oct. 22, 2012 agenda: 1 – bell ringer 2 – acceleration review 3 – mini quiz 3 today’s goal:...

68
Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration using a step by step method Homework Study!!

Upload: daniel-oliver

Post on 12-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Oct. 22, 2012

AGENDA:1 – Bell Ringer2 – Acceleration

Review3 – Mini Quiz 3

Today’s Goal:Students will be able to understand how to calculate acceleration using a step by step methodHomework

Study!!

Page 2: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

CHAMPS for Bell Ringer

C – Conversation – No Talking H – Help – RAISE HAND for questionsA – Activity – Solve Bell Ringer on

binder paper. Homework out on desk

M – Materials and Movement – Pen/Pencil, Notebook or Paper

P – Participation – Be in assigned seats, work silently

S – Success – Get a stamp! I will collect!

Page 3: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 4: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

4 MINUTES REMAINING…

Page 5: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 6: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

3 MINUTES REMAINING…

Page 7: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 8: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

2 MINUTES REMAINING…

Page 9: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 10: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

1minute Remaining…

Page 11: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 12: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

30 Seconds Remaining…

Page 13: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

2. What are the units of acceleration and what do they mean?

Page 14: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

BELL-RINGER TIME IS

UP!

Page 15: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Monday, Oct. 22nd (p. 15)

Objective: Students will be able to understand how to calculate acceleration using a step by step method.

Bell Ringer:1. Your car is initially going 30

m/s and you come to a stop in 3 seconds. What is your acceleration?

a = (vf – vi)/Δt = (0 – 30 m/s)/3 sa = -10 m/s2

2. What are the units of acceleration and what do they mean?

Page 16: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Shout Outs

Period 5 – Dionte SmithPeriod 7 – Davia Washington, Christopher Yates, Riccardo Tucker

Page 17: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Oct. 22, 2012

AGENDA:1 – Bell Ringer2 – Acceleration

Review3 – Mini Quiz 3

Today’s Goal:Students will be able to understand how to calculate acceleration using a step by step methodHomework

Page 18: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Week 7

Weekly AgendaMonday – Review & Quiz 3Tuesday – Velocity Time GraphsWednesday – Metric SystemThursday – Metric System LabFriday – Quiz 4

Unit Test in 2 weeks!

Page 19: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

CHAMPS for Quiz Review

C – Conversation – No Talking unless directed to work in groups

H – Help – RAISE HAND for questionsA – Activity – Solve Problems on Page

6-11M – Materials and Movement –

Pen/Pencil, Packet Pages 6-11P – Participation – Complete Page 6-

11S – Success – Understand all

Problems

Page 20: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

1. What are the possible units of time? _____________________________________2. What are the possible units of velocity? _____________________________________ 3. What are the possible units of acceleration? ___________________________________ 4. What is the difference between the units for velocity (m/s) and the units for acceleration (m/s2)? For example, a cheetah runs with a velocity of 9.8m/s, and an apple falls with an acceleration of 9.8m/s2.

Page 21: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

1. What are the possible units of time? seconds, minutes, hours

2. What are the possible units of velocity?m/s, km/hr, mi/hr

3. What are the possible units of acceleration?

m/s2, ft/min2

4. 4. What is the difference between the units for velocity (m/s) and the units for acceleration (m/s2)?

Page 22: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

Step 1: Read the Problem, underline key quantitiesStep 2: Assign key quantities a variableStep 3: Identify the missing variableStep 4: Choose the pertinent equation:Step 5: Solve for the missing variable.Step 6: Substitute and solve.

Page 23: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0 m/s and a final velocity of 6 m/s and

it takes a total of 1.4 seconds, what is the acceleration?

Page 24: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 1: Read the Problem, underline key quantities

Page 25: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 1: Read the Problem, underline key quantities

Page 26: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 2: Assign key quantities a variable

Page 27: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Solving Kinematics Problems

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 2: Assign key quantities a variable

vf = 6 m/svi = 0 m/sΔt = 1.4 s

Page 28: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 3: Identify the missing variable

vf = 6 m/svi = 0 m/sΔt = 1.4 s

Page 29: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 3: Identify the missing variable

vf = 6 m/svi = 0 m/sΔt = 1.4 sa = ?

Page 30: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 4: Choose the pertinent equation:

vf = 6 m/svi = 0 m/sΔt = 1.4 sa = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 31: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 4: Choose the pertinent equation:

vf = 6 m/svi = 0 m/sΔt = 1.4 sa = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 32: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 5: Solve for the missing variable

vf = 6 m/svi = 0 m/sΔt = 1.4 sa = ?

a = (vf – vi)/Δt

Page 33: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

5. If a ball rolls down a ramp with a starting velocity of 0m/s and a final velocity of 6m/s and it

takes a total of 1.4 seconds, what is the acceleration?

Step 6: Substitute and solve.

vf = 6 m/svi = 0 m/sΔt = 1.4 sa = ?

a = (vf – vi)/Δt = (6 m/s – 0 m/s)/1.4 s = 4.29 m/s2

Page 34: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Solving Kinematics Problems

Step 1: Read the Problem, underline key quantitiesStep 2: Assign key quantities a variableStep 3: Identify the missing variableStep 4: Choose the pertinent equation:Step 5: Solve for the missing variable.Step 6: Substitute and solve.

Page 35: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 6)

6 . Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Page 36: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 1: Read the Problem, underline key quantities

Page 37: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 1: Read the Problem, underline key quantities

Page 38: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 2: Assign key quantities a variable

Page 39: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 2: Assign key quantities a variable

a = 5 m/s2

vf = 25 m/svi = 0 m/s

Page 40: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 6)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 2: Assign key quantities a variable

a = 5 m/s2

vf = 25 m/svi = 0 m/s

Page 41: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 3: Identify the missing variable

a = 5 m/s2

vf = 25 m/svi = 0 m/s

Page 42: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 3: Identify the missing variable

a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?

Page 43: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 4: Choose the pertinent equation a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 44: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 4: Choose the pertinent equation a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 45: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 4: Choose the pertinent equation a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 46: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 47: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?a = (vf – vi)/Δt

Page 48: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt *a = Δt * (vf – vi)

Δt

Page 49: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 6)

2. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt *a = (vf – vi)

Page 50: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt *a = (vf – vi)

a a

Page 51: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 5: Solve for the missing variable.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt = (vf – vi)

a

Page 52: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 6: Substitute and solve.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt = (vf – vi)

a

Page 53: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review (p. 4)

6. Brittany is driving her car and takes off from a stop light with an acceleration of 5m/s2 and

maintains a constant acceleration until her final velocity is 25m/s. How long did it take?

Step 6: Substitute and solve.a = 5 m/s2

vf = 25 m/svi = 0 m/sΔt = ?Δt = (vf – vi) = (25 – 0 m/s) = 5 s

a 5 m/s2

Page 54: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Solving Kinematics Problems

Step 1: Read the Problem, underline key quantitiesStep 2: Assign key quantities a variableStep 3: Identify the missing variableStep 4: Choose the pertinent equation:Step 5: Solve for the missing variable.Step 6: Substitute and solve.

Page 55: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 1: Read the Problem, underline key

quantities

Page 56: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 1: Read the Problem, underline key

quantities

Page 57: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 2: Assign key quantities a variable

Page 58: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 2: Assign key quantities a variable

v = 45 km / hrΔt = 3 hrs

Page 59: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 2: Assign key quantities a variable

v = 45 km / hrΔt = 3 hrs

Page 60: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 3: Identify the missing variable

v = 45 km / hrΔt = 3 hrs

Page 61: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in classStep 3: Identify the missing variable

v = 45 km / hrΔt = 3 hrs Δx = ?

Page 62: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 4: Choose the pertinent equation:

v = 45 km / hrΔt = 3 hrs Δx = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 63: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 4: Choose the pertinent equation:

v = 45 km / hrΔt = 3 hrs Δx = ?

Δx = xf – xi v = Δx/Δt a = (vf – vi)/Δt

Page 64: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 5: Solve for the missing variable.

v = 45 km / hrΔt = 3 hrs Δx = ?

v = Δx/Δt

Page 65: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 5: Solve for the missing variable.

v = 45 km / hrΔt = 3 hrs Δx = ?

Δt* v = Δx * Δt Δt

Page 66: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 5: Solve for the missing variable.

v = 45 km / hrΔt = 3 hrs Δx = ?

Δt* v = Δx * Δt Δt

Page 67: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 5: Solve for the missing variable.

v = 45 km / hrΔt = 3 hrs Δx = ?

Δt* v = Δx

Page 68: Oct. 22, 2012 AGENDA: 1 – Bell Ringer 2 – Acceleration Review 3 – Mini Quiz 3 Today’s Goal: Students will be able to understand how to calculate acceleration

Quiz Review

If the average velocity of a car is 20 km/hr, how far can it travel in 3 hrs? Show ALL of the steps

we discussed in class Step 6: Substitute and solve..

v = 45 km / hrΔt = 3 hrs Δx = ?

Δx= Δt* v = (20 km/hr)(3 hr) = 60 km