numerical solution of stochastic differential equations with …brixen07/slides/platen.pdf ·...

55
Numerical Solution of Stochastic Differential Equations with Jumps in Finance Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Kloeden, P.E. & Pl, E.: Numerical Solutions of Stochastic Differential Equations Springer, Applications of Mathematics 23 (1992,1995,1999). Pl, E. & Heath, D.: A Benchmark Approach to Quantitative Finance, Springer Finance (2006). Bruti-Liberati, N. & Pl, E.: Numerical Solutions of Stochastic Differential Equations with Jumps Springer, Applications of Mathematics (2008).

Upload: others

Post on 17-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Numerical Solution of Stochastic DifferentialEquations with Jumps in Finance

Eckhard PlatenSchool of Finance and Economics and School of Mathematical Sciences

University of Technology, Sydney

Kloeden, P.E.& Pl, E.: Numerical Solutions of Stochastic Differential Equations

Springer, Applications of Mathematics23 (1992,1995,1999).

Pl, E. & Heath, D.: A Benchmark Approach to Quantitative Finance,Springer Finance (2006).

Bruti-Liberati, N. & Pl, E.: Numerical Solutions of Stochastic Differential Equations with Jumps

Springer, Applications of Mathematics (2008).

Page 2: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

1 23

Springer Finance

A Benchmark Approach to Q

uantitative Finance

1 A Benchmark Approach to

Quantitative Finance

S F

Platen · Heath

Eckhard Platen David Heath

Dieser Farbausdruck/pdf-file kann nur annähernddas endgültige Druckergebnis w

iedergeben !63575

15.5.06 designandproduction GmbH – Bender

Springer Finance

E. Platen · D. HeathThe benchmark approach provides a general framework for financial market

modeling, which extends beyond the standard risk neutral pricing theory.

It allows for a unified treatment of portfolio optimization, derivative pricing,

integrated risk management and insurance risk modeling. The existence of an

equivalent risk neutral pricing measure is not required. Instead, it leads to

pricing formulae with respect to the real world probability measure. This yields

important modeling freedom which turns out to be necessary for the derivation

of realistic, parsimonious market models.

The first part of the book describes the necessary tools from probability theory,

statistics, stochastic calculus and the theory of stochastic differential equations

with jumps. The second part is devoted to financial modeling under the bench-

mark approach. Various quantitative methods for the fair pricing and hedging

of derivatives are explained. The general framework is used to provide an under-

standing of the nature of stochastic volatility.

The book is intended for a wide audience that includes quantitative analysts,

postgraduate students and practitioners in finance, economics and insurance.

It aims to be a self-contained, accessible but mathematically rigorous introduction

to quantitative finance for readers that have a reasonable mathematical or quanti-

tative background. Finally, the book should stimulate interest in the benchmark

approach by describing some of its power and wide applicability.

������ �������

ISBN 3-540-26212-1

› springer.com

Page 3: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Jump-Diffusion Multi-Factor Models

Bjork, Kabanov & Runggaldier (1997)

• continuous time

• Markovian

• explicit transition densities in special cases

• benchmark framework

• discrete time approximations

• suitable for simulation

• Markov chain approximations

Eckhard Platen Bressanone07 1

Page 4: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Pathwise Approximations:

• scenario simulation of entire markets

• testing statistical techniques on simulated trajectories

• filtering hidden state variablesPl. & Runggaldier (2005, 2007)

• hedge simulation

• dynamic financial analysis

• extreme value simulation

• stress testing

=⇒ higher order strong schemespredictor-corrector methods

Eckhard Platen Bressanone07 2

Page 5: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Probability Approximations:

• derivative prices

• sensitivities

• expected utilities

• portfolio selection

• risk measures

• long term risk management

=⇒ Monte Carlo simulation, higher order weak schemes,

predictor-corrector variance reduction, Quasi Monte Carlo,

or Markov chain approximations, lattice methods

Eckhard Platen Bressanone07 3

Page 6: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Essential Requirements:

• parsimonious models

• respect no-arbitrage in discrete time approximation

• numerically stable methods

• efficient methods for high-dimensional models

• higher order schemes, predictor-corrector

Eckhard Platen Bressanone07 4

Page 7: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Continuous and Event Driven Risk

• Wiener processes W k, k ∈ {1, 2, . . .,m}

• counting processes pk

intensityhk

jump martingaleqk

dWm+kt = dqk

t =(

dpkt − hk

t dt) (

hkt

)−12

k ∈ {1, 2, . . . , d−m}

W t = (W 1t , . . . ,W

mt , q1

t , . . . , qd−mt )⊤

Eckhard Platen Bressanone07 5

Page 8: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Primary Security Accounts

dSjt = S

jt−

(

ajt dt+

d∑

k=1

bj,kt dW k

t

)

Assumption 1

bj,kt ≥ −

hk−mt

k ∈ {m+ 1, . . . , d}.

Assumption 2

Generalized volatility matrixbt = [bj,kt ]dj,k=1 invertible.

Eckhard Platen Bressanone07 6

Page 9: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• market price of risk

θt = (θ1t , . . . , θ

dt )⊤ = b−1

t [at − rt 1]

• primary security account

dSjt = S

jt−

(

rt dt+

d∑

k=1

bj,kt (θk

t dt+ dW kt )

)

• portfolio

dSδt =

d∑

j=0

δjt dS

jt

Eckhard Platen Bressanone07 7

Page 10: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• fraction

πjδ,t = δ

jt

Sjt

Sδt

• portfolio

dSδt = Sδ

t−

{

rt dt+ π⊤

δ,t− bt (θt dt+ dW t)}

Eckhard Platen Bressanone07 8

Page 11: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Assumption 3√

hk−mt > θk

t

• generalized GOP volatility

ckt =

θkt for k ∈ {1, 2, . . . ,m}

θk

t

1−θk

t(h

k−m

t)−

12

for k ∈ {m+ 1, . . . , d}

• GOP fractions

πδ∗,t = (π1δ∗,t, . . . , π

dδ∗,t)

⊤ =(

c⊤

t b−1t

)⊤

Eckhard Platen Bressanone07 9

Page 12: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• Growth Optimal Portfolio

dSδ∗

t = Sδ∗

t−

(

rt dt+ c⊤

t (θt dt+ dW t))

• optimal growth rate

gδ∗

t = rt +1

2

m∑

k=1

(θkt )2

−d∑

k=m+1

hk−mt

ln

1 +θk

t√

hk−mt − θk

t

+θk

t√

hk−mt

Eckhard Platen Bressanone07 10

Page 13: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• benchmarked portfolio

Sδt =

Sδt

Sδ∗

t

Theorem 4 Any nonnegative benchmarked portfolioSδ is an

(A, P )-supermartingale.

=⇒ no strong arbitrage

but there may exist:

free lunch with vanishing risk (Delbaen & Schachermayer (2006))

free snacks or cheap thrills (Loewenstein & Willard (2000))

Eckhard Platen Bressanone07 11

Page 14: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Multi-Factor Model

model mainly:

• benchmarked primary security accounts

Sjt =

Sjt

Sδ∗

t

j ∈ {0, 1, . . . , d}

supermartingales, often SDE driftless,

local martingales, sometimes martingales

Eckhard Platen Bressanone07 12

Page 15: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

savings account

S0t = exp

{∫ t

0

rs ds

}

=⇒ GOP

Sδ∗

t =S0

t

S0t

=⇒ stock

Sjt = S

jt S

δ∗

t

additionally dividend rates

foreign interest rates

Eckhard Platen Bressanone07 13

Page 16: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Example

Black-Scholes Type Market

dSjt = −Sj

t−

d∑

k=1

σj,kt dW k

t

hjt , σj,k

t , rt

Eckhard Platen Bressanone07 14

Page 17: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Examples

• Merton jump-diffusion model

dXt = Xt− (µdt+ σ dWt + dpt) ,

Xt = X0 e(µ−

12σ2)t+σWt

Nt∏

i=1

ξi

• Bates model

dSt = St−

(

αdt+√

Vt dWSt + dpt

)

dVt = ξ(η − Vt) dt+ θ√

Vt dWVt

Eckhard Platen Bressanone07 15

Page 18: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

time

Figure 1: Simulated benchmarked primary security accounts.

Eckhard Platen Bressanone07 16

Page 19: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

time

Figure 2: Simulated primary security accounts.

Eckhard Platen Bressanone07 17

Page 20: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

time

GOPEWI

Figure 3: Simulated GOP and EWI ford = 50.

Eckhard Platen Bressanone07 18

Page 21: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

time

GOPindex

Figure 4: Simulated accumulation index and GOP.

Eckhard Platen Bressanone07 19

Page 22: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Diversification

• diversified portfolios

∣π

jδ,t

∣≤ K2

d12+K1

Eckhard Platen Bressanone07 20

Page 23: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Theorem 5

In a regular market anydiversified portfoliois anapproximate GOP.

Pl. (2005)

• robust characterization

• similar to Central Limit Theorem

• model independent

Eckhard Platen Bressanone07 21

Page 24: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

10

20

30

40

50

60

0 5 9 14 18 23 27 32

Figure 5: Benchmarked primary security accounts.

Eckhard Platen Bressanone07 22

Page 25: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

50

100

150

200

250

300

350

400

450

0 5 9 14 18 23 27 32

Figure 6: Primary security accounts under the MMM.

Eckhard Platen Bressanone07 23

Page 26: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

10

20

30

40

50

60

70

80

90

100

0 5 9 14 18 23 27 32

EWI

GOP

Figure 7: GOP and EWI.

Eckhard Platen Bressanone07 24

Page 27: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0

10

20

30

40

50

60

70

80

90

100

0 5 9 14 18 23 27 32

Market index

GOP

Figure 8: GOP and market index.

Eckhard Platen Bressanone07 25

Page 28: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• fair security

benchmarked security(A, P )-martingale ⇐⇒ fair

• minimal replicating portfolio

fair nonnegative portfolioSδ with Sδτ = Hτ

=⇒ minimal nonnegative replicating portfolio

• fair pricing formula

VHτ(t) = Sδ∗

t E

(

Sδ∗

τ

At

)

No need for equivalent risk neutral probability measure!

Eckhard Platen Bressanone07 26

Page 29: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Fair Hedging

• fair portfolio Sδt

• benchmarked fair portfolio

Sδt = E

(

Sδ∗

τ

At

)

• martingale representation

Sδ∗

τ

= E

(

Sδ∗

τ

At

)

+

d∑

k=1

∫ τ

t

xkHτ

(s) dW ks +MHτ

(t)

MHτ-(A, P )-martingale (pooled)

E([

MHτ,W k

]

t

)

= 0

Follmer & Schweizer (1991)No need for equivalent risk neutral probability measure!

Eckhard Platen Bressanone07 27

Page 30: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Simulation of SDEs with Jumps

• strong schemes(paths)

Taylor

explicit

derivative-free

implicit

balanced implicit

predictor-corrector

• weak schemes(probabilities)

Taylor

simplified

explicit

derivative-free

implicit, predictor-corrector

Eckhard Platen Bressanone07 28

Page 31: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

• intensity of jump process

– regular schemes =⇒ high intensity

– jump-adapted schemes=⇒ low intensity

Eckhard Platen Bressanone07 29

Page 32: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

SDE with Jumps

dXt = a(t,Xt)dt+ b(t,Xt)dWt + c(t−, Xt−) dpt

X0 ∈ ℜd

• pt = Nt: Poisson process, intensityλ < ∞• pt =

∑Nt

i=1(ξi − 1): compound Poisson,ξi i.i.d r.v.

• Poisson random measure∫

E

c(t−, Xt−, v) pφ(dv × dt)

• {(τi, ξi), i = 1, 2, . . . , NT }

Eckhard Platen Bressanone07 30

Page 33: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Numerical Schemes

• time discretization

tn = n∆

• discrete time approximation

Y ∆n+1 = Y ∆

n + a(Y ∆n )∆ + b(Y ∆

n )∆Wn + c(Y ∆n )∆pn

Eckhard Platen Bressanone07 31

Page 34: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Strong Convergence

• Applications: scenario analysis, filtering and hedge simulation

• strong order γ if

εs(∆) =

E(

∣XT − Y ∆N

2)

≤ K∆γ

Eckhard Platen Bressanone07 32

Page 35: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Weak Convergence

• Applications: derivative pricing, utilities, risk measures

• weak order β if

εw(∆) = |E(g(XT )) − E(g(Y ∆N ))| ≤ K∆β

Eckhard Platen Bressanone07 33

Page 36: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Literature on Strong Schemes with Jumps

• Pl (1982), Mikulevicius& Pl (1988)

=⇒ γ ∈ {0.5, 1, . . .} Taylor schemes and jump-adapted

• Maghsoodi (1996, 1998) =⇒ strong schemesγ ≤ 1.5

• Jacod & Protter (1998) =⇒ Euler scheme for semimartingales

• Gardon (2004) =⇒ γ ∈ {0.5, 1, . . .} strong schemes

• Higham & Kloeden (2005) =⇒ implicit Euler scheme

• Bruti-Liberati& Pl (2005) =⇒ γ ∈ {0.5, 1, . . .}explicit, implicit, derivative-free, predictor-corrector

Eckhard Platen Bressanone07 34

Page 37: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Euler Scheme

• Euler scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn

where

∆Wn ∼ N (0,∆) and ∆pn = Ntn+1−Ntn

∼ Poiss(λ∆)

• γ = 0.5

Eckhard Platen Bressanone07 35

Page 38: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Strong Taylor Scheme

Wagner-Platen expansion=⇒

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn)∆pn + b(Yn)b′(Yn) I(1,1)

+ b(Yn) c′(Yn) I(1,−1) + {b(Yn + c(Yn)) − b(Yn)} I(−1,1)

+ {c (Yn + c(Yn)) − c(Yn)} I(−1,−1)

with

I(1,1) = 12{(∆Wn)2 − ∆}, I(−1,−1) =

1

2{(∆pn)2 − ∆pn}

I(1,−1) =∑N (tn+1)

i=N (tn)+1Wτi− ∆pn Wtn

, I(−1,1) = ∆pn ∆Wn − I(1,−1)

• simulation jump timesτi : Wτi=⇒ I(1,−1) andI(−1,1)

• Computational effort heavily dependent on intensityλ

Eckhard Platen Bressanone07 36

Page 39: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Derivative-Free Strong Schemes

avoid computation of derivatives

order1.0 derivative-free strong scheme

Eckhard Platen Bressanone07 37

Page 40: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Implicit Strong Schemes

wide stability regions

implicit Euler scheme

order1.0 implicit strong Taylor scheme

Eckhard Platen Bressanone07 38

Page 41: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Predictor-Corrector Euler Scheme

• corrector

Yn+1 = Yn +(

θ aη(Yn+1) + (1 − θ) aη(Yn))

∆n

+(

η b(Yn+1) + (1 − η) b(Yn))

∆Wn +

p(tn+1)∑

i=p(tn)+1

c (ξi)

aη = a− η b b′

• predictor

Yn+1 = Yn + a(Yn) ∆n + b(Yn) ∆Wn +

p(tn+1)∑

i=p(tn)+1

c (ξi)

θ, η ∈ [0, 1] degree of implicitness

Eckhard Platen Bressanone07 39

Page 42: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Jump-Adapted Time Discretization

t0 t1 t2 t3 = T

regular

τ1

r

τ2

r jump times

t0 t1 t2 t3 t4 t5 = T

r r jump-adapted

Eckhard Platen Bressanone07 40

Page 43: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Jump-Adapted Strong Approximations

jump-adapted time discretisation⇓

jump times included in time discretisation

• jump-adapted Euler scheme

Ytn+1− = Ytn+ a(Ytn

)∆tn+ b(Ytn

)∆Wtn

and

Ytn+1= Ytn+1− + c(Ytn+1−) ∆pn

• γ = 0.5

Eckhard Platen Bressanone07 41

Page 44: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Merton SDE :µ = 0.05, σ = 0.2,ψ = −0.2, λ = 10,X0 = 1, T = 1

0 0.2 0.4 0.6 0.8 1T

0

0.2

0.4

0.6

0.8

1

X

Figure 9: Plot of a jump-diffusion path.

Eckhard Platen Bressanone07 42

Page 45: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

0 0.2 0.4 0.6 0.8 1T

-0.00125

-0.001

-0.00075

-0.0005

-0.00025

0

0.00025

0.0005

Error

Figure 10: Plot of the strong error for Euler(red) and1.0 Taylor(blue)

scheme.

Eckhard Platen Bressanone07 43

Page 46: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Merton SDE :µ = −0.05, σ = 0.1, λ = 1,X0 = 1, T = 0.5

-10 -8 -6 -4 -2 0Log2dt

-25

-20

-15

-10

Log 2Error

15TaylorJA

1TaylorJA

1Taylor

EulerJA

Euler

Figure 11: Log-log plot of strong error versus time step size.

Eckhard Platen Bressanone07 44

Page 47: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Literature on Weak Schemes with Jumps

• Mikulevicius& Pl (1991)

=⇒ jump-adapted orderβ ∈ {1, 2 . . .} weak schemes

• Liu & Li (2000) =⇒ orderβ ∈ {1, 2 . . .} weak Taylor, extrapo-

lation and simplified schemes

• Kubilius & Pl (2002) and Glasserman & Merener (2003)

=⇒ jump-adapted Euler with weaker assumptions on coefficients

• Bruti-Liberati & Pl (?) =⇒ jump-adapted orderβ ∈ {1, 2 . . .}derivative-free, implicit and predictor-corrector schemes

Eckhard Platen Bressanone07 45

Page 48: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Simplified Euler Scheme

• Euler scheme =⇒ β = 1

• simplified Euler scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn + c(Yn) (ξn − 1)∆pn

• if ∆Wn and∆pn match the first 3 moments of∆Wn and∆pn up to

anO(∆2) error =⇒ β = 1

P (∆Wn = ±√

∆) =1

2

Eckhard Platen Bressanone07 46

Page 49: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Jump-Adapted Taylor Approximations

• jump-adapted Euler scheme =⇒ β = 1

• jump-adapted order 2 weak Taylor scheme

Ytn+1− = Ytn+ a∆tn

+ b∆Wtn+b b′

2

(

(∆Wtn)2 − ∆tn

)

+ a′ b∆Ztn

+1

2

(

a a′ +1

2a′ ′b2

)

∆2tn

+

(

a b′ +1

2b′′ b2

)

{∆Wtn∆tn

− ∆Ztn}

and

Ytn+1= Ytn+1− + c(Ytn+1−) ∆pn

• β = 2

Eckhard Platen Bressanone07 47

Page 50: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Predictor-Corrector Schemes

• predictor-corrector =⇒ stability and efficiency

• jump-adapted predictor-corrector Euler scheme

Ytn+1− = Ytn+

1

2

{

a(Ytn+1−) + a}

∆tn+ b∆Wtn

with predictor

Ytn+1− = Ytn+ a∆tn

+ b∆Wtn

• β = 1

Eckhard Platen Bressanone07 48

Page 51: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

-5 -4 -3 -2 -1Log2dt

-2

-1

0

1

2

3

Log2Error

PredCorrJA

ImplEulerJA

EulerJA

Figure 12: Log-log plot of weak error versus time step size.

Eckhard Platen Bressanone07 49

Page 52: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Regular Approximations

• higher order schemes : time, Wiener and Poisson multiple integrals

• random jump size difficult to handle

• higher order schemes: computational effort dependent on intensity

Eckhard Platen Bressanone07 50

Page 53: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

Conclusions

• low intensity =⇒ jump-adapted higher order predictor-corrector

• high intensity =⇒ regular schemes

• distinction between strong and weak predictor-corrector schemes

Eckhard Platen Bressanone07 51

Page 54: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

ReferencesBjork, T., Y. Kabanov, & W. Runggaldier (1997). Bond market structure in the presence of marked point

processes.Math. Finance7, 211–239.

Bruti-Liberati, N. & E. Platen (2005). On the strong approximation of jump-diffusion processes. Technicalreport, University of Technology, Sydney. QFRC Research Paper 157.

Delbaen, F. & W. Schachermayer (2006).The Mathematics of Arbitrage. Springer Finance. Springer.

Follmer, H. & M. Schweizer (1991). Hedging of contingent claims under incomplete information. InM. H. A. Davis and R. J. Elliott (Eds.),Applied Stochastic Analysis, Volume 5 of StochasticsMonogr., pp. 389–414. Gordon and Breach, London/New York.

Gardon, A. (2004). The order of approximations for solutions of Ito-type stochastic differential equationswith jumps.Stochastic Analysis and Applications22(3), 679–699.

Glasserman, P. & N. Merener (2003). Numerical solution of jump-diffusion LIBOR market models.Fi-nance Stoch.7(1), 1–27.

Higham, D. & P. Kloeden (2005). Numerical methods for nonlinear stochastic differential equations withjumps.Numer. Math.110(1), 101–119.

Jacod, J. & P. Protter (1998). Asymptotic error distribution for the Euler method for stochastic differentialequations.Ann. Probab.26(1), 267–307.

Kubilius, K. & E. Platen (2002). Rate of weak convergence of the Euler approximation for diffusionprocesses with jumps.Monte Carlo Methods Appl.8(1), 83–96.

Liu, X. Q. & C. W. Li (2000). Weak approximation and extrapolations of stochastic differential equations

Eckhard Platen Bressanone07 52

Page 55: Numerical Solution of Stochastic Differential Equations with …brixen07/slides/platen.pdf · 2007-07-03 · Springer Finance A Benchmark Approach to Quantitative Finance 1 A Benchmark

with jumps.SIAM J. Numer. Anal.37(6), 1747–1767.

Loewenstein, M. & G. A. Willard (2000). Local martingales, arbitrage, and viability: Free snacks andcheap thrills.Econometric Theory16(1), 135–161.

Maghsoodi, Y. (1996). Mean-square efficient numerical solution of jump-diffusion stochastic differentialequations.SANKHYA A58(1), 25–47.

Maghsoodi, Y. (1998). Exact solutions and doubly efficient approximations of jump-diffusion Ito equa-tions.Stochastic Anal. Appl.16(6), 1049–1072.

Mikulevicius, R. & E. Platen (1988). Time discrete Taylor approximations for Ito processes with jumpcomponent.Math. Nachr.138, 93–104.

Mikulevicius, R. & E. Platen (1991). Rate of convergence of the Euler approximation for diffusion pro-cesses.Math. Nachr.151, 233–239.

Platen, E. (1982). An approximation method for a class of Ito processes with jump component.Liet. Mat.Rink.22(2), 124–136.

Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework.Asia-Pacific FinancialMarkets11(1), 1–22.

Platen, E. & W. J. Runggaldier (2005). A benchmark approach to filtering in finance.Asia-Pacific Finan-cial Markets11(1), 79–105.

Platen, E. & W. J. Runggaldier (2007). A benchmark approach to portfolio optimization under partialinformation. Technical report, University of Technology,Sydney. QFRC Research Paper 191.

Eckhard Platen Bressanone07 53