observations & instrumentation ii: spectroscopy

Upload: enrique-gamez-cardenas

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    1/155

    ASTR 3520

    Observations & I nstrumentation I I :Spectroscopy

    Lecture 1

    Introduction

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    2/155

    OverviewJohn Bally C323A Duane 492 5786

    [email protected]

    [email protected]

    Office hours: Th after class (2:00 PM)

    Wed (2:00 PM)

    Adam GinsburgC329 Duane 303 667 3805

    [email protected]

    Office Hours: Mon, Tues 11:00 AM

    or by appointment

    Student & Teacher Introductions:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    3/155

    Organization Review course structure, content, and Syllabus

    Observing Projects: Stellar, nebular spectroscopy,semester projects, labs, homework.

    Apache Point Observatory Field Trip:

    - 5 - 6 days/ 4 - 5 nights- Covered by Course Fees

    - VLA, NSO, APO

    - Last week of Oct. (depends on TAC)

    Observing Proposals for Semester project due end of Sept.

    24 Observing Groups 5 groups / 3 to 4 each.

    - Each group must have at last 1 experienced observer

    Start spectrograph overview (once-over lightly)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    4/155

    Spectroscopy: Astronomy => Astrophysics

    Light as a wave phenomenon: = cGeometrical optics => wave opticsDiffraction~ / DInterference:

    n= D sin n = 1,2,3, Deep insights into the nature of atoms, molecules:

    Discrete wavelengths => Discrete energy levels

    Electrons stable only in certain orbits.

    Interference of electron waves!

    = h / p = h / mv :de Broglie wavesAll matter has wave-like behavior on sufficiently

    small scale!

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    5/155

    Telescope

    Focal Plane

    Slit

    Spectrograph

    Spectrograph

    collimator

    Dispersing element

    camera

    detector

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    6/155

    SBO Spectrograph overview

    Slit & Decker:Restrict incoming light

    Spatial direction vs. Spectral direction

    Collimator & Camera:

    Transfer image of slit onto detector.

    Grating:

    Disperse light: dispersion => spectral resolution

    What determines spectral resolution & coverage?

    - Slit-width- Grating properties: Ngroves , order number

    - Camera / collimator magnification (focal length ratio)

    - Detector pixel size and number of pixels.

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    7/155

    Types of Spectroscopy Electromagnetic Waves: Emission, absorption

    Visual, near-IR., FIR, Radio, UV/X-ray, gamma-ray

    - Solids, liquids, gasses, plasmas- Emission, absorption

    - Spectral line, molecular bands, continua:

    - Thermal (~LTE, blackbody, grey-body):

    - Non-thermal (masers, synchrotron, )- Electronic, vibrational, rotational transitions.

    - Effects of B (Zeeman), E ( Stark), motion (Doppler),

    pressure (collisions), natural life-time (line widths)

    - Radiative Transfer (optical depth)

    Other types (not covered in this course):

    NMR

    Raman

    Phosprescence / Fluorecence

    Astro-particle

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    8/155

    Review of Some Basics c = x Angular resolution: = 1.22 / D radians

    206,265 in a radian E = h F = L / 4 pd2 AZ, El, RA, Dec, Ecliptic, Galactic

    Siderial time, Hour Angle

    G = 6.67 x 10-8(c.g.s)

    c = 3 x 1010 cm/sec,

    k = 1.38 x 10-16

    h = 6.626 x 10-27

    mH~ mproton= 1.67 x 10-24gramsme= 0.91 x 10

    -27grams

    eV = 1.602 x 10-12erg

    Luminosity of Sun = 4 x 1033erg/sec

    Mass of the Sun= 2 x 10

    33

    grams

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    9/155

    The Physics of EM Radiation

    Light: , - = c = 2.998 x 1010cm/s (in vacuum)- E = h Photon energy (erg)

    1 erg sec-1= 10-7Watt

    h = 6.626 x 10-27 (c.g.s)

    1 eV = 1.602 x 10-12erg

    - p = E / c = h / Photon momentum- = h / p = h / mv deBroglie wavelength

    Planck Function: B(T) Emission, absorption, continua

    Discrete energy levels: Hydrogen

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    10/155

    Refraction:

    Snells Law: n1sin(d1) = n2sin(d2)

    d2

    d1 n1

    n2

    n1= refractive index in region 1

    n2= refractive index in region 2

    n = c / v = vacuum/medium

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    11/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    12/155

    Basic Lens formulae:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    13/155

    Basic Mirror formulae:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    14/155

    Diffraction:

    Light spreads as = / dIn the `far field given by L = d2/

    d

    L

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    15/155

    2 slit interference

    Constructive Destructive

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    16/155

    Anti-reflection coating

    2 slit interference

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    17/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    18/155

    Multi-layer interference filter:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    19/155

    Diffraction grating:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    20/155

    Fermats Principle: d(optical path length) = 0

    Diffraction grating:

    order #

    wavelength

    groove spacing incidence anglediffraction angle

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    21/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    22/155

    CCD Imaging Review

    Review CCD basics- How CCDs work

    - CCD properties

    Dark, flat, and bias frames Image-scales

    - focal length, pixel-scale, FOV

    Review photometry basics- The magnitude system

    - Calibration

    - Atmospheric effects; Air mass, color terms

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    23/155

    Subaru 8m (Mauna Kea): Suprime Prime Focus CCD Mosaic8192 x 8192 pixels using SITe chips (15 mm pixels)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    24/155

    Typical

    Raw image

    With a CCD

    Cosmic rays

    Bad pixels

    stars

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    25/155

    CCDs (Charge-Coupled Device)

    Properties

    - Quantum efficiency (QE):

    => 90%

    - Gain:

    G = e- /ADU

    - Dark current:1 e-/ hr to 103e-/sec

    thermal emission: => Cool to20 to150 C

    - Read Noise:

    amplifier read-out uncertainty3 e-to 100 e- per read

    - Spatial uniformity:

    Bad pixels, columns: ~

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    26/155

    CCDs

    Properties

    - Cosmic Rays:

    5 to > 103 e-produced by each charged particle

    usually effects 1 or few pixels.

    non-gaussian charge distribution

    (different from stellar image or PSF)- Well depth:

    5 x 104to 106 e-

    - Pixel size:

    6 mm to 30 mm- Array size:512 x 512 to 4096 x 4096

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    27/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    28/155

    Dark current:

    => cooling

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    29/155

    MOSAIC CCD

    On KPNO 0.9m

    Vacuum Dewar

    LN2(77K)

    Controller

    Filters & slider

    V

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    30/155

    Charge Transfer0

    510

    05

    10

    510

    0

    V

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    31/155

    Charge Coupled Devices (CCDs)

    Output amplifier

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    32/155

    Charge Coupled Devices (CCDs)

    Output amplifier

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    33/155

    Read

    Charge Coupled Devices (CCDs)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    34/155

    Read

    Charge Coupled Devices (CCDs)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    35/155

    CCD Corrections/Calibrations

    Read noise: bias frames

    - 0 second exposure

    Dark frames:

    - Same duration as science exposure with shutter closed

    Flat fields:

    - Dome flats- Twilight flats

    - Super-sky flats

    Standard stars

    - At several air-masses

    A = sec (z) = 1 / cos(z)

    z

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    36/155

    CCD Corrections/Calibrations

    Types of image combinations:

    IRAF task: imarith image1 (+,-,*,/) image2 output

    imcombine @list_in output

    - Average: 1/N SI(n)- Mode: Most common data value

    - Median: Value in middle of rangegood for rejection of outliers (e.g CRs)

    Combine (median) 3,5,7,.. An odd #

    - bias frames- flat frames

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    37/155

    CCD Corrections/Calibrations

    Reduction:

    I(raw) - median(bias)

    I(reduced) =

    norm [median(Flat bias)]

    Note: Bias can be a Dark if hot pixels /or dark current is

    large

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    38/155

    Flat Field Examplestar

    star

    cosmic ray

    star

    star

    cosmic ray

    Bias ordark levelRaw science frame

    Dark subtracted frame

    Hot pixels

    i

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    39/155

    Flat Field Examplestar

    star

    cosmic ray

    cosmic ray

    Flat frame

    Fl Fi ld E l

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    40/155

    Flat Field Examplecosmic ray

    Flat frame

    Normalized, dark subtracted, median of > 3 flat frames

    1

    Fl t Fi ld E lcosmic ray

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    41/155

    Flat Field Example

    Normalized flat frame

    1

    star

    cosmic ray

    Science frame

    star star

    Reduced science frame

    Ph B i

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    42/155

    Photometry Basics:

    Vega magnitudes:

    m() = -2.5 log [F() / FVega()]F() = Counts on source

    FVega() = Counts on Vega

    A = sec (z) = 1 / cos(z)z

    T f S t

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    43/155

    Type of Spectra

    Continuum:- Blackbody: B(T)- free-free, free-bound

    - Non-thermal: Synchrotron radiation

    - Compton scattering

    Line & Band

    E dipole, B diplole, E quadrupole

    fine structure, hyperfine structure- electronic transitions

    - vibrational transitions

    - rotational transition

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    44/155

    Types of Spectra:

    Nebulae

    Stars

    Hot,

    Opaque

    media

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    45/155

    The Planck Function: Black-body radiation

    Rayleigh-Jeans:

    Wien:

    B(,T) = (2 p h3/ c2) e-h/kT

    B(,T) = 2kT/2

    (erg s-1cm-2Hz-1 2 psr-1)

    The Planck Function: Black-body radiation

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    46/155

    The Planck Function: Black-body radiation

    Wien Rayleigh-Jeans

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    47/155

    Spectrum of Hydrogen (& H-like ions)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    48/155

    Lyman

    Balmer

    a

    b

    a

    b

    Spectrum of Hydrogen (& H-like ions)

    Ionization (n to infinity):

    E = 13.6 eV

    Transitions:

    E = h= EuEl

    Ionization at

    E = 13.6 eV or less than = 912 Angstroms

    = R [ 1/nl21 /nu

    2]

    R = 3.288 x 1015Hz

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    49/155

    Bohr model:

    Allowed orbits

    mvr = nh /2pCoulomb Force:

    Ze2/ r2= mv2/r

    Thus, (eliminate v)

    r = Ze

    2

    / mv

    2

    = n

    2

    h

    2

    / 4 p2 Ze2mEnergy E = - (1/2) Ze2/ r = - 2 p2Z2e4m/ n2h2

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    50/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    51/155

    Adam Block: 16 Meade + SBIG ST10E + AO7

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    52/155

    The Orion Nebula (M42)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    53/155

    O tli & G l

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    54/155

    Outline & Goals: Tues, 18 Sept

    Summary of Kitt Peak Run &Heildelberg

    Review Spectrum of Hydrogen

    Spectroscopic `terms & terminology

    (Ch 2, 3; HW #2)

    Review Transitions (Ch 3): Einstein

    A, B. Col l isional and radiativeexcitation

    Spectral l ine formation & Radiative

    Transfer basics

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    55/155

    Bohr model:

    Allowed orbits

    mvr = nh /2pCoulomb Force:

    Ze2/ r2= mv2/r

    Thus,

    r = Ze2/ mv2 = n2h2/ 4 p2 Ze2mEnergy E = - (1/2) Ze2/ r = - 2 p2Z2e4m/ n2h2

    Spectrum of Hydrogen (& H-like ions)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    56/155

    Lyman

    Balmer

    a

    b

    a

    b

    Sp y g (& )

    Ionization (n to infinity):

    E = 13.6 eV

    Transitions:

    E = h= EuEl

    Ionization at

    E = 13.6 eV or less than = 912 Angstroms

    = R [ 1/nl21 /nu

    2]

    R = 3.288 x 1015Hz

    Ionization cross-section or hydrogen

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    57/155

    Wavelength (1 / photon energy)

    10-18

    -3

    Lyman lines

    y g

    13.6 eV = 912 Angstroms

    Balmer lines

    Atomic Structure

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    58/155

    Atomic Structure

    Refinements to Bohr:Elliptical e-orbits

    Integral of P in r and = lh l = 0,1,2, ,n-1Relativistic effects => l makes smallcorrection to E-levels

    Space quantization: Orientation of orbits

    m

    Electron spin

    Pauli: No 2 e- in same state.

    Atomic Structure

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    59/155

    Atomic Structure

    Atomic quantum numbers:n, l, m, s - completely specify state, E

    n = 1, 2, 3, 4 .shell = K L M N .

    max ne = 2 8 .

    l = 0 1 2 3 4 .

    s p d f g .

    Selection rules:

    Atomic Structure

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    60/155

    Atomic Structure Refinements to Bohr: n

    Elliptical e-orbits: k

    Space quantization: Orientation of orbits

    w.r.t. magnetic field: m

    Electron spin: s

    Pauli: Ferminons:No 2 e- in same state: [n,k,m,s]

    Shroedinger Wave function:

    n => principle quantum number (radial)

    l => orbital angular momentum 0, 1, nm => magnetic sublevels (degenerate if B=0)

    s => electron spid +/- 1/2

    Atomic Structure

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    61/155

    Atomic Structure

    Multi-electron atoms/ions

    Atomic quantum numbers: s = +/- 1/2n, l, m, s - completely specify state, E

    l = 0, 1, , (n-1) m = 0, +/- 1, +/- 2, , +/- l

    n = 1, 2, 3, 4 .

    shell = K L M N .l = 0 0, 1 0,1,2 0,1,2,3

    m = 0 0; -1,0,1 0;-2,-1,0,1,2 0;-3,-2,-1,0,1,2,3

    max ne = 2 2+6 = 8 2+8+10 = 20 (s = +/- 1/2)

    max l = 0 1 2 3 4

    s s,p s,p,d s,p,d,e

    Selection rules: Dl = +/- 1

    n

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    62/155

    n

    1

    23

    4

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    63/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    64/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    65/155

    Hydrogen Ha fine structure

    Review Transitions (Ch 3): Einstein

    A, B. Col l isional and radiative

    excitation

    Spectral l ine formation & Radiative

    Transfer basics

    Hydrogen energy levels showing allowed transitions

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    66/155

    Hydrogen energy levels showing allowed transitions

    Hydrogen energy levels showing fine structure

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    67/155

    Hydrogen energy levels showing fine structure

    l = 0 l = 1 l = 2

    S P D

    n=3

    n=2

    n=1

    Ha

    Lya

    Fine structure const.:a= e2/ hc = 1/137Fine structure:dE / E ~ a4 ~ 5x10-5 eVSpin / orbit (l * s)

    1s 2S1/2

    2s2S1/2

    3s 2S1/2

    3p2Po3/2

    3p2Po1/2

    3d2D5/2

    3d2D3/2

    2p2Po3/2

    2p2Po1/2

    2s+1

    J=L+S

    Hyperfine structure:dE ~ 6x10-6 eVSelection Rules:Dl = 0, +/-1Dj = 0, +/-1even odd

    L = [l(l+1)]1/2h/2pS = [s(s+1)]1/2h/2pJ = [J(J+1)]1/2h/2p

    Einstein A & B coefficients: radiative processes

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    68/155

    Einstein A & B coefficients: radiative processes

    Aul Blu BluBul

    Aul

    Bul

    - Spontaneous decay

    - Stimulated decay (prop to Flux)- Absrorption (prop to Flux)

    u

    l

    Ionization & Excitation

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    69/155

    Ionization & Excitation

    Radiation: Rr = sIrad Collisions: Rc = n s

    Blu

    Aul, Bul Cul

    Clu

    Rate Equations:

    Vthermal~ (3 kT / 2 m)1/2

    s= cross section

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    70/155

    Guidelines for 24 spectroscopy

    Simple Models for Spectrum Formation

    emission nebulaeabsorption line features

    continuum processes

    Theory of Spectrum Formationoptically thin and optically thick spectra

    stellar spectra

    Spectral Line Formation &

    Radiative Transfer

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    71/155

    Emission Nebulae

    Atoms in nebulae are excited by:

    Incident photons

    Collisions (high temperature or density) Excited atoms decay, emitting a photon of

    the characteristic energy (a spectral line)

    If the atoms are ionized, then the nebulawill emit free-bound radiation (i.e. Balmercontinuum) as well as spectral lines

    Ionization cross-section or hydrogen

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    72/155

    Wavelength (1 / photon energy)

    10-18

    -3

    Lyman lines

    13.6 eV = 912 Angstroms

    Emission Nebula

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    73/155

    Star emits continuum

    optically thin nebula:

    passes most wavelengths

    - light at energy equal to an

    atomic transition is absorbed

    - that light is then reemitted in a

    random direction (some of it

    towards the observer)

    - the nebula may be optically

    thick at these wavelengths

    Emission Nebula(photo-excited or photo-ionized)

    The only light directed towardsthe observer is that which has

    energy equal to the atomic

    transitions in the nebula:

    an emission spectrum

    The Ring Nebula (M57): Planetary Nebula

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    74/155

    The Swan Nebula (M17): Emission Nebula

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    75/155

    M82Subaru 8-m (Mauna Kea)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    76/155

    continuum

    Emission line (Ha)

    Absorption (dust, NaI, )

    emission (stars)

    M82UV (Galex)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    77/155

    M8221 cm HI (VLA)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    78/155

    M82

    M81

    NGC3077

    M82 Ha

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    79/155

    M82 radio (6 cm)

    M82 X ray

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    80/155

    M82 X-ray

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    81/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    82/155

    Absorption Features

    Continuum light is emitted from a star (or

    other source)

    Intervening material absorbs light atwavelengths of atomic transitions, exciting

    those atoms

    Excited atoms reemit light, but in a randomdirection (not towards observer)

    Absorption Feature:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    83/155

    Star emits continuum

    the observer sees all the

    wavelengths except those

    at the atomic transition energy

    an absorption spectrum

    - light at energy equal to an atomic

    transition is absorbed

    - that light is then reemitted in a

    random direction

    p

    QSO Spectrum with IGM Absorption

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    84/155

    What Does an Absorption Spectrum Look Like in an Image?

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    85/155

    Quasar 3C273 Deneb

    p p g

    It looks almost identical to the background object!

    All the absorption is in a few lines, the continuum

    is relatively unchanged.

    optically thick nebula:Dark or Reflection Nebula:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    86/155

    Star emits continuum

    p y

    -observer cant see background

    object (i.e. star) because light

    has been scattered away

    - dark nebula

    dust scatters light

    optically thick nebula:

    -observer sees cloud shining in

    scattered light (a continuum)

    -reflection nebula

    Continuum Phenomena:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    87/155

    Reflection and Dark Nebulae

    Dust scatters incident light

    Not a line process, scatterscontinuum

    reflection

    dark

    dark

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    88/155

    Basic Radiative Transfer Terms

    MFP = mean free path (cm)

    au= opacity (cm-1)cross section per unit volume (aka

    absorptivity)

    MFP = 1/au

    tu = optical depth (unitless)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    89/155

    Optical Depth

    Optical depth measures the attenuation of light

    tu= 1 at s= MFP

    The light we see from an optically thick source

    was emitted at tapproximately 1

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    90/155

    Radiative Transfer

    T1

    t1>> 1

    T2

    t2

    What does the observer see?

    -assume that the background

    cloud is opaque (t1>> 1)

    -assume both clouds are uniform

    )1)(()()( 21

    t

    t

    t

    = eTBeTBF

    This equation has two simple limits

    Optically Thin (tu

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    91/155

    Optically Thick (tu>> 1)

    many scatterings through the cloud

    one or fewer scatterings through the cloud on average

    )(]1)[()( 21 TBTBF ttt =

    contribution from

    background cloudcontribution from

    foreground cloud

    )()( 2TBF t =

    since the foreground cloud is optically thick,

    all the contribution is from that cloud

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    92/155

    Stel lar Spectra:

    The spectrum of a star forms in its

    atmosphere

    The temperature in the atmosphere is

    stratified

    The emission at any temperature is a

    blackbody (for an optically thick source)

    The opacity is a function of wavelength

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    93/155

    At each wavelength, t=1 corresponds to a

    different depth in the atmosphere and thus adifferent temperature

    The opacity in a line is much higher than in a

    continuum In a line, we see to a very shallow depth in the

    atmosphere

    The Solar Spectrum (from Kitt Peaks McMath-Pierce Solar Telescope):

    296013000 angstroms

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    94/155

    g

    Based upon the previous image, does

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    95/155

    p p g

    temperature in the Sun increase or

    decrease with height in the atmosphere?

    Temperature decreases with heightbecause the lines

    (which are formed higher up) are darker than the continuum

    and thus are emitted from a cooler region.

    This allows us to probe the temperature of the sun as a

    function of depth.

    Solar Spectrum Trace:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    96/155

    notice the different linewidths in different lines

    and the strong Calcium H & K lines

    Ca K Ca H

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    97/155

    Solar L imb Darkening

    Sun is brighter in center

    than at edges. Why?

    S l L i b D k i

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    98/155

    At center you see down

    to a certain depth at t~1

    At edge you only see

    down to a shallower

    depth (lower

    temperature) at t~1

    Solar L imb Darkening

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    99/155

    Terminology

    Surface brightness is synonymous with temperature

    The continuum

    has a TBof

    5,000K

    The line has a TB

    of 10,000K

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    100/155

    Terminology: Radio Astronomy

    Radio astronomers often plot spectra as TB

    vs

    TBis a physical measurementbut only for thermalprocesses (that are

    optically thick)

    Why is this terminology most appropriatefor radio astronomy?

    radio astronomy is well into the R-J tail

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    101/155

    Terminology: Radio Astronomy

    0.1 m

    The CMB

    S t

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    102/155

    Spectrum

    Summary & Goals: Oct 4

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    103/155

    Discuss observing proposals

    What we covered:Review EM basics, atomic structure basics

    I ntro to gratings & spectrographs: Grating equation

    Black-bodies. F luxes, exposure time estimation

    The H atom & its spectrum

    Einstein A & B coeff icients; radiative & coll ision rates

    Radiative transfer & spectral l ine formation

    To be covered by F ield Trip:

    Saha equation: ionization of atoms into successive stages of

    ionizationStel lar classif ication basics

    Nebula ionization & excitation: the roles of UV

    Spectrograph design: optics, matching R, pixels, and seeing

    Radio astronomy

    Ionization Balance: (Saha formula)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    104/155

    Each element has an ionization potential for eachevery electron: Roman numeral is number

    of electrons lost + 1

    Netural H = HI

    Ionized H = HIIMolecular H = H2

    HI13.6 eV

    HeI24.58 eV, HeII54.416 eVCI - 11.26 eV, CII25.14 eV, CIII47.89 eV, CIV64.49 eV,

    CV392 eV, CVI490 eV

    OI13.6 eV, OII35.11 eV, OIII54.9 eV

    Ca XXI5,469 eV

    Ionization stage

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    105/155

    Temperature

    I II III IV V

    R

    elativeabun

    dance

    Saha Formula

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    106/155

    Saha Formula

    Electron density

    Next ionization stage density

    Previous ionization stage density

    Partition function (# of states)Ionization potential

    Stellar Spectra: Temperature,

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    107/155

    Stellar Spectra: Temperature,

    Ionization state

    Dominant features in spectra of stars

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    108/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    109/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    110/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    111/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    112/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    113/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    114/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    115/155

    Ionization Balance: Ionized nebulaeHII regions planetary nebulae: UV

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    116/155

    HII regions, planetary nebulae: UV

    Supernova remnants: shocksIonization produced by:

    - UV to X-ray radiation fields:

    stars, white dwarves, neutron stars, accreting WDs, NS,

    and black holes

    - Collisions: Shock heated gas

    Recombinations: Electrons re-combine with ions

    Stromgren (photo-ionization equilibrium): HII regions

    Q = (4 p/3 r3ne2aBQ = Lyman continuumluminosity (~1049photons/sec for O7 star)aB = 2.6 x 10-13 cm3/sec (Recombination coeff. for H at 10,000 K)

    Thors helmet:

    NGC 2359

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    117/155

    NGC 2359

    HD 56925

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    118/155

    S106 star forming region in Cygnus

    (Subaru telescope)

    Proto-planetary & Planetary Nebulae

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    119/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    120/155

    Orion A:

    - Outflows up to

    30 l !

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    121/155

    30 pc long !

    HH 1/2

    M42

    HH34HH 131

    YSOs near massive stars: UV photo-ablation of disks

    irradiated jets

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    122/155

    d253-535 in M43

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    123/155

    HH 46/47

    HH 46/47

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    124/155

    HST 1997 - 1994

    HH 46/47

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    125/155

    HST 1997 - 1994

    Stromgren radius of an HII region:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    126/155

    Lyman continuum luminosity of O, B stars:

    O3: L(LyC) = 1.0 x 1050 photons s-1 T = 60,000 KO5: L(LyC) = 4.7 x 1049 photons s-1 T = 48,000 K

    O7: L(LyC) = 6.7 x 1048 photons s-1 T = 35,000 K

    O9: L(LyC) = 1.7 x 1048 photons s-1 T = 32,000 K

    B0: L(LyC) = 4.7 x 1047 photons s-1 T = 30,000 K

    B3: L(LyC) = 4.7 x 1045 photons s-1 T = 20,000 K

    n = 1000, O5 star:

    L(Lyc) ~ n2r3aB => r ~ [L(LyC) / n2aB]

    1/3

    5.6 x 1018(cm)

    1.8 pc

    Photo-ionization equilibrium

    (in-class exercise)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    127/155

    (in-class exercise)

    Consider an O7 star that emits 1049Lyman continuum

    photons per second which is embedded in a uniform

    density cloud with n(H) = 1 cm-3.

    - What is the Stromgren radius?

    - What is the massthat is ionized?

    - How would these answers change ifn(H) = 104cm-3

    HII (ionized nebulae) cooled and traced

    by trace elements & ions

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    128/155

    Many forbidden transitions have DE ~ 2 eV (visible)long life-times, low decay rates (Einstein A coefficients)

    Collision rate: Rcoll= nn ~ 102cm-3

    s ~ 1015cm2 (for atoms. Depends on v for ions)v ~ (kT / mm)1/2 (sound speed ~ 10 km/s for H

    at 10,000 K)R ~ 10-7sec-1 (1 collision every 107sec)

    Collision rate ~ decay rate => each ion can radiate

    Thousands of times before recombining => bright line

    Some common transitions in ionized nebulae:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    129/155

    [SII] 6717/6731 A (density tracer)

    [NII] 6748/6784 A

    Ha 6563 A[OI] 6300/6363 A

    [OIII] 5007 A

    [OII] 3729/3726 A

    Long-slit:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    130/155

    Spectrum

    of a planetary

    nebula

    Slitless: No entrance aperture

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    131/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    132/155

    Objective prism (slitless) spectra:

    Planetary nebula M57 (Ring nebula)

    Slitless: No entrance aperture

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    133/155

    Slitless: No entrance aperture

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    134/155

    Slitless: No entrance aperture

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    135/155

    Why `forbidden emission lines are bright

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    136/155

    13.6 eV

    ~2 eV

    9.2 eV

    Photo-ionization =>

    recombination

    Ha

    Collisional

    Excitation

    ~3/2 kT = 1.3 eV @104K

    -3

    1.4

    Measuring nebular density using [SII] lines

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    137/155

    [SII]I(6717/6731)

    1.0

    0.6

    101 102 103 104

    Density (cm-3)

    O star embedded in semi-infinite wall near edge:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    138/155

    n(H)

    d

    Q = L(LC) = 1050gs-1

    O star next to an infinite wall of hydrogen:

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    139/155

    d

    Q = L(LC) = 1050gs-1

    Three problems:Star with a wind spherical cloud star in a pipe

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    140/155

    p p p

    Ionization Balance: (Saha formula)

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    141/155

    Each element has an ionization potential for each

    every electron: Roman numeral is number

    of electrons lost + 1

    Netural H = HI

    Ionized H = HIIMolecular H = H2

    HI13.6 eV

    HeI24.58 eV, HeII54.416 eVCI - 11.26 eV, CII25.14 eV, CIII47.89 eV, CIV64.49 eV,

    CV392 eV, CVI490 eV

    OI13.6 eV, OII35.11 eV, OIII54.9 eV

    Ca XXI5,469 eV

    I II III IV V

    Ionization stage

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    142/155

    Temperature

    R

    elativeabun

    dance

    Saha Formula

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    143/155

    Electron density

    Next ionization stage density

    Previous ionization stage density

    Partition function (# of states)Ionization potential

    Stellar Spectra: Temperature,

    Ionization state

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    144/155

    Ionization state

    Dominant features in spectra of stars

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    145/155

    Wolf-Rayet stars:

    > 60 Solar mass, post-main sequence

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    146/155

    WR 124

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    147/155

    2006 APO Field Trip

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    148/155

    What to Bring:

    - Pack light (like carry-on on an airplane)- Jacket, hat, gloves (prepare for cold near freezing)

    - Flashlight

    - Cash for food (supermarket + stops during drive)

    - Personal items

    Where:

    - Meet at Circle at NW corner of Benson @ 9:00 AM Monday

    30 Oct (be early!)- Need two volunteers with sleeping bags for Mon night

    (Socorro)

    - Return Friday (3 Nov) in the evening.

    2006 APO Field Trip

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    149/155

    Itinerary:

    - Monday: Drive from Boulder to Socorro, NM (9 - 10 hrs)- Tuesday: Meet Debra Shepherd at NRAO ~ 8:30 AM

    Drive to VLA site (1 hr)

    Tour VLA

    Return to Socorro - have lunch

    Drive to APO (4 hrs) & shop for food

    Settle in to dorm rooms / houses

    Observe till 1:00 AM (If we are late, remote

    observers will operate remotely from Boulder)

    - Wed: PM tour of NSO (?) + cook dinnerObserve all night

    - Thurs: Sleep during day / observe first half

    - Friday: Rise at 8:00 AM, drive back (10 - 11 hrs)

    Project / Observing Summary

    i

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    150/155

    Itinerary:

    Tues (first half) M17 LBV, Ceph A DIS new high redHyades WDs (Audrey, Ward, Nate)

    Wed (whole night) Comet Swan (Corey, Julia, Tedd)

    Eyepiece on Moon etc.

    Metallicity

    QSO outflow (Max)HL/XZ Tau (Alexi, Courtney, Carlee, Beau)

    DIS new high red / eyepiece / DIS / SpiCam / eyepiece (dawn):

    Orion, NGC1068, Saturnthurs (first half) APOLLO laser

    finish projects as needed.

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    151/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    152/155

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    153/155

    Atacama Large Millimeter Array:

    Sajnantor Chile, ~ 64 12 meter dishes

    Baselines: 150 meter to 10 km

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    154/155

    Baselines: 150 meter to 10 km

    ALMA site: Sajnantor Chile,

    Elevation ~ 5,000 meters!

  • 8/12/2019 Observations & Instrumentation II: Spectroscopy

    155/155