nvidia 2011 1 - university of...

44
NVIDIA 2011 1

Upload: others

Post on 26-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20111

Page 2: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20112

Performance-oriented Computing is Everywhere

Page 3: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20113

Providing Rich Immersive Experiences

Page 4: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20114

Addressing Societal Challenges

Product Design and Simulation Alternative Fuels

Climate Change

Medical Diagnosis

Understanding VirusesMaterials Design

Page 5: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20115

Insatiable Demand for Performance

Battlefield 1942(2002)

Battlefield 3(2011)

> 1 TFlop~1KW

1W

Page 6: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20116

Which of These are Power Constrained?

~1W~3W

~100W~30W

1KW 100KW-20MW

Page 7: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20117

Silicon Scaling – the end of the easy ride

Where Does Processor Energy Go?

Strategies for Energy Efficiency

Challenges

Page 8: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20118

Moore’s Law is Only Part of the Story

2001: 42M Tx

2004: 275M Tx

1993: 3M Tx

2010: 3B Tx

2007: 580M Tx

1997: 7.5M Tx

Page 9: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 20119

Classic Dennard Scaling 2.8x chip capability in same power

1

1.5

2

2.5

3

1 1.5 2 2.5 3

Ch

ip P

ow

er

Chip Capability

2x more transistors

Scale chip features down 0.7x per process generation

1.4x faster transistors

0.7xvoltage

0.7x capacitance

Page 10: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201110

Post Dennard Scaling2x chip capability at 1.4x power1.4x chip capability at same power

1

1.5

2

2.5

3

1 1.5 2 2.5 3

Ch

ip P

ow

er

Chip Capability

2x more transistors

0.7x capacitance

Transistors are no fasterStatic leakage limits reduction in Vth => Vdd stays constant

Page 11: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201111

Implications

End of clock-rate scaling => need more parallelism

Capability drops down to 1.4 per generation.

Optimistic because wires scale worse than transistors

32x gap in a decade from what continued Dennard scaling would give

Scaling up conventional core count is not feasible

Best case – 40% more cores per generation

Far cry from 2x performance per generation

Need better materials, devices, circuits, architectures, and SW

Page 12: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201112

Clock + Control Logic24%

Instruction Supply

42%

Register File11%

ALU6%

Data Supply17%

How is power spent in a CPU?

Dally [2008] (Embedded in-order CPU)

Clock + Pins45%

Fetch11%

Rename10%

Issue11%

RF14%

ALU4% Data

Supply5%

Natarajan [2003] (Alpha 21264)

In-order embedded OOO Hi-perf

Page 13: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201113

Fundamental Energy Costs

Today’s high perf CPUs

1-2 nJ/instruction

20-40x energy overhead

Instruction control

Data movement

20mm64-bit DP FMA

50pJ31 pJ 310 pJ

1.2 nJ

1.3 nJ

40nm technology

10 nJ

Efficientoff-chip

link

256-bitbuses

DRAMRd/Wr

256-bit access8 kB SRAM

56 pJ

Page 14: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201114

Energy Shopping List

Processor Technology 40 nm 10nm

Vdd (nominal) 0.9 V 0.7 V

DFMA energy 50 pJ 7.6 pJ

64b 8 KB SRAM Rd 14 pJ 2.1 pJ

Wire energy (256 bits, 10mm)

310 pJ 174 pJ

Memory Technology 45 nm 16nm

DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Vogelsang [Micro 2010]

FP Op lower bound=

8 pJ

Page 15: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201115

Strategies for Energy Reduction

Simpler processor architectures

Reduce waste

Improve physical locality of data

Exploit heterogeneity and specialization

Signaling and packaging

Inch down voltage

Page 16: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201116

Simpler/Slower Cores = Energy Efficiency

Azizi [PhD 2010]

Page 17: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201117

CPU1.7 nJ/flop

Optimized for Latency

Caches

Westmere32 nm

GPU225 pJ/flop

Optimized for Throughput

Explicit Managementof On-chip Memory

Fermi40 nm

Page 18: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201118

Throughput Processor

LatencyProcessor

PC

PC

Branch Predict

I$

Register Rename

Register File

ALU 1 ALU 2 ALU 4ALU 3

Reorder Buffer

InstructionWindow

I$

ALU 1 ALU 2 ALU 4ALU 3

Select

Register File

PCs

Page 19: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201119

Throughput Processors at Petascale

#2 : Tianhe-1A7K Tesla GPUs

2.6 PFLOPS, 4MW

#4 : Nebulae4K Tesla GPUs

1.3 PFLOPS, 2.5MW

#5 : Tsubame 2.04K Tesla GPUs

1.2 PFLOPS, 1.3MW (most efficient PF system)

#3 : Jaguar36K AMD Opteron

CPUs

1.8 PFLOPS, 6.9MW

#1 : K Computer68K Fujitsu Sparc CPUs

10.5 PFLOPS, 12.6MW

Titan18K Tesla GPUs

>20 PFLOPS, 8.6MW

Page 20: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201120

2012

EXAFLOPS

PETAFLOPS

2035

The Road to Exascale

70 PF, 20 MW

100 PF, 20 MW

1 EF, 20 MW

CPU-only“Titan”6 PF, 8.6 MW

GPU-Accelerated“Titan”

20 PF, 8.6 MW

1 EF, 20 MW

20222019

ZETTAFLOPS

Page 21: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201121

Throughput Processor Optimizations

Hierarchical hardware thread scheduling

Register File caching

SIMT and Temporal SIMT execution

Page 22: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201122

Streaming Multiprocessor (SM)

Multithreading with:

32 threads per Warp

48 Warps/SM

Large register files

1500+ threads/SM

Fermi: 128KB of RF

Heavily banked to provide high bandwidth

Large operand read/write energy

~15% of power of SM

SIMT Lanes

SFU MEMALU

Warp Scheduler

Main Register File32 banks

Shared Memory32 KB

TEX

Page 23: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201123

Optimization Opportunities

Large number of threads hide two types of latencyLong: global memory access (~400 cycles)Short: ALU and shared memory access (8-20 cycles)

40% of values are read once, within 3 instructions of being produced

0%

20%

40%

60%

80%

100%

Perc

en

t o

f A

ll V

alu

es P

rod

uced Read >2 Times

Read 2 Times

Read 1 Time

Read 0 Times

0%

20%

40%

60%

80%

100%

Perc

en

t o

f A

ll V

alu

es P

rod

uced

Lifetime >3

Lifetime 3

Lifetime 2

Lifetime 1

Page 24: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201124

Two-Level Scheduling

Active warps used to tolerate short latency events

Simplified instruction scheduler only considers active warps each cycle

8 active warps (of 48) is enough to sustain full SM throughput

Gebhart, et. al [ISCA 2011, Micro 2011]

Select

W W WW W W

All Warps Ready

SIMT Lanes

A A

Select

A A

P P PP P P

Pending Warps

Active

Wa

rps

SIMT Lanes

Page 25: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201125

Register File Caching (RFC)

Private RFC per SIMT lane

4-6 entries per thread

Operand routing when results are needed by shared units

48x smaller than MRF

When combined with 2-level scheduling

Reduces up to 80% of RF reads/writes

SM Cluster - replicated 8 times to form SM

SFU

MEM

TEX

ALU

Operand Routing

MRF4x128-bit Banks (1R1W)

Operand Buffering

RFC 4x32-bit(3R1W) Banks

Page 26: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201126

SIMD versus MIMD versus SIMT?

SIMD: Single Instruction Multiple Data

SIMT: Single Instruction Multiple Thread

MIMD: Multiple Instruction Multiple Data

VLD

VADD

VST

LD

ADD

ST

BR

ADD

ST

BR

LD

LD

ADD

ST

BR

SIMT = MIMD Programming Model withSIMD Implementation Efficiencies

LD

ADD

BR

ADD

LD

ADD

BR

ADD

LD

ADD

BR

SUB

Warp

Page 27: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201127

Temporal SIMT

32-wide datapath

time

1 c

yc

1 warp instruction = 32 threads

thread

0

thread

31ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld

ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld ld

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

ml ml ml ml

ad ad ad ad

st st st st

Spatial SIMT (current GPUs)

1-wide

time

1 c

yc

ld ld ld ld ld ld ld

0

(threads)

1

2

3

4

5

6

7ld ld ld

8

9

ld 10

Pure Temporal SIMT

Page 28: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201128

Temporal SIMT Optimizations

Control divergence – hybrid MIMD/SIMT

Scalarization

Factor common instructions from multiple threads

Execute once – place results in common registers

32-wide(41%)

4-wide(65%)

1-wide(100%)

Page 29: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201129

Strategies for Energy Reduction

Simpler processor architectures

Reduce waste

Improve physical locality of data

Exploit heterogeneity and specialization

Signaling and packaging

Inch down voltage

Page 30: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201130

Heterogeneity and Specialization

Programmable processor heterogeneity

CPU + GPU in same system/chip

Functional specialization

Fixed/limited programmability accelerators

Power specialization

Same function, different power/performance profile

Page 31: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201131

NVIDIA Tegra3 Mobile SOC

5 ARM Cortex A9 Cores

Range of accelerators

Some programmable

Some fixed function

1-5W power envelopeHD VideoDecoder

HD VideoEncoder

Audio ISP

GPU

MEM I/O

HDMI

SecurityEngine

Display

Core 1

Core 3

Core 2

Core 4

Core 0

Page 32: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201132

Variable SMP

Same CPU core design

Optimized for different voltage/frequency range

Different transistors

Different synthesis

Low Power Process: inefficient at high performance ranges

Fast Process: higher leakage in active standby

Page 33: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201133

Power Savings on Tegra3 due to vSMPTegra3Tegra2

Page 34: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201134

Typical Power Breakdown

NVIDIA M2070Module

GPU

DRAM

Other

Leakage

CoreDynamic

DRAMSignaling

225W

130W

Page 35: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201135

Packaging/Signaling/Architecture

Micron Hybrid Memory Cube

Silicon Interposer Packaging (Xilinx)

Page 36: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201136

Voltage Scaling – is there any left?

Answer #1: Hard – scale Vdd down toward 2*Vt

Answer #2: Harder – scale down to near Vt

Principle challenges

Slow transistors

Reliability

Process variation

Page 37: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201137

Aggressive Voltage Scaling

1

101

103

104

102

10-2

10-1

1

101

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)

Maxim

um

Fre

qu

en

cy (

MH

z)

To

tal

Po

wer

(mW

)

320mV

65nm CMOS, 50°C

320mV

Su

bth

resh

old

Reg

ion

65nm CMOS, 50°C

10 -2

10 -1

1

101

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)

En

erg

y E

ffic

ien

cy (

GO

PS

/Wa

tt)

Ac

tive

Le

ak

ag

e P

ow

er

(mW

)

H. Kaul et al. ISSCC08; Motion Estimator Accelerator

100x slower

9.6x more efficient

3x slower

3.5x more efficient

Page 38: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201138

Energy Efficiency Potential at 10nm

Energy efficient chip architecture 3-5x

Circuits/Packaging 2-2.5x Includes on-chip ckts

Slower clock frequency 2x

Aggressive voltage scaling 1.5x

Total: 20-40x ~3x area penalty

Natural process scaling 6x Assuming 0.9=>0.7V

Architecture specialization ~10xOn compute limited

applications

Near-threshold Voltage4x

(theoretical)~30x area penalty

Page 39: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201139

2012

EXAFLOPS

PETAFLOPS

2035

The Road to Exascale

70 PF, 20 MW

100 PF, 20 MW

1 EF, 20 MW

CPU-only“Titan”6 PF, 8.6 MW

GPU-Accelerated“Titan”

20 PF, 8.6 MW

1 EF, 20 MW

20222019

ZETTAFLOPS

Page 40: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201140

5 Watts“Teraflops”

1997 2019

ASCI Red @ Sandia Labs

Page 41: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201141

100 Watts“Tens” of Teraflops

2004 2019

Red Storm @ Sandia Labs

Page 42: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201142

1000 Watts

2006 2019

“Hundreds” of Teraflops

Blue Gene @ LLNL

Page 43: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201143

Fundamentally energy efficient architectures

Core, memory system, interconnect, system

Low voltage

Clocking, RAM, signaling, variation tolerant

Specialization

In general purpose system – what are the “accelerators”?

Emerging and important workloads are throughput

Challenges for Research Community

Page 44: NVIDIA 2011 1 - University of Wisconsin–Madisonpages.cs.wisc.edu/~markhill/restricted/micro11_keckler_keynote.pdf · NVIDIA 2011 11 Implications End of clock-rate scaling => need

NVIDIA 201144

‘Super’ ComputingFrom Super Computers to Super Phones