olomouc introduction

Upload: saleemnasir2k7154

Post on 04-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Olomouc Introduction

    1/73

    MOMENTUM MAPS & CLASSICAL FIELDS

    1. Introduction

    MARK J. GOTAY

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. Introduction

    Olomou c, August, 2009 1 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    2/73

    Joint work over the years 19792009 with:

    Jim Isenberg (Eugene)

    Jerry MARSDEN (Pasadena)

    Richard Montgomery (Santa Cruz)

    Jedrzej Sniatycki (Calgary)

    Phil Yasskin (College Station)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. Introduction

    Olomou c, August, 2009 2 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    3/73

    Goals:

    Study the Lagrangian and Hamiltonian structures ofclassical eld theories (CFTs) with constraints

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. Introduction

    Olomou c, August, 2009 3 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    4/73

    Goals:

    Study the Lagrangian and Hamiltonian structures ofclassical eld theories (CFTs) with constraints

    Explore connections between initial value constraints &gauge transformations

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 3 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    5/73

    Goals:

    Study the Lagrangian and Hamiltonian structures ofclassical eld theories (CFTs) with constraints

    Explore connections between initial value constraints &gauge transformations

    Tie together & understand many different and apparentlyunrelated facets of CFTs

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 3 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    6/73

    Goals:

    Study the Lagrangian and Hamiltonian structures ofclassical eld theories (CFTs) with constraints

    Explore connections between initial value constraints &gauge transformations

    Tie together & understand many different and apparentlyunrelated facets of CFTs

    Focus on roles of gauge symmetry and momentum maps

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 3 / 28

    http://goforward/http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    7/73

    Methods & Tools:

    calculus of variations

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 4 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    8/73

    Methods & Tools:

    calculus of variations

    initial value analysis, Dirac constraint theory

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 4 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    9/73

    Methods & Tools:

    calculus of variations

    initial value analysis, Dirac constraint theory

    multisymplectic geometry, multimomentum maps

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 4 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    10/73

    Methods & Tools:

    calculus of variations

    initial value analysis, Dirac constraint theory

    multisymplectic geometry, multimomentum maps

    Noethers theorem

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 4 / 28

    http://goforward/http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    11/73

    Methods & Tools:

    calculus of variations

    initial value analysis, Dirac constraint theory

    multisymplectic geometry, multimomentum maps

    Noethers theorem

    energy-momentum maps

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 4 / 28

    http://goforward/http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    12/73

    Generic Properties of Classical Field Theories

    Gleaned from extensive study of standard examples:

    electromagnetism, YangMills

    gravity

    strings

    relativistic uids

    topological eld theories . . .

    Pioneers: Choquet-Bruhat, Lichnerowicz, DiracBergmann, andArnowitDeserMisner (ADM).

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 5 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    13/73

    Generic Properties of Classical Field Theories

    1. The EulerLagrange equations are underdetermined : there are not

    enough evolution equations to propagate all eld components.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 6 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    14/73

    Generic Properties of Classical Field Theories

    1. The EulerLagrange equations are underdetermined : there are not

    enough evolution equations to propagate all eld components.

    This is because the theory has gauge freedom .

    The corresponding gauge group is known at the outset.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 6 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    15/73

    Generic Properties of Classical Field Theories

    1. The EulerLagrange equations are underdetermined : there are not

    enough evolution equations to propagate all eld components.

    This is because the theory has gauge freedom .

    The corresponding gauge group is known at the outset.

    Kinematic elds have no signicance.

    Dynamic elds , conjugate momenta have physical meaning.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 6 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    16/73

    2. The Euler Lagrange equations are overdetermined : they include constraints

    i (, ) = 0 (1)

    on the choice of initial data.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 7 / 28

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    17/73

    2. The Euler Lagrange equations are overdetermined : they include constraints

    i (, ) = 0 (1)

    on the choice of initial data.

    So initial data ((0), (0)) cannot be freely specied

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 7 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    18/73

    2. The Euler Lagrange equations are overdetermined : they include constraints

    i (, ) = 0 (1)

    on the choice of initial data.

    So initial data ((0), (0)) cannot be freely specied Elliptic system

    Assume all constraints are rst class in the sense of Dirac

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 7 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    19/73

    3. The i generate gauge transformations of (, ) via the canonical symplectic structure on the space of Cauchy data.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 8 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    20/73

    3. The i generate gauge transformations of (, ) via the canonical symplectic structure on the space of Cauchy data.

    So the presence of constraints gauge freedom

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 8 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    21/73

    4. The Hamiltonian (with respect to a slicing) has the form

    H =

    i

    i i (, ) d

    depending linearly on the atlas elds i

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 9 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    22/73

    4. The Hamiltonian (with respect to a slicing) has the form

    H =

    i

    i i (, ) d

    depending linearly on the atlas elds i

    Atlas elds:

    closely related to kinematic elds

    arbitrarily speciable

    drive the entire gauge ambiguity of the CFT

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomou c, August, 2009 9 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    23/73

    5. The evolution equations for the dynamic elds (, ) take the adjoint form

    d d

    =

    J

    i

    D i (( ), ( ))

    i . (2)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 10 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    24/73

    5. The evolution equations for the dynamic elds (, ) take the adjoint form

    d d

    =

    J

    i

    D i (( ), ( ))

    i . (2)

    is a slicing parameter (time)

    J is a compatible almost complex structure; * an L2-adjoint

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 10 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    25/73

    5. The evolution equations for the dynamic elds (, ) take the adjoint form

    d d

    =

    J

    i

    D i (( ), ( ))

    i . (2)

    is a slicing parameter (time)

    J is a compatible almost complex structure; * an L2-adjoint

    hyperbolic system (typically)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 10 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    26/73

    Adjoint form displays, in the clearest and most concise way, theinterrelations between the

    dynamics

    initial value constraints, and

    gauge ambiguity of a theory

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 11 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    27/73

    6. The EulerLagrange equations are equivalent, modulo gauge trans- formations, to the combined evolution equations (2) and constraint equations (1).

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 12 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    28/73

    6. The EulerLagrange equations are equivalent, modulo gauge trans- formations, to the combined evolution equations (2) and constraint equations (1).

    The constraints are preserved by the evolution equations

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 12 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    29/73

    7. The space of solutions of the eld equations is not necessarily smooth. It may have quadratic singularities occurring at symmetric solutions.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 13 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    30/73

    7. The space of solutions of the eld equations is not necessarily smooth. It may have quadratic singularities occurring at symmetric solutions.

    symplectic reduction

    linearization stability

    quantization

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 13 / 28

    Philosophy

    http://find/
  • 8/13/2019 Olomouc Introduction

    31/73

    Philosophy

    Noethers theorem and the Dirac analysis of constraints do much topredict and explain features 16.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 14 / 28

    Philosophy

    http://find/
  • 8/13/2019 Olomouc Introduction

    32/73

    Philosophy

    Noethers theorem and the Dirac analysis of constraints do much topredict and explain features 16.

    I wish to go further and provide (realistic) sufcient conditionswhich guarantee that they must occur in a CFT.

    I provide such criteria for 16 and lay the groundwork for 7.

    A key objective is thus to derive the adjoint formalism for CFTs.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 14 / 28

    Example: (Abelian) ChernSimons Theory

    http://find/
  • 8/13/2019 Olomouc Introduction

    33/73

    p ( ) y

    A topological eld theory on 3-dimensional spacetime X = R .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 15 / 28

    Example: (Abelian) ChernSimons Theory

    http://find/
  • 8/13/2019 Olomouc Introduction

    34/73

    p ( ) y

    A topological eld theory on 3-dimensional spacetime X = R .

    Fields are 1-forms A = ( A0 , A ) on X .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 15 / 28

    Example: (Abelian) ChernSimons Theory

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    35/73

    p ( ) y

    A topological eld theory on 3-dimensional spacetime X = R .

    Fields are 1-forms A = ( A0 , A ) on X .

    Lagrangian density is L = dA A.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 15 / 28

    Example: (Abelian) ChernSimons Theory

    http://find/
  • 8/13/2019 Olomouc Introduction

    36/73

    p ( ) y

    A topological eld theory on 3-dimensional spacetime X = R .

    Fields are 1-forms A = ( A0 , A ) on X .

    Lagrangian density is L = dA A.

    Gauge group is Diff (X ): A = A

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 15 / 28

    Example: (Abelian) ChernSimons Theory

    http://find/
  • 8/13/2019 Olomouc Introduction

    37/73

    A topological eld theory on 3-dimensional spacetime X = R .

    Fields are 1-forms A = ( A0 , A ) on X .

    Lagrangian density is L = dA A.

    Gauge group is Diff (X ): A = A

    EL equations: dA = 0.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 15 / 28

    Ki i ld A

    http://find/
  • 8/13/2019 Olomouc Introduction

    38/73

    Kinematic elds: A0

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    Ki i ld A

    http://find/
  • 8/13/2019 Olomouc Introduction

    39/73

    Kinematic elds: A0

    Dynamic elds: A

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    Ki ti ld A

    http://find/
  • 8/13/2019 Olomouc Introduction

    40/73

    Kinematic elds: A0

    Dynamic elds: A

    IV constraint: (A , ) = ( dA)12 = 0

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    Kinematic elds: A

    http://find/
  • 8/13/2019 Olomouc Introduction

    41/73

    Kinematic elds: A0

    Dynamic elds: A

    IV constraint: (A

    , ) = ( dA)12 = 0 Gauge generators: (D i a )

    Ai

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    Kinematic elds: A

    http://find/
  • 8/13/2019 Olomouc Introduction

    42/73

    Kinematic elds: A0

    Dynamic elds: A

    IV constraint: (A

    , ) = ( dA)12 = 0 Gauge generators: (D i a )

    Ai

    Slicing of 1(X ) X generated by:

    d d

    = x

    A ,

    A

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    Kinematic elds: A0

    http://find/
  • 8/13/2019 Olomouc Introduction

    43/73

    Kinematic elds: A0

    Dynamic elds: A

    IV constraint: (A

    , ) = ( dA)12 = 0 Gauge generators: (D i a )

    Ai

    Slicing of 1(X ) X generated by:

    d d

    = x

    A ,

    A

    Hamiltonian: H = 2

    (dA)12 ( A ) d

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 16 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    44/73

    Atlas eld: A

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 17 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    45/73

    Atlas eld: A

    Evolution equations in adjoint form reduce to:

    d d

    Ai

    i =

    D i ( A )0ij D j ( A )

    This is equivalent to (dA)0i = 0.

    N.B. We also have primary constraints 0 = 0 and i = 0ij A j .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 17 / 28

    Traditional Approaches to CFT

    http://find/
  • 8/13/2019 Olomouc Introduction

    46/73

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 18 / 28

    Traditional Approaches to CFT

    http://find/
  • 8/13/2019 Olomouc Introduction

    47/73

    Group-theoretical

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 18 / 28

    Traditional Approaches to CFT

    http://find/http://goback/
  • 8/13/2019 Olomouc Introduction

    48/73

    Group-theoretical

    concerned with the gauge covariance of a CFT

    Lagrangian-oriented

    covariant

    based on Noethers theorem

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 18 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    49/73

    Canonical

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 19 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    50/73

    Canonical

    initial value analysis

    Hamiltonian-oriented

    not covariantbased on space + time decomposition

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 19 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    51/73

    Connections:

    These two aspects of a mechanical system are linked by themomentum map .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 20 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    52/73

    Connections:

    These two aspects of a mechanical system are linked by themomentum map .

    One would like to have an analogous connection in CFT relatinggauge symmetries to initial value constraints.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 20 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    53/73

    Caveat!

    The standard notion of a momentum map associated to a symplecticgroup action usually cannot be carried over to spacetime covarianteld theory, because:

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 21 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    54/73

    Caveat!

    The standard notion of a momentum map associated to a symplecticgroup action usually cannot be carried over to spacetime covarianteld theory, because:

    spacetime diffeomorphisms move Cauchy surfaces,

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 21 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    55/73

    Caveat!

    The standard notion of a momentum map associated to a symplecticgroup action usually cannot be carried over to spacetime covarianteld theory, because:

    spacetime diffeomorphisms move Cauchy surfaces, and the Hamiltonian formalism is only dened relative to a xed

    Cauchy surface

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 21 / 28

    Prime Example : Einsteins theory of vacuum gravity

    http://find/
  • 8/13/2019 Olomouc Introduction

    56/73

    the gauge group is the spacetime diffeomorphism group

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 22 / 28

    Prime Example : Einsteins theory of vacuum gravity

    http://find/
  • 8/13/2019 Olomouc Introduction

    57/73

    the gauge group is the spacetime diffeomorphism group

    the only remnants of this group on the instantaneous (i.e., space +time split) level are the superhamiltonian H and supermomenta J

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 22 / 28

    Prime Example : Einsteins theory of vacuum gravity

    http://find/
  • 8/13/2019 Olomouc Introduction

    58/73

    the gauge group is the spacetime diffeomorphism group

    the only remnants of this group on the instantaneous (i.e., space +time split) level are the superhamiltonian H and supermomenta J

    interpreted as the generators of temporal and spatial deformationsof a Cauchy surface

    these deformations do not form a group

    nor are H and J components of a momentum map.

    This circumstance forces us to work on the covariant level.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 22 / 28

    The Way Out: Multisymplectic Field Theory

    http://find/
  • 8/13/2019 Olomouc Introduction

    59/73

    We must construct a covariant counterpart to the instantaneousHamiltonian formalism.

    In the spacetime covariant (or multisymplectic ) framework we developherean extension and renement of the formalism of Kijowski andSzczyrba the gauge group does act.

    So we can dene a covariant (or multi-) momentum map on thecorresponding covariant (or multi-) phase space .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 23 / 28

    The Energy-Momentum Map

    http://find/
  • 8/13/2019 Olomouc Introduction

    60/73

    Key fact : The covariant momentum map induces an energy-

    momentum map on the instantaneous phase space.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 24 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    61/73

    The Energy-Momentum Map

  • 8/13/2019 Olomouc Introduction

    62/73

    Key fact : The covariant momentum map induces an energy-

    momentum map on the instantaneous phase space.

    Bridges the covariant & instantaneous formalisms

    is the crucial object reecting the gauge transformation

    covariance of a CFT in the instantaneous picture.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 24 / 28

    The Energy-Momentum Map

    http://find/
  • 8/13/2019 Olomouc Introduction

    63/73

    Key fact : The covariant momentum map induces an energy-

    momentum map on the instantaneous phase space.

    Bridges the covariant & instantaneous formalisms

    is the crucial object reecting the gauge transformation

    covariance of a CFT in the instantaneous picture.

    In ADM gravity, = (H , J ), so that the superhamiltonian andsupermomenta are the components of the energy-momentummap.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 24 / 28

    A recurrent theme is that the energy momentum map encodes

    http://find/
  • 8/13/2019 Olomouc Introduction

    64/73

    A recurrent theme is that the energy-momentum map encodesessentially all the dynamical information carried by a CFT : its

    Hamiltonian (Item 4)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 25 / 28

    A recurrent theme is that the energy-momentum map encodes

    http://find/
  • 8/13/2019 Olomouc Introduction

    65/73

    A recurrent theme is that the energy-momentum map encodesessentially all the dynamical information carried by a CFT : its

    Hamiltonian (Item 4)

    gauge freedom (Item 3)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 25 / 28

    A recurrent theme is that the energy-momentum map encodes

    http://find/
  • 8/13/2019 Olomouc Introduction

    66/73

    A recurrent theme is that the energy momentum map encodesessentially all the dynamical information carried by a CFT : its

    Hamiltonian (Item 4)

    gauge freedom (Item 3)

    initial value constraints (Item 2)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 25 / 28

    A recurrent theme is that the energy-momentum map encodes

    http://find/
  • 8/13/2019 Olomouc Introduction

    67/73

    A recurrent theme is that the energy momentum map encodesessentially all the dynamical information carried by a CFT : its

    Hamiltonian (Item 4)

    gauge freedom (Item 3)

    initial value constraints (Item 2)

    stress-energy-momentum tensor

    . . .

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 25 / 28

    http://find/
  • 8/13/2019 Olomouc Introduction

    68/73

    Indeed:

    Energy-Momentum TheoremThe constraints ( 1) are given by the vanishing of the energy-momentum map associated to the gauge group of the theory.

    thus synthesizes the group-theoretical and canonical approaches toCFT.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 26 / 28

    The Plan

    The theoretical underpinnings of the adjoint formalism consist of:

    http://find/
  • 8/13/2019 Olomouc Introduction

    69/73

    The theoretical underpinnings of the adjoint formalism consist of:

    I. a covariant analysis of CFTs;

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 27 / 28

    The Plan

    The theoretical underpinnings of the adjoint formalism consist of:

    http://find/
  • 8/13/2019 Olomouc Introduction

    70/73

    The theoretical underpinnings of the adjoint formalism consist of:

    I. a covariant analysis of CFTs;II. a space + time decomposition of the covariant formalism followed

    by an initial value analysis;

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 27 / 28

    The Plan

    The theoretical underpinnings of the adjoint formalism consist of:

    http://find/
  • 8/13/2019 Olomouc Introduction

    71/73

    The theoretical underpinnings of the adjoint formalism consist of:

    I. a covariant analysis of CFTs;II. a space + time decomposition of the covariant formalism followed

    by an initial value analysis;

    III. a study of the relations between gauge symmetries and initialvalue constraints

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 27 / 28

    The Plan

    The theoretical underpinnings of the adjoint formalism consist of:

    http://find/
  • 8/13/2019 Olomouc Introduction

    72/73

    The theoretical underpinnings of the adjoint formalism consist of:

    I. a covariant analysis of CFTs;II. a space + time decomposition of the covariant formalism followed

    by an initial value analysis;

    III. a study of the relations between gauge symmetries and initialvalue constraints

    IV. the derivation of the adjoint formalism.

    We will focus on IIII.

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 27 / 28

    Carry along an example:

    http://find/
  • 8/13/2019 Olomouc Introduction

    73/73

    bosonic string

    Mimics gravity to a signicant extenta rst class rst order theory

    Exercise: Work through abelian ChernSimons!

    Other sidelights might include:

    parametrization theory ( la Kucha r)

    covariantization theory ( la YangMills)

    MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 1. IntroductionOlomouc , August, 2009 28 / 28

    http://find/