octoscope femtocell von 20071027

Upload: pathlossanwar

Post on 30-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 OctoScope Femtocell VON 20071027

    1/65

    Fem t oc e l l Tu tor ia l

    VON, Boston

    29 October 2007

    Fanny Mlinarsky

    President, octoScope

  • 8/9/2019 OctoScope Femtocell VON 20071027

    2/65

    www.octoscope.com 2

    Agenda 9:00 11:00 am FMC and Femtocell history, architecture and

    standards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer

    Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS

    Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

  • 8/9/2019 OctoScope Femtocell VON 20071027

    3/65

    www.octoscope.com 3

    Fanny Ml inarsk y President of octoScope, consulting

    company focusing on

    RF and wireless design

    Network or device architecture Performance verification

    Product advocacy

    Founder and Chief Technology Officer,Azimuth Systems, leading wireless testplatform for Wi-Fi and WiMAX test(10/01 10/06)

    R&D Manager, General Manager,Agilent Technologies for theWireScope handheld networkcertification and monitoring products(10/98 10/01)

    BS/EE, BA/CS Columbia University,graduate EE work at MIT

    Azimuth Test Platform

    Agilent WireScope

  • 8/9/2019 OctoScope Femtocell VON 20071027

    4/65

    www.octoscope.com 4

    Cel l Size and Load Dist r ibut ion

    Throu

    ghput

    # clients

    Cell sizeshrinks asthroughputand usage

    increase

  • 8/9/2019 OctoScope Femtocell VON 20071027

    5/65

    www.octoscope.com 5

    Progress ion t o Pervasive

    Connect iv i ty

    2G 3G 4G

    Cells Shrink

    Wireless

    coverageexpandsindoors

  • 8/9/2019 OctoScope Femtocell VON 20071027

    6/65

    www.octoscope.com 6

    3G Coverage I ssues 3G cells are smaller by virtue

    of supporting higher data rates

    3G infrastructure needs toproliferate

    Femtocells are a vehicle forexpanding 3G coverage andimproving indoor coverage

    Infrastructure must evolve tosupport millions of small cells

  • 8/9/2019 OctoScope Femtocell VON 20071027

    7/65

    www.octoscope.com 7

    Trad i t iona l In f ras t ruc t ure - GSM

    MSC (Mobile Switching Centre)

    VLR (Visitor Location Register)HLR (Home Location Register)

    SGSN (Serving GPRS Support Node)

    GGSN (Gateway GPRS Support Node)

    BTS (Base Transceiver System)

    BSC (Base Station Controller)

  • 8/9/2019 OctoScope Femtocell VON 20071027

    8/65

    www.octoscope.com 8

    VLR

    VLR

    Trad i t ional In frast ruc t u re

    Todayscellularinfrastructureis set up for

    thousandsofBSCs, notmill ionsof

    femtocells

    BSC

    BSC

    BSC

    MSC 1

    HLR

    GMSC

    PSTN

    MSC 2

    Gateway MobileSwitching Center

  • 8/9/2019 OctoScope Femtocell VON 20071027

    9/65

    www.octoscope.com 9

    GAN (Gener ic Ac c ess Net w ork ) /

    UMA (Unl ic ensed Mobi le Ac c ess)

    Dual-ModeUMA

    Handset

    BaseStation

    Controller(BSC)

    IPNetwork

    UMA

    NetworkController

    (UNC)

    GSM Radio AccessNetwork (RAN)

    Unlicensed Mobile AccessNetwork (UMAN)

    CoreMobile

    Network

  • 8/9/2019 OctoScope Femtocell VON 20071027

    10/65

    www.octoscope.com 10

    3GPP GAN vs. VCC GAN (generic access network) is a

    simple protocol for GSM networks only

    Uses GSM call setup

    Gives GSM users access to high speeddata via Wi-Fi hotspots

    Call continuity across Wi-Fi and GSMdomains

    Does not offer benefits of IMS

    VCC (voice call cont inuity) is anIMS protocol for seamless call handoffbetween any 3GPP networks

    SIP (session initiation protocol) basedconnection management

    GSM, UMTS, W-CDMA, Wi-Fi, etc. WiMAX not officially accommodated by

    VCC with LTE (Long Term Evolution)technology emerging instead

    Cell

    Wi-Fi

  • 8/9/2019 OctoScope Femtocell VON 20071027

    11/65

    www.octoscope.com 11

    IMS In f rast ruc t ure for FMC

    FixedMobile

    IP NetworkIP MultimediaIP MultimediaSubsystem (IMS)Subsystem (IMS)

    Fixed

    MobileConvergence

    802.16802.16

    WMANWMAN802.11802.11

    WLANWLAN 802.3802.3

    LANLAN

    GSM,GSM,

    UMTSUMTS

    PSTNPSTN LTELTE

  • 8/9/2019 OctoScope Femtocell VON 20071027

    12/65

    www.octoscope.com 12

    St andards J igsaw Puzzle

    802.16802.16WMANWMAN

    802.11802.11WLANWLAN

    802.15802.15WPANWPAN

    802.22802.22WRANWRAN

    2G, 3G, 4G2G, 3G, 4GWWANWWAN

    TCP, UDP/ IPTCP, UDP/ IP

    Session Initiation Protocol (SIP)Session Initiation Protocol (SIP)

    Internet Multimedia Subsystem (IMS)Internet Multimedia Subsystem (IMS)

    AccessAccess

    TransportTransport

    ControlControl

    ApplicationsApplications Voice Streaming Videoemail

  • 8/9/2019 OctoScope Femtocell VON 20071027

    13/65

    www.octoscope.com 13

    K ey Components o f t he IMS

    Arch i tec tu re CSCF (call session control

    function)

    Heart of IMS architecture

    Handles multiple real-time IPbased services (voice, IMM,streaming video, etc.)

    Responsible for registeringuser devices and for ensuringQoS

    HSS (home subscriberserver)

    Central repository for customerdata

    Interfaces with operators HLRs(home location registers),which keep subscriber profiles

    Enables roaming acrossdistinct access networks

    AS (applicat ion server)

    Delivers services, such asgaming, video telephony, etc.

    Types of AS: SIP, Parlay X,customized legacy AS

    CSCFCSCFHSSHSS

    ApplicationsApplications

    Servers (AS)Servers (AS)

    MediaMedia

    gatewaygatewayTransport

    Control

    Applications

    IP network, gatewaysto legacy networks

  • 8/9/2019 OctoScope Femtocell VON 20071027

    14/65

    www.octoscope.com 14

    TraditionalCellularNetwork

    Billing/OS

    S

    QoS

    Presence

    Billing/OSS

    QoS

    Presence

    FixedMobile

    IP Network

    FixedMobile

    IP Network

    Billing/OSSBilling/OSS

    QoSQoS

    PresencePresence

    IMS vs. Tradi t ional St ovepipe

    Stovepipe model replicatesfunctionality

    IMS common layersfacilitate adding services

    Voice Internet Video Voice Internet

    IMSNetwork

  • 8/9/2019 OctoScope Femtocell VON 20071027

    15/65

    www.octoscope.com 15

    St andards for FMC

    3GPP- IMS

    GAN/UMA2G2G

    VCC 3G/4G3G/4G I-WLAN (no handoff)

    IEEE

    802.11n, k, u, v, y, s

    802.16e, g, m

    802.21

    GAN = generic access networkUMA = unlicensed mobile access

    VCC = Voice Call ContinuityI-WLAN = Interworking-WLAN

    IMS = internet multimedia subsystem

    GAN / UMAGSM-WiFi phones

    FixedFixed

    MobileMobile

  • 8/9/2019 OctoScope Femtocell VON 20071027

    16/65

    www.octoscope.com 16

    Mult im ode Phone vs . Fem t oc e l l

    Cell / Wi-Fi Phone musthave the capability to roam

    Femtocells supporttraditional simple phones

  • 8/9/2019 OctoScope Femtocell VON 20071027

    17/65

    www.octoscope.com 17

    IEEE 802 LAN/MAN St andards

    Com m it t ee (LMSC) 802.1 Higher Layer LAN Protocols

    802.3 Ethernet

    802.11 Wireless LAN

    802.15 Wireless Personal AreaNetwork

    802.16 Broadband Wireless Access

    802.17 Resilient Packet Ring 802.18 Radio Regulatory TAG

    (technical advisory group)

    802.19 Coexistence TAG

    802.21 Media Independent Handoff 802.22 Wireless Regional Area

    Networks

    Wireless standards dominate the work of IEEE 802

  • 8/9/2019 OctoScope Femtocell VON 20071027

    18/65

    www.octoscope.com 18

    ITU-T Fram ew ork

    IEEE 802.11IEEE 802.11 WLAN (wireless

    local area network)IEEE 802.16IEEE 802.16 WMAN (wirelessmetropolitan area network)

    3GPP3GPP WWAN (wireless wide

    area network, cellular)

    ITUITU --TT United Nations

    telecommunications standardsorganization

    Accepts detailed standardscontributions from 3GPP, IEEE

    and other groups

    Pervasive connectivityPervasive connectivityWLANWLAN -- WMANWMAN -- WWANWWAN

  • 8/9/2019 OctoScope Femtocell VON 20071027

    19/65

    www.octoscope.com 19

    ITU Int ernat iona l Mobi le

    Te lecommun ica t ions IMT-2000

    Global standard for third generation (3G) wirelesscommunications

    Provides a framework for worldwide wireless access by linkingthe diverse systems of terrestrial and satellite based networks.

    Data rate limit is approximately 30 Mbps

    Detailed specifications contributed by 3GPP, 3GPP2, ETSI andothers

    IMT-Advanced New generation framework for mobile communication systems

    beyond IMT-2000 with deployment around 2010 to 2015

    Data rates to reach around 100 Mbps for high mobility and 1Gbps for nomadic networks (i.e. WLANs)

    IEEE 802.16m working to define the high mobility interface IEEE 802.11 VHT SG (very high throughput study group)

    working to define the nomadic interface

  • 8/9/2019 OctoScope Femtocell VON 20071027

    20/65

    www.octoscope.com 20

    ITU-T and ITU-R ITU-T: Telecommunication

    Standardization is responsiblefor network aspects of IMT-2000,

    IMT-Advanced, FMC, mobilitymanagement, mobile multimediafunctions, internetworking,interoperability andenhancements to existing ITU-T

    Recommendations. ITU-R: Radiocommunications

    is responsible for the radiofrequency spectrum and radiosystem aspects of IMT-2000 and

    IMT-Advanced.

  • 8/9/2019 OctoScope Femtocell VON 20071027

    21/65

    www.octoscope.com 21

    ITU-T Voic e Qual i t y St andards MOS (mean opinion score) uses a

    wide range of human subjects toprovide a subjective quality score

    (ITU-T P.800) PESQ (perceptual speech quality

    measure) sends a voice patternacross a network and then comparesreceived pattern to the original

    pattern and computes the qualityrating (ITU-T P.862)

    R-Factor (Rating factor)computed based on delay packet

    loss and other network performanceparameters; R-Factor directlytranslates into MOS (ITU-T G.107)

  • 8/9/2019 OctoScope Femtocell VON 20071027

    22/65

    www.octoscope.com 22

    ITU-T PESQ Mode l

  • 8/9/2019 OctoScope Femtocell VON 20071027

    23/65

    www.octoscope.com 23

    ITU-T E-Mode l (G.107) fo r

    Com put ing R-Fac t or

  • 8/9/2019 OctoScope Femtocell VON 20071027

    24/65

    www.octoscope.com 24

    0 200-AAdvantage Factor

    35 8535dB(A)PrRoom Noise at the Receive Side

    35 8535dB(A)PsRoom Noise at the Send Side

    --64dBmpNforNoise Floor at the Receive Side

    -80 -40-70dBmOpNcCircuit Noise referred to 0 dBr-point

    0 200%PplRandom Packet-loss Probability

    1 401-BplPacket-loss Robustness Factor

    0 400-IeEquipment Impairment Factor

    1 141-qduNumber of Quantization Distortion Units

    0 5000msTaAbsolute Delay in echo-free Connections

    0 5000msTMean one-way Delay of the Echo Path

    0 10000msTrRound-Trip Delay in a 4-wire Loop

    5 ... 110110dBWEPLWeighted Echo Path Loss

    5 6565dBTELRTalker Echo Loudness Rating

    -3 +33-DrD-Value of Telephone Receive Side

    -3 +33-DsD-Value of Telephone, Send Side

    13 2318dBLSTRListener Sidetone Rating

    10 2015dBSTMRSidetone Masking Rating

    -5 +14+2dBRLRReceive Loudness Rating

    0 +18+8dBSLRSend Loudness Rating

    PermittedRange

    DefaultValueUnitAbbr.Parameter

    G.107 Default values and permitted ranges for the E-model parameters

  • 8/9/2019 OctoScope Femtocell VON 20071027

    25/65

    www.octoscope.com 25

    R-Fac t or t o MOS Conve rsion

    Toll qualityToll quality

    M

    OS

    M

    OS

    RR--FactorFactor

  • 8/9/2019 OctoScope Femtocell VON 20071027

    26/65

    www.octoscope.com 26

    Pac k et Loss Cons iderat ion Packet loss, especially bursty packet loss, causes poor signal

    quality

    Delay and jitter (variation in delay) can also cause loss of

    quality 200 ms events (signal loss or delay) are audible to the ear

    In wireless networks, bursty packet loss can be due to

    Congestion in the infrastructure

    Client roaming from one AP to another

    ~100 microsecondpackets, dependingon CODEC

    ~20-30 millisecond gaps

  • 8/9/2019 OctoScope Femtocell VON 20071027

    27/65

    www.octoscope.com 27

    IEEE 802.11 Spec i f ic at ions

    Enab l ing Vo ic e ove r Wi-Fi Minimize bursty packet loss by

    controlling roaming time

    802.11r Fast Roaming

    802.11k Radio ResourceMeasurement (RRM)

    802.11v Wireless NetworkManagement

    Manage power consumption

    802.11 APSD (automatic powersave delivery)

    802.11n PSMP (power save multi-poll) protocol

    802.11v sleep mode

    Maintain isochronous nature ofvoice packet streams by

    controlling delay, jitter and packetloss

    WFA WMM (wireless multi-media)prioritization protocol, IEEE QSESG (QoS Extensions Study Group)looking to reconcile IEEE 802.11with WMM

  • 8/9/2019 OctoScope Femtocell VON 20071027

    28/65

    www.octoscope.com 28

    802.16 and WiMAX Cert i f ic at ion

    WiMAX Forum Release-1

    Based on 802.16e-2005

    1.25, 5, 7, 8.75, 10 and 20 MHz channels

    Initial profiles are 5 and 10 MHz

    Licensed worldwide spectrum allocations include 2.3, 2.5, 3.3and 3.5 GHz bands

    The IEEE 802.16e-2005 Wireless MAN standard is based onthe concept of scalable OFDMA* (S-OFDMA), which providesa range of bands to accommodate available spectrum

    * Orthogonal Frequency Division Multiple Access

    IEEE 802.16dIEEE 802 .16d --20042004

    FixedFixed

    Broadband WirelessBroadband Wireless

    IEEE 802.16eIEEE 802.16e--20052005

    MobileMobile

    Broadband WirelessBroadband Wireless

    Mobile WiMAXMobile WiMAX

    System ProfileSystem Profile

    ReleaseRelease--11

  • 8/9/2019 OctoScope Femtocell VON 20071027

    29/65

    www.octoscope.com 29

    IEEE 802.16d vs . 802.16e

    High mobility

    60 km/h

    Fixed, nomadicMobility

    SOFDMA, 2048

    subcarriers

    OFDM, 256

    subcarriers

    Signaling

    2.5, 3.5, 5.8 GHzBand

    5, 7, 10 MHz3.5, 7 MHzBandwidth

    Up to 15 Mbps / 5

    MHz

    Up to 10 Mbps / 3.5

    MHzBit Rate

    5 km NLOS30 km LOS

    7 km NLOS30 km LOS

    Cell radius

    802.16e

    2005

    802.16d

    2004

  • 8/9/2019 OctoScope Femtocell VON 20071027

    30/65

    www.octoscope.com 30

    4G: LTE LTE (Long Term Evolution) being developed as a 4G

    technology competing with 802.16

    100 Mbps uplink; 50 Mbps downlink

    5 km cells; 30 km with some degradation Channels 1.25, 1.6, 2.5, 5, 10, 15, 20 MHz

    MIMO-based; smart antenna

    No products yet

    Proposed 4G migration path for WCDMA/HSDPA networks Verizon Wireless uses CDMA EV-DO technology, which is

    incompatible with HSDPA

    UMB (Ultra Mobile Broadband) is the proposed 4G

    migration path for CDMA EV-DO

  • 8/9/2019 OctoScope Femtocell VON 20071027

    31/65

    www.octoscope.com 31

    Nex t Generat ion Cel l Phone GSM?

    CDMA?

    CDMA2000?

    W-CDMA?

    UMTS?

    Wi-Fi?

    WiMAX? LTE?

    Can femtocells getahead of dual mode

    Wi-Fi cell phones?

    Whats the Wi-Fiindustry doing tosupport voice?

  • 8/9/2019 OctoScope Femtocell VON 20071027

    32/65

    www.octoscope.com 32

    IEEE 802.11 Ac t ive Task Groups WNG SC Wireless Next Generation Standing Committee

    TGk Radio Resource Measurements

    TGn High Throughput

    TGp Wireless Access Vehicular Environment (WAVE/DSRC)

    TGr Fast Roaming

    TGs ESS Mesh Networking

    TGT IEEE 802 Performance

    TGu InterWorking with External Networks

    TGv Wireless Network Management

    TGw Protected Management Frames

    TGy 3650-3700 MHz Operation in USA

    DLS SG Direct Link Setup Study Group

    QSE SG QoS Extensions Study Group

    VHT SG 1 Gbps Very High-Throughput Study Group

    VTS SG Video Throughput Study Group

    IETF AHC IETF Ad Hoc

    IMT AHC IMT Ad Hoc

    http://grouper.ieee.org/groups/802/11

  • 8/9/2019 OctoScope Femtocell VON 20071027

    33/65

    www.octoscope.com 33

    IEEE 802.11 Tim el ine

    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

    802.11-1997IEEE Standard

    802.11-1999IEEE Standard

    July 1997

    April 1999 802.11-2007IEEE Standard

    TGk

    TGmaTGn

    TGp

    TGrTGs

    TGT

    TGuTGv

    TGw

    TGy

    TGa

    TGb TGb-cor1

    TGc TGd

    TGe

    TGF

    TGg

    TGh

    TGi

    TGj

    Part of802.1

    withdrawn

    June 2007

  • 8/9/2019 OctoScope Femtocell VON 20071027

    34/65

    www.octoscope.com 34

    802.11n Uses Mul t ipat h for Spat ia l

    Mu lt ip lex ing t o Inc rease Dat a Rat e

    clusters

    Mobile reflector

    Mobile device

    MIMO (multiple input multipleoutput) data transmission usesmultipath to send two or moredata streams

    This is known as SpatialSpatialMultiplexingMultiplexing

  • 8/9/2019 OctoScope Femtocell VON 20071027

    35/65

    www.octoscope.com 35

    802.11n MIMO Tec hnology

    Goal: 100 Mbps real throughput; data rate up to 600 Mbpswith 4 spatial streams in a 40 MHz channel

    PHY improvements

    MIMO (multiple inputs multiple outputs) Spatial Multiplexing,Beamforming, up to 4x4 MIMO, 40 MHz channels

    MAC improvements

    Frame aggregation, block acknowledgements

    Battery life improvements for handsets Sleep mode with scheduled packet delivery

    Real implementations use up to 2spatial streams and the following

    MIMO configurations:2x2 , 2x3 , 3x32x2 , 2x3 , 3x3

    Extra transmitters or receiversimplement diversity

  • 8/9/2019 OctoScope Femtocell VON 20071027

    36/65

    www.octoscope.com 36

    802.11n Throughput Enhancem ent s

    Up to 100%64k bytes A-MPDU; 8k bytes A-MSDUFrame aggregationand Block ACK

    10%

    The short GI of 400 ns allowed by802.11n reduces the symbol time from

    4 microseconds to 3.6 microsecondsincreasing the symbol rate by 10%.

    Shorter GI

    20%

    With 52 data sub-carriers vs. 48 for the

    legacy networks, the highest data rateper stream is 65 Mbps vs. the802.11a/g 54 Mbps

    More efficient OFDM

    100%Doubling the channel width over thelegacy 20 MHz channel can double thethroughput.

    40 MHz channelwidth

    100%With 2 spatial streams throughput can

    be double that of a single stream.Spatial multiplexing

    Throughputenhancementover legacy

    Description802.11n throughputenhancement

  • 8/9/2019 OctoScope Femtocell VON 20071027

    37/65

    www.octoscope.com 37

    IEEE 802.11a,b,g,n

    30, 60, 90, 120,180, 240, 270,300

    15, 30, 45, 60,90, 120, 135,150

    14.4, 28.9,43.3, 57.8,86.7, 115.6,130, 144.4

    7.2, 14.4, 21.7,28.9, 43.3,57.8, 65, 72.2

    802.11n, GI=400ns2.4 and 5 GHz

    27, 54, 81, 108,

    162, 216, 243,270

    13.5, 27, 40.5,

    54, 81, 108,121.5, 135

    13, 26, 39, 52,

    78, 104, 117,130

    6.5, 13, 19.5,

    26, 39, 52,58.5, 65

    802.11n

    GI[1]

    =800ns5 GHz

    13, 26, 39, 52,78, 104, 117,130

    6.5, 13, 19.5,26, 39, 52,58.5, 65

    802.11nGI[1]=800ns2.4 GHz

    1, 2, 6, 9, 12,18, 24, 36, 48,

    54

    802.11g

    2.4 GHz

    6, 9, 12, 18, 24,36, 48, 54

    802.11a5 GHz

    1, 2, 5.5, 11802.11b2.4 GHz

    Data Rate, in Mbps

    2 streams1 stream2 streams1 stream

    40 MHz Channel20 MHz Channel

    [1,] GI = Guard Interval, period within an OFDM symbolallocated to letting the signal settle prior to transmittingthe next symbol. Legacy 802.11a/b/g devices use

    800ns GI. GI of 400ns is optional for 802.11n.

  • 8/9/2019 OctoScope Femtocell VON 20071027

    38/65

    www.octoscope.com 38

    Draf t 802.11n vs. Legac y

    Throughput Per formanc e

    Draft 802.11n vs. Legacy - Office

    02040

    6080

    100120

    140160

    180

    6 ft 40 110 150 180 200

    feet

    Mbps

    Draft-802.11n Legacy 802.11g

    Draft 802.11n vs. Legacy - Home

    0

    20

    40

    60

    80

    100

    120

    140160

    180

    25 35 45 50feet

    Mbps

    Draft-802.11n Legacy 802.11g

    Vendor 1Vendor 1 Vendor 2Vendor 2

  • 8/9/2019 OctoScope Femtocell VON 20071027

    39/65

    www.octoscope.com 39

    Sm art Ant enna Tec hnologies for

    802.11 and 802.16

    Spatial Multiplexing Multiple streams are

    transmitted over multiple

    antennas Multi-antenna receivers

    separate the streams toachieve higher throughput

    In uplink single-antenna

    stations can transmitsimultaneously

    Beamforming Use multiple-antennas to

    spatially shape the beam toimprove coverage andcapacity

    2x2 MIMO spatialmultiplexing can double

    data rate by transmittingtwo data streamssimultaneously

  • 8/9/2019 OctoScope Femtocell VON 20071027

    40/65

    www.octoscope.com 40

    802.11r Fast Transi t ion (Roam ing)

    Needed by voice applications

    Basic methodology involves propagating

    authentication information for connected stationsthrough the mobility domain to eliminate the needfor re-authentication upon station transition fromone AP to another

    The station preparing the roam can setup thetarget AP to minimize the actual transition time

    Roaming from one mobility domain to anotherrequires authentication and is not considered fasttransition

  • 8/9/2019 OctoScope Femtocell VON 20071027

    41/65

    www.octoscope.com 41

    Tradi t ional Roam ing in 802.11

    AP1 AP2max

    min

    Signal strength

    t TRANSITION

    t SCAN

    Last data packetbefore transition

    t ASSOCIATE

    t ROAM

    Data rate adaptation

    First data packetafter transition

    t DATA

    Bursty frameloss is likelyduring a

    transition

  • 8/9/2019 OctoScope Femtocell VON 20071027

    42/65

    www.octoscope.com 42

    802.11s Wi-Fi Mesh

    TraditionalWLAN

    MeshNetwork

    Mesh links

    Client links

    Wired links

    Mesh Portal

    Wired connection to each AP

  • 8/9/2019 OctoScope Femtocell VON 20071027

    43/65

    www.octoscope.com 43

    IEEE 802 .11s Mesh St andard

    Wireless Distribution Systemwith automatic topologylearning and wireless pathconfiguration

    Self-forming, self-healing,dynamic routing

    ~32 nodes to make routing

    algorithms computationallymanageable

    Extension of 802.11i securityand 802.11e QoS protocol to

    operate in a distributedrather than centralizedtopology

    Mesh Portal

  • 8/9/2019 OctoScope Femtocell VON 20071027

    44/65

    www.octoscope.com 44

    Fast Handof f in Dynam ic Meshes

    To support VoIP, 802.11s needs to incorporatethe fast handoff mechanisms defined in 802.11r. Enable stations to roam from one mesh AP to another

    within approximately 50 ms without noticeabledegradation in the quality of a voice call

    In a dynamic mesh (e.g. in vehicles) MPs may beroaming with respect to other MPs and the 802.11sstandard requires fast roaming of MPs with respect toone another.

  • 8/9/2019 OctoScope Femtocell VON 20071027

    45/65

    www.octoscope.com 45

    802.11s T im el ine

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2005 2006

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2007

    SEP

    NOV

    MAR

    MAY

    JUL

    2008

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2009

    D1

    PAR approved

    WG formed Jul-04

    May-04

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    WG ballotrecirculation

    Sponsor ballot

    initial

    Sponsor ballotrecirculation

    Final WG

    approval

    Final ECapproval

    RevComapproval

    D2

    D3

    D4

    TGs timelineTGs timeline

    D5

    WG ballotinitial

    IEEE 802 16 and 802 15 Mesh

  • 8/9/2019 OctoScope Femtocell VON 20071027

    46/65

    www.octoscope.com 46

    IEEE 802 .16 and 802.15 Mesh

    Standards

    802.16j and 802.15.5are alsostandardizing meshtopologies

    802.16j is not an ad-hoc mesh, but a relay

    to extend the rangebetween a CPE and abase station

    802.16 links beingplaned in ad-hocmesh networks

    Wirelessrelay

    Light ly Regulat ed Band for

  • 8/9/2019 OctoScope Femtocell VON 20071027

    47/65

    www.octoscope.com 47

    Light ly Regulat ed Band for

    802 .11, 802.16

    March 2005 FCCoffered 50 MHz 3650to 3700 MHz for

    contention-basedprotocol

    802.11y meets FCCrequirement; 802.16h

    is working to comply 21st century

    regulation geared fordigitalcommunications multiple services to

    share the band in anorderly way

    300 Million licensesone for every person or

    company

    $300 per license for 10 years

    Registered stations (base

    stations): 1 W/MHz, ~15 km

    Unregistered stations(handsets, laptops): 40mW/MHz, 1-1.5 km

  • 8/9/2019 OctoScope Femtocell VON 20071027

    48/65

    www.octoscope.com 48

    802.11y T im el ine

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2004 2005

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2006

    SEP

    NOV

    MAR

    MAY

    JUL

    2007

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2008

    WG ballotinitial

    D

    1

    SG formed

    PAR approved

    WG formed

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    Sponsor ballotinitial

    Sponsor ballotrecirculation

    Final WGapproval

    Final ECapproval

    RevComapproval

    D

    2

    D

    3

    D

    4

    TGy timelineTGy timeline

    WG ballotrecirculation

    802 11k Radio Resourc e

  • 8/9/2019 OctoScope Femtocell VON 20071027

    49/65

    www.octoscope.com 49

    802.11k Radio Resourc e

    Measurement

    Impetus for 802.11k came from the Enterprisesthat needed to manage their WLANs from a centralpoint

    802.11k makes a centralized network managementsystem by providing layer 2 mechanisms for

    Discovering network topology

    Monitoring WLAN devices, their receive power levels, PHYconfiguration and network activity

    Can be used to assists 802.11r Fast Transition(roaming) protocol with handoff decisions based

    on the loading of the infrastructure

  • 8/9/2019 OctoScope Femtocell VON 20071027

    50/65

    www.octoscope.com 50

    802.11k T im el ineSG formed

    PAR approved

    WG formed

    Sep-02

    Jan-03

    Dec-02, Sep-06

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2004 2005

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2006

    SEP

    NOV

    MAR

    MAY

    JUL

    2007

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2008

    WG ballotinitial

    D1

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    WG ballotrecirculation

    Sponsor ballotinitial

    Sponsor ballotrecirculation

    Final WGapproval

    Final ECapproval

    RevComapproval

    D2

    D3

    D4

    D5

    D6

    D7

    TGk timelineTGk timeline

    D9

    D8

    802 11v Wire less Net w ork

  • 8/9/2019 OctoScope Femtocell VON 20071027

    51/65

    www.octoscope.com 51

    802.11v Wire less Net w ork

    Management

    TGvs charter is to build on the networkmeasurementmechanisms defined by TGk and introduce networkmanagementfunctions to provide Enterprises withcentralized network management and load balancing

    capabilities. Major goals: manageability, improved power efficiency

    and interference avoidance

    Defines a protocol for requesting and reporting locationcapability

    Location information may be CIVIC (street address) or GEO(longitude, latitude coordinates)

    For the handset, TGv may enable awareness of AP e911capabilities while the handset is in sleep mode; this work has

    common ground with TGu

  • 8/9/2019 OctoScope Femtocell VON 20071027

    52/65

    www.octoscope.com 52

    802.11v Im proves Pow er Ef f ic ienc y

    TGv defines FBMS (flexible broadcast multicast service) - themechanism to let devices extend their sleep period

    Devices can specifying the wake up interval to be longerthan a single DTIM (delivery traffic indication message). Thisconsolidates traffic receive/transmit intervals and extendsbattery life of handsets.

    Sleep mode is also part of 802.11n (PSMP) and 802.11u.TGs is also dealing with power conservation and sleep modeprotocol, working to make this protocol distributed wherebya mesh point registers its sleep mode with the neighbors.

    TGv may extend the sleep mode protocol to include theability of maintaining location awareness while in sleepmode.

  • 8/9/2019 OctoScope Femtocell VON 20071027

    53/65

    www.octoscope.com 53

    801.11v T im el ine

    WG ballotinitial

    D1

    SG formed

    PAR approved

    WG formed

    Dec-04

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    WG ballotrecirculation

    Final WGapproval

    Final ECapproval

    D2

    D3

    D4

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2005 2006

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2007

    SEP

    NOV

    MAR

    MAY

    JUL

    2008

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2009

    MAY

    Sponsor ballot

    recirculation

    Jan-05

    D5

    TGv timelineTGv timeline

    Sponsor ballotinitial

    RevComapproval

    802.11w Protec t ed Management

  • 8/9/2019 OctoScope Femtocell VON 20071027

    54/65

    www.octoscope.com 54

    802.11w Pro tec t ed Management

    Frames

    802.11w protects against the forgery of management frames

    802.11k and now 802.11v are both adding new mgt framesthat can exchange sensitive information

    Information about network topology, location and loading Configuration commands to optimize the network

    These frames can be easily forged by the attackers to disruptthe network

    For example, an attacker can forge AP loading messages

    redirecting client associations or locking users out of thenetwork

    TGw provides protection for the management frames afterassociation and after keys have been set up through 802.11ior 802.11r mechanisms.

  • 8/9/2019 OctoScope Femtocell VON 20071027

    55/65

    www.octoscope.com 55

    802.11w T im el ine

    WG ballotinitial

    D1

    PAR approved

    WG formed

    March-05

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    WG ballot

    recirculation

    Sponsor ballotinitial

    Final WGapproval

    RevComapproval

    D2

    D3

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2005 2006

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2007

    SEP

    NOV

    MAR

    MAY

    JUL

    2008

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2009

    MAY

    Sponsor ballotrecirculation

    TGw timelineTGw timeline

    D4

    D5

    Final ECapproval

    802.11u Int e rw ork ing Wi th

  • 8/9/2019 OctoScope Femtocell VON 20071027

    56/65

    www.octoscope.com 56

    Ex t e rnal Net w ork s

    Main goal is to enable Interworking with external networks,including other 802 based networks such as 802.16 and802.3 and 3GPP based IMS networks.

    TGu specification deals with

    Network discovery

    Emergency call support (e911)

    Roaming

    Location and availability

    The network discovery capabilities give a station looking toconnect information about

    Networks in range

    Service providers

    Subscription status with service providers

    Type of QoS thats available and whether the network issuitable for services like VoIP or video

    802.11u makes 802.11 networks more like cellular networkswhere such information is provided by the infrastructure

  • 8/9/2019 OctoScope Femtocell VON 20071027

    57/65

    www.octoscope.com 57

    802.11u T im el ine

    JUL

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2006 2007

    SEP

    NOV

    JAN

    MAR

    MAY

    JUL

    2008

    SEP

    NOV

    MAR

    MAY

    JUL

    2009

    SEP

    NOV

    MAR

    MAY

    JAN

    JAN

    JUL

    SEP

    NOV

    2010

    D1

    SG formed

    PAR approved

    WG formed

    Jan-04

    Jan-05

    Dec-04

    PAR = project authorization requestSG = study groupWG = working groupTG = task groupEC = executive committeeD1 = draft 1

    WG ballotrecirculation

    Sponsor ballotinitial

    Sponsor ballotrecirculation

    Final WGapproval

    Final ECapproval

    RevComapproval

    D2

    D3

    D4

    TGr timelineTGr timeline

    D5

    WG ballotinitial

    Missing L ink bet w een IEEE 802 and

  • 8/9/2019 OctoScope Femtocell VON 20071027

    58/65

    www.octoscope.com 58

    g

    3GPP IMS?

    Liaison exists between 802.21, 802.11u,802.16g and 3GPP

    802.21 MIH (media independenthandover)

    GAS (generic advertising service) givesstations information about 802.11 and802.16 networks SSP, SSID, radio,available services, etc.

    802.11u and 802.16g are defining protocols

    to let a station to access the 802.21information server

    802.11u, 802.16g Interworking

    Cellular-like network discovery withinformation on service providers, QoS,

    emergency call support (e911), roaming,location and availability

    SSP (service subscription provider) carrieror operator

    workingto make802wireless

    networksmore l ikecellular

  • 8/9/2019 OctoScope Femtocell VON 20071027

    59/65

    www.octoscope.com 59

    Summary

    Voice is migrating to IP

    Femtocells are competing with dualmode Wi-Fi cell phones

    We have looked at the emerging Wi-

    Fi technology and standards aimed atmaking Wi-Fi voice grade and carriergrade

    Lets move on into the realm ofFemtos!

    A d

  • 8/9/2019 OctoScope Femtocell VON 20071027

    60/65

    www.octoscope.com 60

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

    A d

  • 8/9/2019 OctoScope Femtocell VON 20071027

    61/65

    www.octoscope.com 61

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

    A d

  • 8/9/2019 OctoScope Femtocell VON 20071027

    62/65

    www.octoscope.com 62

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

    A d

  • 8/9/2019 OctoScope Femtocell VON 20071027

    63/65

    www.octoscope.com 63

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

    Agenda

  • 8/9/2019 OctoScope Femtocell VON 20071027

    64/65

    www.octoscope.com 64

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint

    Agenda

  • 8/9/2019 OctoScope Femtocell VON 20071027

    65/65

    www.octoscope.com 65

    Agenda

    9:00 11:00 am FMC and Femtocell history, architecture andstandards

    Fanny Mlinarsky, President, octoScope

    Asa Kalavade, Founder and CTO, Tatara Systems

    11:00 11:15 am Break

    11:15 12:00 noon Femtocell regulatory issues

    Barlow Keener, Keener Law Group

    12:00 1:00 pm Lunch

    1:00 3:00 pm Focus on the physical layer Vicki Griffiths, Product Manager, Cellular Applications, picoChip Designs

    David Donovan, Analog Devices

    Tim Counihan, Director of Product Marketing, BitWave Semiconductor

    3:00 3:15 pm Break

    3:15 5:00 pm The Bridge from FMC to FMS Michael Blanchard, Sr. Product Manager, Femtocell Products, Airvana

    Scott Poretsky, Director, Carrier Network Engineering, ReefPoint