  the  response  variable.  The  geometry  in  the  four  scatter  plots  in  combination  with  the  low  condition  number,  gives  a  well  executed  model  design  as  well  as  good  factor  and  response  design.      The  water  content  in  the  samples  was  never  measured  and  therefore  no  exact  values  are  obtained.  It  is  possible  that  the  calculated  water  content  is  lower  than  the  actual  value  due  to  the  exhaustion  of  ammonia  gas.  To  be  more  accurate  in  further  studies,  the  water  content  should  be  measured.  To  get  a  better  picture  of  the  water  content’s  effect  on  the  formation  of  the  microemulsion,  more  samples  from  step  1  should  have  been  tested  in  step  2.  Now  there  are  only  samples  with  the  water  content  of  100  %.  In  further  research,  different  amounts  of  water  content  should  be  examined  in  the  creation  and  stabilization  of  the  microemulsion  since  the  water  content  is  not  mentioned  by  (Sun  et  al.  2014).  A  different  range  setting  in  the  reaction  time  factor  could  result  in  a  more  varied  result.  In  further  work,  the  range  should  have  a  lower  lowest  value  and  a  higher  highest  value.  Earlier  initial  tests  show  that  the  reaction  is  influential  on  the  response  factor,  the  current  range  does  not  indicate  this,  which  indicated  that  a  different  boundary  value  setting  should  be  preferred.    The  filtration  method  could  be  made  in  a  more  accepted  and  accurate  way.  Some  of  the  modified  lignin  samples  were  very  difficult  to  filtrate.  When  the  samples  with  lowest  pH    value  were  filtrated,  the  high  amount  of  undissolved  lignin  sealed  the  filter  paper.  This  prevented  the  dissolved  lignin  liquid  from  passing  through  the  filter.  The  same  problem  was  observed  with  some  of  the  samples  with  low  water  content.  This  could  indicate  that  the  water  was  saturated  and  the  ability  of  the  water  to  dissolve  lignin  were  not  enough  in  the  lower  water  content.  A  different  filter  paper  can  in  further  research  be  used.  If  the  particle  size  is  examined,  a  filter  paper  that  would  be  more  adjusted  to  that  size  could  be  used.  The  particle  size  could  be  measured  using  the  methods  in  (Sargolzaei  et  al.  2011;  Imazu  &  Kojima  2013).    The  histogram  and  the  Box-­‐Whisker  plot,  Figure  12  and  13,  present  a  skewed  normal  distribution.  Since  the  majority  of  the  values  are  in  the  upper  part  of  the  response  variables  range,  this  normal  distribution  is  formed.  To  get  a  more  normal  distributed  

Page 37: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

37

model,  the  factors  and  its  ranges  could  be  evaluated.  The  response  variable  could  be  measured  in  another  way  or  eventually,  more  response  variables  could  be  included.    More  bars  in  the  coefficient  plot  could  be  excluded,  but  at  a  certain  degree  of  factor  exclusion,  the  models  ability  to  describe  the  system  is  impaired.  To  avoid  this,  the  changes  in  the  condition  number  observed  through  the  process  of  creating  the  statistical  model.  Since  the  condition  number  still  is  lowered  through  every  change,  the  model  with  exclusions  still  has  a  good  predictive  ability.    The  fifth  point  in  the  N-­‐plot  is  excluded  from  the  model,  which  lowers  the  models  condition  number  and  therefore  increases  its  predictive  ability.  When  excluding  the  fifth  point,  MODDE  suggested  that  one  further  point  could  be  excluded.  The  point  was  inside  the  ±4  area  on  the  horizontal  axis.  This  exclusion  increased  the  condition  number  and  the  point  was  therefore  kept  in  the  model.      Further  research  could  be  made  with  the  goal  to  finding  the  optimal  pH-­‐value  for  creating  the  optimal  oxidative  ammonolysis  process.  This  could  be  made  with  FTIR  analysis  as  used  in  (Sun  et  al.  2014;  Brandén  2015)  Further  research  should  be  made  in  order  to  examine  how  the  increase  in  pH-­‐value  affects  the  use  in  an  diesel  engine.  Another  interesting  question  is  how  the  addition  of  sodium  hydroxide  affects  the  formation  of  the  microemulsion  and  the  use  in  an  diesel  engine?        If  a  microemulsion  lignin  diesel  in  another  experiment  is  created,  this  could  be  tested    is  an  diesel  engine  and  evaluated  as  in  (Sun  et  al.  2014).  The  characteristic  properties  of  the  diesel  should  be  evaluated  in  order  to  fulfil  the  quality  requirements  in  (Directive  2011/63/EU)  to  sell  the  lignin  diesel  in  the  European  Union.    

5. Conclusion In  this  work  the  solubility  of  lignin  in  water  was  examined.  It  is  possible  to  dissolve  100  %  of  the  lignin  powder  into  water.  To  create  a  stable  homogenous  mixture  of  modified  lignin  and  diesel,  more  further  research  is  needed.  The  operational  cost  for  producing  lignin  diesel  is  expensive  and  subventions  are  needed  to  create  incitements  for  consumers  to  buy  lignin  diesel.      

Page 38: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

38

6. References

Ahmad, I. & Gollahalli, S.R. (1994). Combustion of microemulsion sprays. Journal of Propulsion and Power, 10 (5), 744-745.

Andersén, M. (2015).

Arnäs, P.O. (1997). Livscykelanalys av drivmedel: en studie med utgångspunkt från svenska förhållanden och bästa tillgängliga teknik.

Basha, S.A., Gopal, K.R. & Jebaraj, S. (2009). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 13 (6–7), 1628-1634.

Baumlin, S., Broust, F., Bazer-Bachi, F., Bourdeaux, T., Herbinet, O., Toutie Ndiaye, F., Ferrer, M. & Lédé, J. (2006). Production of hydrogen by lignins fast pyrolysis. International Journal of Hydrogen Energy, 31 (15), 2179-2192.

Berghel, J., Frodeson, S., Granström, K., Renström, R., Ståhl, M., Nordgren, D. & Tomani, P. (2013). The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology, 112 (0), 64-69.

Boerjan, W., Ralph, J. & Baucher, M. (2003). Lignin Biosynthesis. [Online] Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-0042100516&partnerID=40&md5=13958e304cd7f09f6063701ab7571df0 [19 November 2014].

Botström, J. (2015). Production of Biodiesel with Lignin from the Pulp- and Paper Industry, Preparation, LCI and Cost Analysis.

Brandén, M. (2015). Oxidative Ammonolysis of Lignin, Effects of pH and Temperature on the Reaction. (Bachelor Thesis, Karlstad: .

Branson Ultrasonics Corporation (2011). 250 - 450 Sonifier Analog Cell Disruptor User's Manual. (EDP 100-413-016 Rev. C edn.). Connecticut, USA: .

Capanema, E.A., Balakshin, M., Chen, C.-., Gratzl, J.S. & Kirkman, A.G. (2001a). Oxidative ammonolysis of technical lignins Part 1. Kinetics of the reaction under isothermal condition at 130°C. Holzforschung, 55 (4), 397-404.

Capanema, E.A., Balakshin, M., Chen, C.-., Gratzl, J.S. & Kirkman, A.G. (2001b). Oxidative ammonolysis of technical lignins Part 1. Kinetics of the reaction under isothermal condition at 130°C. Holzforschung, 55 (4), 397-404.

Capanema, E.A., Balakshin, M.Y., Chen, C.-. & Gratzl, J.S. (2006). Oxidative ammonolysis of technical lignins. Part 4. Effects of the ammonium hydroxide concentration and pH. Journal of Wood Chemistry and Technology, 26 (1), 95-109.

Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J.-. & Boudet, A.-. (2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant Journal, 28 (3), 271-282.

Page 39: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

39

Dallmeyer, I., Chowdhury, S. & Kadla, J.F. (2013). Preparation and characterization of kraft lignin-based moisture-responsive films with reversible shape-change capability. Biomacromolecules, 14 (7), 2354-2363.

Directive 2011/63/EU. European Parliament & Council of the European Union.

Doherty, W.O.S., Mousavioun, P. & Fellows, C.M. (2011). Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products, 33 (2), 259-276.

El Mansouri, N.-., Yuan, Q. & Huang, F. (2011). Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources, 6 (3), 2647-2662.

Energimyndigheten. (2014). Transportsektorns Energianvändning 2013, ES 2014:01. [Online] Available from: http://www.energimyndigheten.se/Global/Statistik/Transportsektorns%20energianvändning%202013.pdf [2015-05/14].

Eriksson, H. & Harvey, S. (2004). Black liquor gasification—consequences for both industry and society. Energy, 29 (4), 581-612.

Eriksson, L. (2008). Design of experiments : principles and applications. (3., rev. and enl. ed. edn.). Umeå: Umetrics Academy.

Griffin, W.C. (1949). Classification of Surface-Active Agents by HLB. Journal of the Society of Cosmetic Chemists, , 311.

Griffin, W.C. (1954). Calculation of HLB Values of Non-Ionic Surfactants. Journal of the Society of Cosmetic Chemists, , 249.

Hassmén, Peter & Koivula, Nathalie (1996). Variansanalys. Lund: Studentlitteratur.

Henriksson, G. (2010). Chapter 6. Lignin. In Chapter 6. Lignin.The Ljungberg Textbook, Wood Chemistry and Pulp Technology. 125.

Henriksson, G. (2015).

Herreros, J.M., Jones, A., Sukjit, E. & Tsolakis, A. (2014). Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions. Applied Energy, 116 , 58-65.

Holby, O. (2015). Karlstads University.

Holmberg, K. & John Wiley & Sons (2003). Surfactants and polymers in aqueous solution. (2nd edn.). Chichester, England: John Wiley & Sons.

Hu, C.-., Zhao, X.-., Li, J.-., Kang, S.-., Yang, C.-., Jin, Y.-., Liu, D. & Chen, D.-. (2011). Preparation and characterization of ß-elemene-loaded microemulsion. Drug development and industrial pharmacy, 37 (7), 765-774.

Imazu, H. & Kojima, Y. (2013). Physical properties and combustion characteristics of emulsion fuels of water/diesel fuel and water/diesel fuel/vegetable oil prepared by ultrasonication. Journal of the Japan Petroleum Institute, 56 (1), 52-57.

Page 40: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

40

Kayali, I., Karaein, M., Qamhieh, K., Wadaah, S., Ahmad, W. & Olsson, U. (2015). Phase Behavior of Bicontinuous and Water/Diesel Fuel Microemulsions Using Nonionic Surfactants Combined with Hydrophilic Alcohol Ethoxylates. Journal of Dispersion Science and Technology, 36 (1), 10-17.

Larsson, S. (2008). Fysikalisk Kemi. Studentlitteratur.

Laurichesse, S. & Avérous, L. (2014). Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 39 (7), 1266-1290.

Li, X.-., Xu, Q., Fu, Y. & Guo, Q.-. (2014). Preparation and characterization of activated carbon from Kraft lignin via KOH activation. Environmental Progress and Sustainable Energy, 33 (2), 519-526.

Lif, A. & Holmberg, K. (2006). Water-in-diesel emulsions and related systems. Advances in Colloid and Interface Science, 123-126 (SPEC. ISS.), 231-239.

Myers, D. (2006). Surfactant science and technology. Hoboken, N.J. : Wiley, cop. 2006; 3. ed.

Nigam, P.S. & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37 (1), 52-68.

Olsson, M.R., Axelsson, E. & Berntsson, T. (2006). Exporting lignin or power from heat-integrated kraft pulp mills: A techno-economic comparison using model mills. Nordic Pulp and Paper Research Journal, 21 (4), 476-484.

Osada, M., Sato, O., Watanabe, M., Arai, K. & Shirai, M. (2006). Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy and Fuels, 20 (3), 930-935.

Pan, X. & Saddler, J.N. (2013). Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnology for Biofuels, , 12.

Panapisal, V., Charoensri, S. & Tantituvanont, A. (2012). Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech, 13 (2), 389-399.

Sargolzaei, J., Mosavian, M. & Hassani, A. (2011). Modeling and Simulation of High Power Ultrasonic Process in Preparation of Stable Oil-in-Water Emulsion. Journal of Software Engineering and Applications, 4 (259-267).

Sarkanen, K.V. & Ludwig, C.H. (1971). Lignins: occurrence, formation, structure and reactions. New York: Wiley.

Schramm, L.L. (2005). Emulsions, foams and suspensions : fundamentals and applications. Weinheim : Wiley-VCH, cop. 2005.

Shafiee, S. & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37 (1), 181-189.

Sigma-Aldrich. (2015). [Online] Available from: http://www.sigmaaldrich.com/catalog/search?term=71-36-3&interface=CAS%20No.&N=0+&mode=partialmax&lang=en&region=SE&focus=productMay/06].

Page 41: Olsson Moa, lignin, biodiesel, oxidativ ammonolys845122/FULLTEXT01.pdfThe!MODDE!model!was!optimized!andcouldthereafterbeusedasa !predictivetooland! predict!the!outcome!of!responseswithin!the!experimental!range.!Ultrasonicationwas

41

Sjöström, E. (1993). Wood chemistry : fundamentals and applications. (2. ed. edn.). San Diego: Academic Press.

Skogsstyrelsen (2014). Skogsstatistisk Årsbok 2014.

Statistics Sweden. (2015). Prices on electricity for industrial consumers 2007-. [Online] Available from: http://www.scb.se/en_/Finding-statistics/Statistics-by-subject-area/Energy/Price-trends-in-the-energy-sector/Energy-prices-on-natural-gas-and-electricity/Aktuell-Pong/24726/Average-prices-by-half-year-2007--/212961/ [2015-05/13].

Sun, X., Zhao, X., Zu, Y., Li, W. & Ge, Y. (2014). Preparing, characterizing, and evaluating ammoniated lignin diesel from papermaking black liquor. Energy and Fuels, 28 (6), 3957-3963.

Svenska Petroleum & Biodrivmedel Institutet (2014). SPBI Branschfakta 2014. (Information edn.). Stockholm: Svenska Petroleum & Biodrivmedel Institutet.

Svenska Petroleum & Biodrivmedel Institutet, SPBI. [Online] Available from: http://spbi.se/statistik/priser/diesel/?gb0=month&df0=2001-01-01&dt0=2015-12-31&ts0=0 [2015-05/07].

Swedish Tax Agency (2015). Service Office.

Valmet. (2014). LignoBoost process. [Online] Available from: http://www.valmet.com/en/products/chemical_recovery_boilers.nsf/WebWID/WTB-090518-22575-328A1?OpenDocument#.VIgoLb4vBfg.

Yan, X. & Su, X. (2009). Linear Regression Analysis : Theory and Computing. Singapore: World Scientific.