observable island identification for state estimation using incidence matrix

Upload: wvargas926

Post on 01-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Observable Island Identification for State Estimation Using Incidence Matrix

    1/5

    Automatica. Vol. 24. No. I. pp. 71-75, 1988

    Printed in Great Britain.

    0005-1098/88 $3.00 + 0.00

    Pergamon Journals Ltd.

    © 1988 International Federationof AutomaticControl

    Brief Paper

    Obs e rvab le I s lan d I de n t i f i c a t io n f o r S t a t e

    E s t i m a t i o n U s i n g I n c i d e n c e M a t r i x *

    YOUNG H. MOON,t YOUNG M. PARK~: and KYUNG J. LEE§

    K e y W ords - -S t a t e e s t im a t ion ; obse rvab i l i t y ; t opo log i ca l ana lys i s ; i n t ege r G auss e l im ina t i on ; m e te r

    p l acem en t ; i r r e l evan t m easurem en t ; obse rvab l e i s l and i den t i f i ca t i on .

    A b s t r ac t - -T h i s pap e r dea l s w i th t he t opo log i ca l obse rvab i l i t y

    ana lys i s and t he deve lopm en t o f an obse rvab l e i s l and

    iden t i f i ca t i on a lgo r i t hm in l a rge pow er sys t em s by us ing t he

    inc idence m a t r i x .

    T he t opo log i ca l obse rvab i l i t y i s ana lyzed by us ing t he

    pa r t i t i oned i nc idence m a t r i x w h ich has a l l t he i n fo rm a t ion o n

    t he sys t em topo logy and m easur ing po in t s a s w e l l . T he

    topo log i ca l obse rvab i l i t y t e s t i s pe r fo rm ed by app ly ing t he

    in t ege r G auss e l im ina t i on m e thod t o t he t opo log i ca l

    m e a s u r e m e n t e q u a t i o n .

    F or t he i den t if i ca t ion o f obse rvab l e i s l ands , a bus g roup ing

    a lgor i t hm i s deve loped on t he bas i s o f t he t opo log i ca l

    obse rvab i l i t y ana lys i s unde r t he a s sum pt ion o f a l l m easu re -

    m en t s be ing ze ro . T h i s a lgo r i t hm rem arkab ly r educes t he

    com puta t i ona l bu rden com pared w i th t he conven t iona l

    a lgo r i t hm s . A m e te r p l acem e n t a lgo r i t hm i s p r e sen t ed t o

    r ecove r t he obse rvab i l i t y o f an unobse rvab l e m easurem en t

    system.

    1. Introduction

    THE OPERATION of m odern pow er sys t em s i s based on s t a t e

    e s t i m a t i o n p e r f o r m e d b y p r o c e s s i n g p r o p e r m e a s u r e m e n t

    da t a . T he r e l i ab i l i t y o f s t a t e e s t im a t ion e s sen t i a l l y depends

    o n t he obse rvab i l i t y o f t he sys t em s t a t e . T h e ob se rvab i l i ty o f

    t he sys t em s ta t e i s r e l a t ed t o t he nu m be r o f m easurem en t s

    and t he i r geograph i c d i s t r i bu t i on . E ven i f t he sys t em i s

    des igned t o be obse rvab l e , t em pora ry unobse rvab i l i t y m ay

    be encoun te red due t o t opo log i ca l ne tw ork changes o r

    f a i l u r e s on m e te r s , R T U s (R em ote T e rm ina l U n i t s ) e t c . I n

    cases w here t he sys t em i s unob se rvab l e , i t i s des i r ed t ha t t he

    fo l l ow ing p rocedures a r e t aken .

    ( i ) I den t i fy obse rvab l e i s l ands o f t he sys t em and pe r fo rm

    the s t a t e e s t im a t ion fo r each obse rvab l e i s land un t i l t he

    obse rvab i l i t y fo r t he w ho le sys t em i s r ecove red .

    ( i i) R eco ve r t he obse rvab i l it y o f the w ho le sys tem as soon

    as poss ib l e by p l ac ing a m in im a l s e t o f add i t i ona l

    m easurem en t s .

    Im po r t an t con t r i bu t i ons t o t he o bse rvab i l i t y ana lys is have

    b e e n m a d e b y C l e m e n t s et al. (1982a, b , 198 3) . The se

    au thor s e s t ab l i shed t heo re t i ca l f ounda t i ons fo r t he obse rv -

    abi l i ty analys is wi th the use of the graph theory.

    * R ece iv ed 4 F ebrua ry 1986 ; r ev i sed 6 J anua ry 1987 ;

    r ev i sed 23 June 1987 . T he o r ig ina l ve r s ion o f t h is pape r w as

    p r e s e n t e d a t t h e I F A C S y m p o s i u m o n P o w e r S y s t e m a n d

    P ow er P l an t C on t ro l w h ich w as he ld i n B e i j i ng , P . R . o f

    C h ina du r ing A ugu s t 1986 . T he P ub l i shed P roceed ings o f t hi s

    I F A C M e e t i n g m a y b e o r d e r e d f r o m : P e r g a m o n B o o k s

    L i m i t e d , H e a d i n g t o n H i l l H a ll , O x f o r d O X 3 O B W , E n g -

    l and . T h i s pape r w as r ecom m ended fo r pub l i ca t i on i n r ev i sed

    fo rm by A ssoc i a t e E d i to r R . V . P a t e l unde r t he d i r ec t i on o f

    E d i t o r H . K w a k e r n a a k .

    1 D epa r tm en t o f E l ec t r ica l E ng inee r ing , Y onse i U n ive r -

    s i t y , 134 S h incho n-D on g , S eodae m oo n-K u , S eou l , K orea .

    :~ D ep a r tm e n t o f E l ec t r i ca l E ng inee r ing , S eou l N a t iona l

    U nive r s i t y , K orea .

    § R e s e a r c h a n d D e v e l o p m e n t C e n t e r , K o r e a E l e c t r i c

    P o w e r C o r p o r a t i o n , K o r e a .

    71

    M ont i ce l l i and W u (1985a , b ) p r e sen t ed a com ple t e t heo ry

    of ne tw ork obse rvab i l i t y w i th theo rem s , and p roposed a

    s im ple a lgo r i t hm fo r t he obse rvab l e i s l and i den t i f i ca t i on and

    the m easurem en t p l acem en t , based on t he ca l cu l a t i on o f

    phase angles .

    B a rg i e l a et al. (1985) p ropose d an i n t e r e s t i ng obse rvab i l it y

    a lgo r i t hm us ing a ne tw ork f l ow t echn ique , an d H or i sbe rge r

    (1985) p re sen t ed an a lgo r i t hm o f m ax im a l obse rvab l e i s l and

    iden t i fi ca t ion based on sea rch ing fo r an ob se rvab i l i t y dec is i on

    t ree wi th the complete theoret ical analys is .

    In this s tudy, the topological observabi l i ty i s analyzed by

    us ing t he pa r t i t i oned i nc idence m a t r i x w h ich has a l l t he

    in fo rm a t ion o f m easur ing po in t s. A n ana logy o f t he D C

    pow er f l ow m e thod t o t he D C c i r cu i t ana lys i s i s i n t roduced

    s ince t he l a t t e r can be w e l l - fo rm ula t ed by us ing t he i nc idence

    m a t r i x . W i th t h i s ana logy , a l l r e l a ti ons be tw een p ow e r f low s

    and phase ang l e s a r e r ep l aced by t he co r r e spond ing

    cur r en t -vo l t a ge r e l a t ions . A s a r e su lt , a se t o f T M E s

    (T opo log i ca l M easurem en t E qua t i ons ) i s de r ived fo r t he

    topo log i ca l ana lys is . T he f ea tu re o f t he T M E se t i s t ha t eve ry

    e l em en t o f m a t r i x i n t he equa t i on i s an i n t ege r .

    T he obse rvab i l i t y t e st i s ca r r i ed ou t by exam in ing t he r ank

    of t he m easurem en t m a t r i x i n t he T M E se t . T he i n t ege r

    G auss e l im ina t i on m e thod i s i n t roduced fo r t he de t e rm ina -

    t i on o f m a t r i x r ank .

    A p rec i se a lgo r i t hm fo r t he obse rvab l e i s l and i nden t i f i ca -

    t i on i s deve loped w i th an app l i ca t i on o f a bus g roup ing

    m ethod . T he bus g roup ing m e thod i s based on t he

    ca l cu l a t i on o f bus vo l t ages unde r t he a s sum pt ion o f a l l

    m easurem en t s be ing ze ro .

    T he op t im a l m e te r p l acem en t a lgo r i t hm i s p r e sen t ed t o

    r ecove r t he obse rvab i l i t y o f unobse rvab l e m easurem en t

    sys t em s . T he a lgo r i t hm i s e s t ab l i shed by com bin ing t he bus

    g roup ing m e thod and H or i sbe rge r ' s obse rvab i l i t y dec i s i on

    t r ee a lgo r i t hm s . T he a lgo r i t hm p roduces t he m ax im a l

    obse rvab l e i sl ands even fo r t opo log i ca l l y sym m et r i c sys t em s ,

    and sea rches fo r t he m in im a l s e t o f add i t i ona l m easurem en t s

    w hich w i l l r ecove r t he obse rvab i l i t y o f t he w ho le sys t em .

    2. Topological obseroab ility analysis by incidence matrix

    This sect ion deals wi th the analysis of topological

    obse rvab i l i t y . W i th t he use o f i nc idence m a t r i x , t opo log i ca l

    analysis i s carr ied out on the basis of measurement sys tem

    m ode l ings by t he bus vo l t age r ep re sen t a t i on .

    2.1. Topological observability analysis. T he obse rvab i l i t y o f

    a m easurem en t sys t em depends on t he sys t em conf igu ra t i on

    and t he m easurem en t p l acem en t on ly . T he p r inc ip l e o f new

    topological analys is i s presented, which i s based on the

    analogy of the DC load f low analysis to the c i rcui t analys is .

    T he pow er sys t em pa ram e te r s have t he fo l l ow ing

    prope r t i e s :

    ( i ) a l l l i ne pa ram e te r s a r e know n,

    ( i i ) l oad im pedances and gene ra to r im pedances a r e

    unknow n s ince t hey change w i th s t a t e s o f l oads and

    gene ra to r s .

    Consider a s ix-bus system wi th e ight l ines given in F ig. 1 .

    R ea l and r eac t i ve i n j ec t ion pow er s a r e m easu red a t a l l buses .

    T he f l ag s i gn r ep re sen t s pow er m e te r p l ac ing . T he sys t em i s

  • 8/9/2019 Observable Island Identification for State Estimation Using Incidence Matrix

    2/5

    7 2 B r i e f P a p e r

    . . . - . X F ~

    Z S

    P,

    F i G . 1. S ix-bus system.

    P~

    ®

    ®

    P6

    obv ious ly obse rvab l e , s i nce a ll bus i n j ec t ions a r e know n. T he

    system observabi l i ty means that a l l l ine f lows and bus

    in j ec t ion pow er s can be ca l cu l a t ed f rom the m eas ured da t a .

    N ow w e w i l l exam ine how a l l r ea l l i ne f l ow s can be

    ca l cu l a ted f rom the m easured da t a . F o r t he s im pl i c i ty o f

    ca l cu l a ti on , i t is a s sum ed tha t a l l li ne im pedan ces a r e p u re ly

    im ag ina ry . S ince t he re i s no l o s s o f. r ea l pow er , t he re a r e

    e igh t unknow n r ea l l i ne f l ow s f rom F , t h rough Fs . By

    app ly ing t he pow er ba l ance cond i t i on t o each bus , w e have

    s ix equa t i ons . H ow e ver , on ly fi ve equa t i ons am o ng them a re

    l i nea r ly i ndependen t . F rom the phase ang l e r e l a t i ons , l oop

    equa t i ons can be se t up us ing t he D C f low m e tho d . L oo p 1

    gives an equ at ion of phase angles , 0 ,z + 023 + 03~ = 0 or

    7-qFx ZzFz-

    7-~F = 0 wi th l ine imp eda nce Z 1 through Z s .

    S im i l a r l y , tw o m ore l oop equa t i ons can be se t up fo r l oop 2

    and l oop 3 . A l l o f t hese l oop equa t i ons a r e i ndependen t .

    Independen t equa t i ons t o t a l e i gh t .

    C onsequen t ly t he e igh t unknow n l i ne f l ow s a r e de f in i t e ly

    c a l c u l a t e d f r o m t h e a b o v e - m e n t i o n e d e i g h t i n d e p e n d e n t

    equa t i ons . T h i s m eans t he sys t em i s obse rvab l e .

    F or t he sys t em a t i ca l t e s t o f t opo log i ca l obse rvab i l i t y , t h i s

    s t udy adop t s t he fo l l ow ing p rocedures .

    ( i ) A ssum e a com plex cu r r en t i s m easu red fo r eve ry po in t

    w here r ea l and r eac t i ve pow er s a r e m easured .

    ( ii ) S e t up a ll i ndepen den t l oop and noda l equa t i on s by

    us ing t he i nc idence m a t r i x .

    ( i i i ) C heck w he the r o r no t a l l l i ne cu r r en t s can be

    ca l cu l a t ed f rom the m easured cu r r en t s . I f pos s ib l e,

    t hen t he sys t em i s t opo log i ca l l y . obse rvab l e . O the rw i se ,

    t he sys t em i s unobse rvab l e .

    2.2.

    Topolog ical observability analysis algorithms u sing the

    inc idence matr ix . The P-O

    obse rvab i l i t y a lgo r i t hm can be

    appl ied to the analysis of Q - V obse rvab i l i t y a s d i scussed

    ea r l i e r by C lem en t (1982b) and H or i sb e rge r (1985). I n t h i s

    con t ex t , on ly t he P - O obse rvab i l i t y w i l l be ana lyzed . T he

    topo log i ca l obse rvab i l it y a lgo r i t hm i s deve lope d by r ep l ac ing

    rea l pow er m easurem en t s by cu r r en t m easurem en t s .

    Bus vol tage formulat ion. B us i n j ec t i on cu r r en t s can be

    class if ied into m easur ed inject io n curre nts I m and un-

    m easured i n j ec t i on cu rr en t s Inz . W e have t he fo l l ow ing bus

    vo l t age -cu r r en t r e l a t i on by appropr i a t e o rde r ing o f bus

    num ber s :

    w h e r e y n u s : b u s a d m i t t a n c e m a t r i x

    V B : bus vo l t age vec to r .

    S imi lar ly the l ine currents can be c lass i f ied into

    unm e asured l i ne cu r r en t s I , , and m easu red l i ne cu r r en t s 1 , 2,

    a n d w e h a v e t h e f o l ow i n g p ri m i t iv e e d g e c u r r e n t - v o l t a g e

    rela t ion:

    i, 1= v.=#ATVB (2)

    Ie2J

    w here ) ,: p r im i t i ve adm i t t ance m a t r i x

    V , : edge vo l t age vec to r

    A : i nc idence m a t r i x .

    W i th t he use o f t he pa r t i t i oned i nc idence m a t r i x , t he bus

    in j ec t i on cu r r en t s can be expres sed a s fo ll ow s :

    = 3 )

    l ~ J L A 2 1 I A = J L I . 2 J

    w i t h

    u n m e a s u r e d m e a s u r e d

    l ines l ines

    r A 1 , i A , 2 ] } m easu red buses

    A = L . . . ~ i ; ; ' ~ ' - ' - ~ J ) u n m e a s u r e d b u s e s.

    T he p r im i t i ve m a t r i xy i s a l so pa r t i t i oned a s fo l l ow s :

    u n m e a s u r e d m e a s u r e d

    [ y n ~ y ,2 ] ) u n m e a s u r e d

    Y = L y 2 ~ ' , . . . . ~ ' - J } m e a s u r e d . ( 4)

    Subst i tut ion o f par t i t io ned A an d y into (2) gives:

    y,4r4 L4 l,,

    l . z J - L ~ 7 Y ~ ; ; J La T ~ , A ~ . I - w ( 5 )

    B y us ing t he above equ a t i on , t he un m easu red l i ne cu r r en t 1 , ,

    in (3) can be e l iminated as fol lows:

    Im AH T T , T

    F rom (5) and (6 ) , w e have t he fo l l ow ing equa t i ons w i th

    re spec t t o V s :

    _ T

    I m [ A , , , ~ , : A , 1 A , , , ~ , 2 A T I A ~ , ,~ t tA 2 T t

    + X l , y , , A ~ ] V s + A I ~ I,2 7 )

    In t he above equa t i ons , bus vo l t ages V s a r e t he on ly

    unknow n va r i ab l e s .

    T he t opo log i ca l obse rvab i l i t y can now be cons ide red by

    se t t i ng t he p r im i t i ve adm i t t ance m a t r i x u t o an i den t i t y

    m a t r i x . T ha t i s y l l = l , y i z = O, y2 , = O, y22 = L Subst i tut ion

    of t hese m a t r i ce s i n to (7 ) l eads t o

    [ [ 'a l 'a 3 ~ ' : d ' ~ ' 4 : d

    s i - A ,21e21 T ' T

    = / A v ,

    AT j - - s = M s V s

    ( 8 )

    l e 2

    a L 12 ' 22

    w i th

    T , T

    r A , , A 1 , , A n A 2 , ]

    M s = l--~---: --~,r---J.

    L 12 ' 22

    T he m a t r i x M s w i l l be ca l l ed t he t opo log i ca l bus

    m e a s u r e m e n t m a t r ix .

    C onsequen t ly , t he t opo log i ca l obse rvab i l i t y can be

    d e t e r m i n e d b y c h e c k i n g t h e r a n k o f m a t r ix M s . I f t he r ank o f

    M s is (N - 1 ), t hen t he m easu rem en t sys tem is obse rvab l e .

    O the rw i se , t he sys t em i s unobse rvab l e .

    I t i s n o t e d t h a t t h e t o p o l o g i c a l m e a s u r e m e n t m a t r i x M s

    can be d i r ec t l y com posed by us ing t he pa r t i t i oned i nc idence

    m a t r i x g i v e n i n ( 8 ) . M o r e o v e r , e v e r y e l e m e n t o f M s i s a n

    i n te g e r . T h e r a n k o f a n i n t e g e r m a t r i x ca n b e d e t e r m i n e d b y

    reduc ing t he m a t r i x t o a row eche lon fo rm by e l em en ta ry

    row ope ra t i ons i nvo lv ing i n t ege r s , i . e . by p rem ui t i p l i ca t i on

    by an i n t ege r m a t r i x w h ich i s un im odu la r ove r t he r i ng o f

    in t ege r s . F o r t he r ank t e s t o f m a t r i x M s , t h i s s t udy has

    adop ted t he i n t ege r G auss e l im ina t i on m e thod , w h ich

    enab l e s us t o avo id t he nea r ly -ze ro -p ivo t p rob l em .

    3. Ob serv ab le island identification

    W hen a m easurem en t sys t em i s unobse rvab l e , i t i s des i r ed

    to f i nd m ax im a l obse rvab l e i s l ands and pe r fo rm the s t a t e

    e s t im a t ion fo r each i s l and . T he obse rvab l e i s l and i s an

    o b s e r v a b le s u b n e t w o r k o f a p o w e r s y s te m . A n u n o b s e r v a b l e

    pow er sys t em can be d iv ided i n to obse rvab l e i s l ands .

    S uppose a p ow er sys t em cons i s t s o f t h r ee o bse rvab l e i s l ands.

    T h e n , t h e m e a s u r e m e n t e q u a t i o n s c a n b e d i v i d e d i n to t h r e e

    d e c o u p l e d g r o u p s o f m e a s u r e m e n t e q u a t i o n s a n d a g r o u p o f

  • 8/9/2019 Observable Island Identification for State Estimation Using Incidence Matrix

    3/5

    Brief Paper 73

    i r r e le v a n t m e a s u r e m e n t e q u a t i o n s :

    l r o l i z

    . . . . . . . . . . . . . o f

    0 . 1 / o z . 9 )

    I 0 : 0 : n / l / : O =

    P h a s e a n g l e s i n e a c h i s l a n d a r e i n d e p e n d e n t o f t h e

    m e a s u r e m e n t s i n o t h e r g r o u p s w h e n t h e i r r e l e v a n t

    m e a s u r e m e n t s a r e r e m o v e d . E a c h o b s e r v a b l e i s l a n d h a s a

    s l ack bus . Al l phase ang le s a s we l l a s a l l l i ne f lows in the

    o b s e r v a b l e i s l a n d a r e u n i q u e l y d e t e r m i n e d f r o m t h e

    c o r r e s p o n d i n g g r o u p o f m e a s u r e m e n t s i f th e p h a s e a n g l e o f

    t h e s l a c k b u s is a s s i g n e d . C o n s e q u e n t l y , i f we h a v e z e r o

    r e a d i n g s f o r a l l m e a s u r e m e n t s , t h e n a l l l i n e f l o ws m u s t b e

    z e r o a n d a l l b u s v o l t a g e s i n t h e i s l a n d m u s t b e t h e s a m e .

    U n d e r t h e s e o b s e r v a t i o n s , s e v e r a l t h e o r e m s w i l l b e

    p r e s e n t e d .

    A s s u m e t h a t a l l m e a s u r e m e n t s a r e z e r o . T h e n , w e h a v e

    t h e f o l l o wi n g f r o m ( 8 ) :

    M BVB = 0 o r M ~ M a V a = 0. (10)

    I r r e l e v a n t m e a s u r e m e n t s m a k e u s e n c o u n t e r g r e a t

    d i f f i c u l t i e s i n d i v i d i n g t h e m e a s u r e m e n t e q u a t i o n s i n t o

    d e c o u p l e d g r o u p s . F o r t h e o b s e r v a b l e i s l a n d i d e n t i f i c a t i o n , i t

    i s n e c e s s ar y t o r e m o v e a l l i r r e l e v a n t m e a s u r e m e n t s f r o m t h e

    m e a s u r e m e n t e q u a t i o n .

    F o r t h e d e v e l o p m e n t o f t h e o b s e r v a b l e i s la n d i d e n ti f ic a t io n

    a l g o r i t h m , t h e f o l l o wi n g t h e o r e m s a r e e s t a b l i s h e d .

    Theorem

    1 . E v e r y b o u n d a r y b u s i n je c t i o n m e a s u r e m e n t is a n

    i r r e l e v a n t m e a s u r e m e n t .

    Proof.

    F o r t h e s t a t e e s t i m a t i o n o f e a c h i s l a n d i n F i g . 2 , t h e

    f l ow t h r o u g h l i n e ,~ i s c o n s i d e r e d a s a b u s i n j e c t i o n . T h e l i n e

    f l o w c a n n o t b e d e t e r m i n e d f r o m t h e g i v e n m e a s u r e m e n t s

    s i n c e b u s e s i a n d j b e l o n g t o d i f f e r e n t o b s e r v a b l e i s l a n d s .

    Th e r e f o r e , t h e t o t a l b u s i n j e c t i o n a t b u s i o r j is u n k n o w n .

    T h i s m e a n s a n i n j e c t i o n m e a s u r e m e n t a t a n y b o u n d a r y b u s i s

    a n i r r e l e v a n t m e a s u r e m e n t . I t i s n o t e d t h a t a n y l i ne

    m e a s u r e m e n t c a n n o t b e a n i r r e l e v a n t m e a s u r e m e n t .

    Theorem

    2 . A s s u m e a l l m e a s u r e m e n t s a r e z e r o . I f d i f f e r e n t

    p h a s e a n g l e s c a n b e a s s i g n e d t o t w o b u s e s u n d e r t h e

    a s s u m p t i o n , t h e n t h e t w o b u s e s b e l o n g t o d i f f e r e n t

    o b s e r v a b l e i s l a n d s .

    Theorem

    3 . A s s u m e a l l m e a s u r e m e n t s a r e z e r o . I f a

    s u b n e t w o r k i n w h i c h a l l b u s v o l ta g e s c a n n o t b e d i f f e r e n t h a s

    n o i r r e le v a n t m e a s u r e m e n t s , t h e n t h e s u b n e t w o r k i s a n

    o b s e r v a b l e i s l a n d .

    T h e t w o t h e o r e m s a b o v e c a n b e p r o v e d f r o m t h e d e f in i t io n

    o f o b s e r v a b l e i sl a n d a n d ( 1 0 ) w i t h t h e a n a l o g y o f t h e D C

    p o we r f l o w a n a l y s i s t o t h e c i r c u i t a n a l y s i s a s m e n t i o n e d

    ea r l i e r .

    Theorem

    4 . I f a b u s m e a s u r e m e n t I B r is r e m o v e d , t h e

    m o d i f i e d m e a s u r e m e n t e q u a t i o n i s g i v e n b y d e l e t i n g t h e

    c o r r e s p o n d i n g ro w . U n d e r t h e a s s u m p t i o n o f z e r o r e ad i n g s

    o f a l l m e t e r s , t h i s i s e q u i v a l e n t t o a m e a s u r e m e n t e q u a t i o n

    o b t a i n e d b y r e p l a c i n g t h e r o w c o r r e s p o n d i n g t o t h e

    m e a s u r e m e n t b y a z e r o r o w v e c t o r .

    By a p p l y i n g t h e a b o v e t h e o r e m s t o ( 1 0 ) , t h e f o l l o wi n g

    a l g o r i t h m i s d e v e l o p e d f o r t h e o b s e r v a b l e i s l a n d

    iden t i f i ca t ion .

    ( i ) As s i g n b u s n u m b e r s t o m e a s u r e d b u s e s f i rs t a n d t h e

    o t h e r b u s e s n e x t . A s s i g n l i n e n u m b e r s t o u n m e a s u r e d

    l ines f i r s t and the o the r l i nes nex t . In i t i a l i ze a

    m e a s u r e m e n t s e t c o n s i s t i n g o f a l l a v a i l a b l e m e a s u r e -

    m e n t s . S e t u p a b u s g r o u p c o n s i s t in g o f a ll b u s e s o f t h e

    s y s te m a n d e s t a b l i s h t h e m e a s u r e m e n t m a t r i x M a . T h e

    wh o l e s y s t e m i s c o n s i d e r e d a s a c a n d i d a t e f o r a n

    o b s e r v a b l e i s l a n d .

    ( i i) Ta k e a n o b s e r v a b l e is l a n d c a n d i d a t e . S e l e c t a s l a ck b u s

    f o r t h e i s l a n d a n d s e t t h e s l a c k b u s v o l t a g e t o 1 .

    C o m p o s e r e d u c e d m e a s u r e m e n t m a t r i x M s R b y

    s e l e c t i n g c o l u m n v e c t o r s o f M 8 c o r r e s p o n d i n g t o b u s e s

    o f t h e c a n d i d a t e i s l a n d . I f t h e c a n d i d a t e i s l a n d h a s o n l y

    o n e b u s , g o t o s t e p ( v ) .

    Ca l c u l a t e b u s v o l t a g e s f o r t h e o b s e r v a b l e i s l a n d

    c a n d i d a t e b y a p p l y i n g t h e i n t e g e r Ga u s s e l i m i n a t i o n t o

    ( 1 0 ) . W h e n e v e r a z e r o p i v o t i s e n c o u n t e r e d , s e t t h e b u s

    v o l t a g e t o ( t h e l a r g e s t b u s v o l t a g e + 1 ) . I f o n l y o n e

    z e r o p i v o t i s e n c o u n t e r e d , g o t o s t e p ( v i ) .

    Co m p o s e b u s g r o u p s b y c l a s s if y i n g b u s e s w i t h s a m e b u s

    v o l t a g e s i n t o o n e g r o u p ( c f . Th e o r e m 2 ) . Ea c h b u s

    g r o u p i s r e g a r d e d a s a n e w o b s e r v a b l e i s la n d

    c a n d i d a t e .

    ( v ) F i n d i r r e l e v a n t m e a s u r e m e n t s i n t h e i s l a n d u n d e r

    c o n s i d e r a ti o n b y T h e o r e m 1 , an d r e m o v e a l l t h e

    i r r e l e v a n t m e a s u r e m e n t s f r o m t h e m e a s u r e m e n t s e t .

    M o d i f y th e m e a s u r e m e n t m a t r ix b y T h e o r e m 4 . G o t o

    s t ep ( i i ) .

    Th e o b s e r v a b l e i s l a n d c a n d i d a t e i s a n o b s e r v a b l e

    i s l a n d . De l e t e t h e b u s g r o u p f r o m t h e s e t o f c a n d i d a t e

    i s l a n d s . I f a n y o b s e r v a b l e i s l a n d c a n d i d a t e r e m a i n s , g o

    t o s t e p ( i i ) . O t h e r w i s e , t e r m i n a t e t h e a l g o r i t h m .

    ( i i i )

    i v )

    (v i )

    Special Case.

    Co n s i d e r t h e f o l l o wi n g f o u r - b u s s y s t e m ( F i g . 3 )

    w i t h t w o b u s m e a s u r e m e n t s a n d o n e l i n e m e a s u r e m e n t . T h e

    m e a s u r e m e n t s y s t e m i s o b s e r v a b l e s i n c e a l l o f t h e t h r e e

    m e a s u r e m e n t s a r e i n d e p e n d e n t .

    Ho r i s b e r g e r ' s t o p o l o g i c a l a l g o r i t h m y i e l d s t h e c o r r e c t

    a n s w e r f o r o b s e r v a b i li t y . H o w e v e r , c o n d u c t i n g t h e p r o p o s e d

    a l g o r i t h m y i e l d s t h e f o l l o wi n g r e s u l t : t h e m e a s u r e m e n t

    s y s t e m i s u n o b s e r v a b l e , a n d t h r e e o b s e r v a b l e i s l an d s { 1 , 2 } ,

    { 3 } , ( 4 } a r e f o u n d . Th i s r e s u l t i s o b v i o u s l y wr o n g . M o n t i c e ll i

    a n d W u ' s a l g o r i t h m ( 1 9 8 5 b ) a l s o y i e l d s t h e s a m e wr o n g

    a n s we r . T h e w r o n g r e s u l t f o r t h i s s p e c i a l c a s e c o m e s f r o m t h e

    t o p o l o g i c a l s y m m e t r y o f t h e g i v e n s y s t e m . S i n c e e v e r y l i n e

    a d m i t t a n c e i s a s s u m e d t o b e 1 f o r t h e t o p o l o g i c a l a n a l y s i s ,

    t h e s y s t e m i s s y m m e t r i c a l . Th i s s y m m e t r i c a l s t r u c t u r e m a k e s

    t h e m e a s u r e m e n t a t l i n e 3 h a v e n o i n f o r m a t i o n o n b u s 3 o r

    b u s 4 . I f we g e t r i d o f t h e t o p o l o g i c a l s y m m e t r y b y a s s i g n i n g

    l i n e a d m i t t a n c e s w i t h 2 t = 1 , y - - 2 , y 3 = 1 , y 4 = 2 a n d y s = 2 ,

    t h e n t h e p r o p o s e d a l g o r i t h m y i e l d s t h e c o r r e c t a n s we r .

    H o w e v e r , n o e f f ic i en t m e t h o d s h a v e b e e n f o u n d y e t t o s e a r c h

    f o r t h e t o p o l o g i c a l s y m m e t r y o f s y s t e m s a n d t o g e t r i d o f t h e

    s y m m e t r y s y s t e m a t i c a l l y .

    Th e n e x t s e c t i o n w i l l g i v e a s i m p l e a l g o r i t h m o f m a x i m a l

    o b s e r v a b l e i s l a n d i d e n t i f i c a t i o n f o r t h e s e s p e c i a l c a se s .

    s L a n d

    s t nd 2

    F IG . 2. Ob s e r v a b l e i s la n d s .

    ®

    I 2

    FxG. 3 . Spec ia l ca se o f fou r -bu s sys t em.

  • 8/9/2019 Observable Island Identification for State Estimation Using Incidence Matrix

    4/5

    74 Brief Paper

    4. Meter placement

    W h e n a m e a s u r e m e n t s y s t e m i s u n o b s e r v a b l e , i t i s

    n e c e s s a r y t o p l a c e a d d i t i o n a l m e t e r s i n o r d e r t o m a k e t h e

    s y s t e m o b s e r v a b l e . I n t h e e c o n o m i c a l s e n s e , i t i s d e s i r e d t o

    f i n d a m e t e r p l a c e m e n t p o l i c y w i t h a m i n i m a l m e a s u r e m e n t

    s e t wh i c h e n s u r e s t h e s y s t e m o b s e r v a b i l i t y .

    Th e s y s t e m o b s e r v a b i l it y c a n b e a t t a i n e d b y c o m b i n i n g a l l

    o b s e r v a b l e i s la n d s w i t h a d d i t i o n a l m e a s u r e m e n t s , w h i c h

    s h o u l d b e c r i t i c a l b o u n d a r y b u s i n j e c t i o r , o r l i n e m e a s u r e -

    m e n t s . I n o r d e r t o r e d u c e t h e n u m b e r o f c r i t i c a l

    m e a s u r e m e n t s , i t i s m o r e e f f i c i e n t t o s e l e c t b o u n d a r y b u s

    i n j e c t i o n s wh i c h a r e c o n n e c t e d t o a s m a n y o b s e r v a b l e i s l a n d s

    as poss ib le .

    I n t h i s s t u d y a n o p t i m a l m e t e r p l a c e m e n t a l g o r i t h m i s

    d e v e l o p e d b y c o m b i n i n g t h e p r o p o s e d a l g o r i t h m a n d

    Ho r i s b e r g e r ' s a l g o r i t h m .

    ( i ) F i n d a l l o b s e r v a b l e i s l an d s b y t h e o b s e r v a b l e i s l a n d

    i d e n t i f i c a t i o n a l g o r i t h m . Th e o b s e r v a b l e i s l a n d s m a y

    n o t b e m a x i m a l o b s e r v a b l e i s l a n d s i n c a s e s wh e r e t h e

    s y s t e m h a s t o p o l o g i c a l s y m m e t r y .

    ( i i) Re l e a s e a ll i r r e l e v a n t m e a s u r e m e n t s wh i c h h a v e b e e n

    r e m o v e d i n t h e o b s e r v a b l e i s l a n d i d e n t i f i c a t i o n

    p r o c e d u r e .

    ( ii i) Co n d u c t Ho r i s b e r g e r ' s a l g o r i t h m wi t h th e f i n al r e s u l t

    o f s t e p ( i ) . Th i s s t ep y i e ld s m a x i m a l o b s e r v a b l e i s l an d s .

    ( i v ) F i n d a n u n m e a s u r e d b o u n d a r y b u s wh i c h is c o n n e c t e d

    t o a s m a n y o b s e r v a b l e i s l a n d s a s p o s s ib l e .

    ( v ) Ad d a b u s i n j e c t io n m e t e r t o t h e b o u n d a r y b u s .

    ( v i ) Co n d u c t t h e Ho r i s b e r g e r ' s a l g o r i t h m b y m o d i f y i n g th e

    o b s e r v a b i l i t y d e c i s io n t r e e f o r t h e a d d i t i o n a l m e a s u r e -

    m e n t s . I f t h e n u m b e r o f m a x i m a l o b s e r v a b l e i s l a n d s i s

    m o r e t h a n 1 , g o t o s t e p ( i v ) . O t h e r w i s e , p r i n t a l l t h e

    a d d i t i o n a l m e a s u r e m e n t s a n d s t o p .

    5. Numerical example

    The 14 -bus sys t em conf igu ra t ion i s g iven in F ig . 4 . Al l

    m e a s u r e m e n t s a r e i n d i c a te d b y f la gs .

    T h e o b s e r v ab i l it y ha s b e e n t e s t e d b y t h e b u s m e a s u r e m e n t

    m a t r i x a l g o r i t h m . Th e a l g o r i t h m y i e l d s t h e s o l u t i o n t h a t t h e

    s y s t e m i s o b s e r v a b l e . F o r t h e t e s t o f t h e o b s e r v a b l e i s l a n d

    i d e n t i fi c a t io n a l g o r i th m , i t is a s s u m e d t h a t t h e m e t e r a t b u s 5

    f a i l s t o wo r k . By c o n d u c t i n g t h e o b s e r v a b l e i s l a n d

    i d e n t i f ic a t i o n a l g o r i t h m , t h e m a x i m a l o b s e r v a b l e i s l a n d s h a v e

    b e e n f o u n d w i t h t h e f o l l o wi n g g r o u p s o f b u s e s :

    G~ = (1, 2, 3, 4, 5, 7, 8, 9}

    ( ind ica ted wi th a do t t ed l ine in F ig . 4 ) .

    Ind iv idua l bus i s l ands : (6} , (10} , (11} , { 12} , {13} , {14} .

    Th e m i n i m a l m e a s u r e m e n t s e t s wh i c h m a k e t h e f a i l e d

    m e a s u r e m e n t s y s t e m o b s e r v a b l e a r e g i v e n b y :

    Z l = ( b u s m e a s u r e m e n t / 1 4 } o r

    Z 2 = { b u s m e a s u r e m e n t / t o } .

    Co mm ent 1 . Co mputat ional e f fi c iency. A s m e n t i o n e d

    e a r l i e r , Ho r i s b e r g e r ' s a l g o r i t h m r e q u i r e s e x c e s s i v e c o m p u t a -

    t i o n t i m e d u e t o i t s c o m b i n a t o r i a l n a t u r e . I t i s i n f e r i o r t o

    M o n t i c e l l i a n d W u ' s a l g o r i t h m i n c o m p u t a t i o n s p e e d .

    Th e M - W a l g o r i t h m h a s a r o u t i n e t o a s si g n b u s a n g l e s

    u n d e r t h e a s s u m p t i o n o f a l l m e a s u r e m e n t s b e i n g z e r o

    £ d d

    8? :~ i ~$ @ ?

    C [ n c h c a t e s b u s n ~ r n b e r Ill [ s o n r e j e c t i o n m e a s u r e m e n t

    l £ n d lc a t e s L in e n u m b e r - ¢ - I s a L i n e - f l o w

    F I G. 4 . I E E E 1 4 - b u s te s t s y s t e m w i t h m e a s u r e m e n t s e t .

    w h e n e v e r a n o r s o m e i r r e l e v a n t m e a s u r e m e n t ( s ) a r e f o u n d

    a n d r e m o v e d . I n t h a t r o u t i n e , a l l b u s v o l t a g e s o f t h e wh o l e

    s y s t e m s h o u l d b e r e a s s i g n e d b y a p p l y i n g t h e Ga u s s

    e l i m i n a ti o n to t h e f o l lo w i n g e q u a t i o n: [ G ] 0 = 0 w i t h a n

    ( n x n ) i n f o r m a t i o n m a t r i x [ G] .

    I n t h e p r o p o s e d a l g o r i t h m , b u s e s o f t h e n e t wo r k a r e

    d i v i d e d t o b u s g r o u p s , e a c h o f wh i c h i s c o n s i d e r e d a s a

    c a n d i d a t e o f t h e o b s e r v a b l e i s l a n d . W h e n a n i r r e l e v a n t

    m e a s u r e m e n t i s f o u n d , t h e r e m o v a l o f t h e i r r e l e v a n t

    m e a s u r e m e n t a f f e c t s o n l y t h e o b s e r v a b i l i t y o f b u s g r o u p , s a y

    B u s G r o u p i , w h i ch t h e r e m o v e d m e a s u r e m e n t s b e l o n g e d t o .

    Th e b u s v o l t a g e s o f Bu s Gr o u p i a r e r e a s s i g n e d f r o m t h e

    f o l lo wi n g e q u a t i o n :

    [ M ~ M n ] V s = 0

    w h e r e M ~ M R i s an (n × n i ) ma t r ix and n i i s t he no . o f bu ses

    i n Bu s Gr o u p i .

    I t i s n o t e d t h a t t h e d i m e n s i o n a l i t y o f [M~MR] i s m u c h

    s m a l l e r t h a n t h a t o f [ G] . Th e r e f o r e , t h e p r o p o s e d a l g o r i t h m

    r e d u c e s c o m p u t a t i o n t i m e r e m a r k a b l y c o m p a r e d w i t h t h e

    M - W a l go r it h m .

    Co mm ent 2 . Topological symm etry problem.

    Ho r i s b e r g e r ' s a l g o r i t h m e s t a b l i s h e s a n o b s e r v a b i l i t y

    t r e e w i t h c o n s i d e r a t i o n o f t h e n u m b e r o f i n d e p e n d e n t

    b o u n d a r y m e a s u r e m e n t s r e l a t e d t o o n l y t h e o b s e r v a b l e

    i s l a n d s u n d e r c o n s i d e r a t i o n . Th e o b s e r v a b l e i s l a n d s c a n b e

    p u t i n t o o n e o b s e r v a b l e i s l a n d i f M i s g r e a t e r t h a n o r e q u a l t o

    ( N - 1 ) . ( M is t h e n u m b e r of t h e i n d e p e n d e n t b o u n d a r y

    m e a s u r e m e n t s , a n d N i s t h e n u m b e r o f t h e o b s e r v ab l e

    i s l a n d s . ) Th u s , Ho r i s b e r g e r ' s a l g o r i t h m h a s n o p r o b l e m i n i t s

    a p p l i c a t i o n t o a n e t wo r k w i t h t o p o l o g i c a l s y m m e t r y .

    Ho we v e r , Ho r i s b e r g e r ' s a l g o r i t h m i s s o m e wh a t t i m e -

    c o n s u m i n g s i n c e a l l p o s s i b l e c o m b i n a t i o n s o f b o u n d a r y

    m e a s u r e m e n t s s h o u l d b e c o n s i d e r e d . I n o r d e r t o r e d u c e t h e

    e x c e s s i v e c o m p u t a t i o n t i m e we h a v e d e v e l o p e d t h e b u s

    g r o u p i n g a l g o r i t h m , a n d i n o r d e r t o s o l v e t h e p r o b l e m o f

    t o p o l o g i c a l s y m m e t r y we a p p l i e d Ho r i s b e r g e r ' s a l g o r i t h m a t

    t h e f in a l s t a g e p r o d u c e d b y t h e p r o p o s e d a l g o r i t h m . Th i s

    c o m b i n a t i o n o f t h e t wo a l g o r i t h m s r e q u i r e s c o n s i d e r a b l y -

    r e d u c e d c o m p u t a t i o n t i m e w i t h o u t a n y t o p o l o g i c a l s y m m e t r y

    p r o b l e m .

    6. Conclusion

    To p o l o g i c a l o b s e r v a b i l i t y a n a ly s i s h a s b e e n p e r f o r m e d w i t h

    t h e u s e o f t h e p a r t i t i o n e d i n c i d e n c e m a t r i x . An e f f i c i e n t

    a l g o r i t h m f o r t h e o b s e r v a b l e i s l a n d i d e n t i f i c a t i o n h a s b e e n

    d e v e l o p e d o n t h e b a s i s o f a b u s g r o u p i n g m e t h o d . A m e t e r

    p l a c e m e n t a l g o r i t h m h a s b e e n p r e s e n t e d t o f i n d a m i n i m a l s e t

    o f a d d i t i o n a l m e a s u r e m e n t s . Th e r e s u l t s o f t h i s s t u d y a r e

    s u m m a r i z e d a s f o l l o ws .

    ( i ) A n e w a p p r o a c h t o t o p o lo g i c a l o b s e r v a b i l i t y a n a l y s is

    h a s b e e n i n t r o d u c e d w i t h t h e u s e o f i n c i d e n c e m a t r i x .

    ( i i) Th e p r o p o s e d a l g o r i t h m f o r i d e n t i f ic a t i o n o f o b s e r v a b l e

    i s l a n d s c o n s i d e r a b l y r e d u c e s c o m p u t a t i o n t i m e b y

    a d o p t i n g a b u s - g r o u p i n g m e t h o d .

    ( i i i ) Th e i n t e g e r Ga u s s e l i m i n a t i o n m e t h o d h a s b e e n

    a d o p t e d f o r t h e o b s e r v a b i l i t y te s t , wh i c h e n a b l e s u s t o

    a v o i d t h e n e a r l y - z e r o - p i v o t p r o b l e m .

    ( iv ) Spec ia l ca ses o f topo log ica l ly sym me t r i ca l s t ruc tu re s in

    a s y s t e m h a v e b e e n s u c c e s s f u l l y c o n s i d e r e d i n t h e

    o b s e r v a b l e i s l a n d i d e n t i fi c a t io n .

    ( v ) A n e w m e t e r p l a c e m e n t a lg o r i th m h a s b e e n p r e s e n t e d

    wi t h t h e u s e o f t h e o b s e r v a b i l i t y d e c is i o n t r e e , wh i c h

    s a v es a b o u t 2 0 % o f c o m p u t a t io n t im e .

    References

    Barg ie l a , A. , M . R. I rv ing and M. J. H. S te r l ing 1985) .

    Ob s e r v a b i l i t y d e t e r m i n a t i o n i n p o we r s y s t e m s t a t e

    e s t i m a t i o n u s i n g a n e t wo r k f lo w t e c h n i q u e . I E EE P ES ,

    S u m m e r M e e t i n g 1 9 8 5 .

    C l e m e n t s , K . A . , G . R . K r u m p h o l z a n d P . W . D a v i s

    ( 1 9 8 2 a ) . S t a t e e s t i m a t o r m e a s u r e m e n t s y s t e m r e l i a b i l i t y

    e v a l u a t i o n - - a n e f f i c i e n t a l g o r i t h m b a s e d o n t o p o l o g i c a l

    o b s e r v a b i l i t y t h e o r y . I EEE Tr ans . PAS , P AS - 1 0 1 ,

    9 9 7 - 1 0 0 4 .

    C l e m e n t s , K . A . , G . R . Kr u m p h o l z a n d P . W . Da v i s

    ( 1 9 8 2 b ) . P o we r s y s t e m s t a t e e s t i m a t i o n w i t h m e a s u r e m e n t

  • 8/9/2019 Observable Island Identification for State Estimation Using Incidence Matrix

    5/5

    Brief Paper 75

    def ic iency: an a lgor i thm that determines the maximal

    obse r vab l e subne t w or k . IEEE Trans. PAS PA S- 101 ,

    3044-3052.

    C l ement s , K . A . , G . R . K r umph ol z and P . W. D av i s (1983).

    Pow er sys t em s t a t e e s t i ma t i on w i t h measur ement

    de f i c i ency : an obse r vab i l i t y measur ement p l acement

    algor i thm. IEEE Trans. PAS PAS -102, 2012-2020.

    Hor i sberg er , P. P . (1985). O bserva bi l i ty analys i s for power

    sys tems wi th measu rem ent defic iencies . I FA C symposium

    on Elect r ic Energy Systems, Rio de Jan ei ro, Brazi l.

    Mon t iceUi , A. a nd F. F. W u (1985a). Network ob servabi l i ty:

    theory. IEEE Trans. PAS PAS-104, 1042-1048.

    Mo nt icel l i , A. a nd F. F. Wu (1985b) . Netw ork observabi l i ty:

    i den t if i ca ti on o f obse r vab l e i s l ands and meas ur eme nt

    p l acement .

    IEEE Trans. PAS

    PAS -104, 1035-1041.