numerical methods i orthogonal polynomialsdonev/teaching/nmi-fall2014/... · 2014. 11. 5. ·...

27
Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 [email protected] 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 Nov 6th, 2014 A. Donev (Courant Institute) Lecture IX 11/2014 1 / 27

Upload: others

Post on 31-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Numerical Methods IOrthogonal Polynomials

Aleksandar DonevCourant Institute, NYU1

[email protected]

1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

Nov 6th, 2014

A. Donev (Courant Institute) Lecture IX 11/2014 1 / 27

Page 2: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Outline

1 Review

2 Orthogonal Polynomials on [−1, 1]

3 Spectral Approximation

4 Conclusions

A. Donev (Courant Institute) Lecture IX 11/2014 2 / 27

Page 3: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Review

Lagrange basis on 10 nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−7

−6

−5

−4

−3

−2

−1

0

1

2A few Lagrange basis functions for 10 nodes

φ5

φ1

φ3

A. Donev (Courant Institute) Lecture IX 11/2014 3 / 27

Page 4: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Review

Runge’s phenomenon f (x) = (1 + x2)−1

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1Runges phenomenon for 10 nodes

x

y

A. Donev (Courant Institute) Lecture IX 11/2014 4 / 27

Page 5: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Review

Function Space Basis

Think of a function as a vector of coefficients in terms of a set of nbasis functions:

{φ0(x), φ1(x), . . . , φn(x)} ,

for example, the monomial basis φk(x) = xk for polynomials.

A finite-dimensional approximation to a given function f (x):

f̃ (x) =n∑

i=1

ciφi (x)

Least-squares approximation for m > n (usually m� n):

c? = arg minc

∥∥∥f (x)− f̃ (x)∥∥∥2,

which gives the orthogonal projection of f (x) onto thefinite-dimensional basis.

A. Donev (Courant Institute) Lecture IX 11/2014 5 / 27

Page 6: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Review

Least-Squares Fitting

Discrete case: Think of fitting a straight line or quadratic throughexperimental data points.

The function becomes the vector y = fX , and the approximation is

yi =n∑

j=1

cjφj(xi ) ⇒ y = Φc,

Φij = φj(xi ).

This means that finding the approximation consists of solving anoverdetermined linear system

Φc = y

Note that for m = n this is equivalent to interpolation. MATLAB’spolyfit works for m ≥ n.

A. Donev (Courant Institute) Lecture IX 11/2014 6 / 27

Page 7: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Review

Normal Equations

Recall that one way to solve this is via the normal equations:

(Φ?Φ) c? = Φ?y

A basis set is an orthonormal basis if

(φi , φj) =m∑

k=0

φi (xk)φj(xk) = δij =

{1 if i = j

0 if i 6= j

Φ?Φ = I (unitary or orthogonal matrix) ⇒

c? = Φ?y ⇒ ci = φXi · fX =m∑

k=0

f (xk)φi (xk)

A. Donev (Courant Institute) Lecture IX 11/2014 7 / 27

Page 8: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Orthogonal Polynomials

Consider a function on the interval I = [a, b].Any finite interval can be transformed to I = [−1, 1] by a simpletransformation.

Using a weight function w(x), define a function dot product as:

(f , g) =

∫ b

aw(x) [f (x)g(x)] dx

For different choices of the weight w(x), one can explicitly constructbasis of orthogonal polynomials where φk(x) is a polynomial ofdegree k (triangular basis):

(φi , φj) =

∫ b

aw(x) [φi (x)φj(x)] dx = δij ‖φi‖2 .

A. Donev (Courant Institute) Lecture IX 11/2014 8 / 27

Page 9: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Legendre Polynomials

For equal weighting w(x) = 1, the resulting triangular family of ofpolynomials are called Legendre polynomials:

φ0(x) =1

φ1(x) =x

φ2(x) =1

2(3x2 − 1)

φ3(x) =1

2(5x3 − 3x)

φk+1(x) =2k + 1

k + 1xφk(x)− k

k + 1φk−1(x) =

1

2nn!

dn

dxn

[(x2 − 1

)n]These are orthogonal on I = [−1, 1]:∫ −1

−1φi (x)φj(x)dx = δij ·

2

2i + 1.

A. Donev (Courant Institute) Lecture IX 11/2014 9 / 27

Page 10: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Interpolation using Orthogonal Polynomials

Let’s look at the interpolating polynomial φ(x) of a function f (x)on a set of m + 1 nodes {x0, . . . , xm} ∈ I , expressed in an orthogonalbasis:

φ(x) =m∑i=0

aiφi (x)

Due to orthogonality, taking a dot product with φj (weakformulation):

(φ, φj) =m∑i=0

ai (φi , φj) =m∑i=0

aiδij ‖φi‖2 = aj ‖φj‖2

This is equivalent to normal equations if we use the right dotproduct:

(Φ?Φ)ij = (φi , φj) = δij ‖φi‖2 and Φ?y = (φ, φj)

A. Donev (Courant Institute) Lecture IX 11/2014 10 / 27

Page 11: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Gauss Integration

aj ‖φj‖2 = (φ, φj) ⇒ aj =(‖φj‖2

)−1(φ, φj)

Question: Can we easily compute

(φ, φj) =

∫ b

aw(x) [φ(x)φj(x)] dx =

∫ b

aw(x)p2m(x)dx

for a polynomial p2m(x) = φ(x)φj(x) of degree at most 2m?

Let’s first consider polynomials of degree at most m∫ b

aw(x)pm(x)dx =?

A. Donev (Courant Institute) Lecture IX 11/2014 11 / 27

Page 12: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Gauss Weights

Now consider the Lagrange basis {ϕ0(x), ϕ1(x), . . . , ϕm(x)}, whereyou recall that

ϕi (xj) = δij .

Any polynomial pm(x) of degree at most m can be expressed in theLagrange basis:

pm(x) =m∑i=0

pm(xi )ϕi (x),

∫ b

aw(x)pm(x)dx =

m∑i=0

pm(xi )

[∫ b

aw(x)ϕi (x)dx

]=

m∑i=0

wipm(xi ),

where the Gauss weights w are given by

wi =

∫ b

aw(x)ϕi (x)dx .

A. Donev (Courant Institute) Lecture IX 11/2014 12 / 27

Page 13: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Back to Interpolation

For any polynomial p2m(x) there exists a polynomial quotient qm−1and a remainder rm such that:

p2m(x) = φm+1(x)qm−1(x) + rm(x)

∫ b

aw(x)p2m(x)dx =

∫ b

a[w(x)φm+1(x)qm−1(x) + w(x)rm(x)] dx

= (φm+1, qm−1) +

∫ b

aw(x)rm(x)dx

But, since φm+1(x) is orthogonal to any polynomial of degree at mostm, (φm+1, qm−1) = 0 and we thus get:∫ b

aw(x)p2m(x)dx =

m∑i=0

wi rm(xi )

A. Donev (Courant Institute) Lecture IX 11/2014 13 / 27

Page 14: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Gauss nodes

Finally, if we choose the nodes to be zeros of φm+1(x), then

rm(xi ) = p2m(xi )− φm+1(xi )qm−1(xi ) = p2m(xi )

∫ b

aw(x)p2m(x)dx =

m∑i=0

wip2m(xi )

and thus we have found a way to quickly project any polynomial ofdegree up to m onto the basis of orthogonal polynomials:

(pm, φj) =m∑i=0

wipm(xi )φj(xi )

A. Donev (Courant Institute) Lecture IX 11/2014 14 / 27

Page 15: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Interpolation using Gauss weights

Recall we want to compute

aj =(‖φj‖2

)−1(φ, φj) ,

where for Legendre polynomials

‖φj‖2 =2

2j + 1.

Now we know how to compute fast:

(φ, φj) =m∑i=0

wiφ(xi )φj(xi ) =m∑i=0

wi f (xi )φj(xi ) ⇒

aj =

(2j + 1

2

) m∑i=0

wi f (xi )φj(xi ),

where wi and φj(xi ) are coefficients that can be precomputed andtabulated.

A. Donev (Courant Institute) Lecture IX 11/2014 15 / 27

Page 16: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Gauss-Legendre polynomials

For any weighting function the polynomial φk(x) has k simple zerosall of which are in (−1, 1), called the (order k) Gauss-Legendrenodes, φm+1(xi ) = 0.

The interpolating polynomial φ(xi ) = f (xi ) on the Gauss nodes is theGauss-Legendre interpolant φGL(x).

The orthogonality relation can be expressed as a sum instead ofintegral:

(φi , φj) =m∑i=0

wiφi (xi )φj(xi ) = δij ‖φi‖2

We can thus define a new weighted discrete dot product

f · g =m∑i=0

wi figi

A. Donev (Courant Institute) Lecture IX 11/2014 16 / 27

Page 17: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Discrete Orthogonality of Polynomials

The orthogonal polynomial basis is discretely-orthogonal in the newdot product,

φi · φj = (φi , φj) = δij (φi · φi )

This means that the matrix in the normal equations is diagonal:

Φ?Φ = Diag{‖φ0‖2 , . . . , ‖φm‖2

}⇒ ai =

f · φi

φi · φi

.

The Gauss-Legendre interpolant is thus easy to compute:

φGL(x) =m∑i=0

f · φi

φi · φi

φi (x).

A. Donev (Courant Institute) Lecture IX 11/2014 17 / 27

Page 18: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Chebyshev Interpolation

There are other families of orthogonal polynomials that are alsovery useful in practice (Gauss-Lobato, Gauss-Hermite, etc.).

A notable example are the Chebyshev polynomials on [−1, 1], withweight function

w(x) =1√

1− x2

defined recursively via:

φ0 = 1

φ1 = x

φk+1 = 2xφk − φk−1.

Orthogonality relation, for i , j not both zero,

(φi , φj) = δijπ

2and (φ0, φ0) = π.

A. Donev (Courant Institute) Lecture IX 11/2014 18 / 27

Page 19: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Orthogonal Polynomials on [−1, 1]

Chebyshev Nodes

They can also be defined as the unique polynomials satisfying the trigrelation:

φk (cos θ) = cos (kθ) .

This means that their roots φk (xi ) = 0, the Chebyshev nodes, areeasy to find,

xi = cos

(2i − 1

2kπ

), i = 1, . . . , k,

which have a simple geometric interpretation as the projection ofuniformly spaced points on the unit circle.

The Chebyshev-Gauss weights are also easy to compute,

wi =

∫ b

aw(x)ϕi (x)dx =

π

k.

Polynomial interpolation using the Chebyshev nodes eliminatesRunge’s phenomenon.

A. Donev (Courant Institute) Lecture IX 11/2014 19 / 27

Page 20: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Hilbert Space L2w

Consider the Hilbert space L2w of square-integrable functions on

[−1, 1]:

∀f ∈ L2w : (f , f ) = ‖f ‖2 =

∫ 1

−1w(x) [f (x)]2 dx <∞.

Legendre polynomials form a complete orthogonal basis for L2w :

∀f ∈ L2w : f (x) =

∞∑i=0

fiφi (x)

fi =(f , φi )

(φi , φi ).

The least-squares approximation of f is a spectral approximationand is obtained by simply truncating the infinite series:

φsp(x) =m∑i=0

fiφi (x).

A. Donev (Courant Institute) Lecture IX 11/2014 20 / 27

Page 21: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Spectral approximation

Continuous (spectral approximation): φsp(x) =m∑i=0

(f , φi )

(φi , φi )φi (x).

Discrete (interpolating polynomial): φGL(x) =m∑i=0

f · φi

φi · φi

φi (x).

If we approximate the function dot-products with the discreteweighted products

(f , φi ) ≈m∑j=0

wj f (xj)φi (xj) = f · φi ,

we see that the Gauss-Legendre interpolant is a discrete spectralapproximation:

φGL(x) ≈ φsp(x).

A. Donev (Courant Institute) Lecture IX 11/2014 21 / 27

Page 22: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Discrete spectral approximation

Using a spectral representation has many advantages for functionapproximation: stability, rapid convergence, easy to add morebasis functions.

The convergence, for sufficiently smooth (nice) functions, is morerapid than any power law

‖f (x)− φGL(x)‖ ≤ C

Nd

(d∑

k=0

∥∥∥f (k)∥∥∥2)1/2

,

where the multiplier is related to the Sobolev norm of f (x).

For f (x) ∈ C1, the convergence is also pointwise with similaraccuracy (Nd−1/2 in the denominator).

This so-called spectral accuracy (limited by smoothness only)cannot be achived by piecewise, i.e., local, approximations (limited byorder of local approximation).

A. Donev (Courant Institute) Lecture IX 11/2014 22 / 27

Page 23: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Regular grids

a=2;f = @( x ) cos (2∗ exp ( a∗x ) ) ;

x f i n e=l i n s p a c e (−1 ,1 ,100) ;y f i n e=f ( x f i n e ) ;

% Equi−spaced nodes :n=10;x=l i n s p a c e (−1 ,1 ,n ) ;y=f ( x ) ;c=p o l y f i t ( x , y , n ) ;y i n t e r p=p o l y v a l ( c , x f i n e ) ;

% Gauss nodes :[ x ,w]=GLNodeWt(n ) ; % See webpage f o r codey=f ( x ) ;c=p o l y f i t ( x , y , n ) ;y i n t e r p=p o l y v a l ( c , x f i n e ) ;

A. Donev (Courant Institute) Lecture IX 11/2014 23 / 27

Page 24: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Gauss-Legendre Interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−5

−4

−3

−2

−1

0

1

2Function and approximations for n=10

Actual

Equi−spaced nodes

Standard approx

Gauss nodes

Spectral approx

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−6

−5

−4

−3

−2

−1

0

1

2Error of interpolants/approximants for n=10

Standard approx

Spectral approx

A. Donev (Courant Institute) Lecture IX 11/2014 24 / 27

Page 25: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Global polynomial interpolation error

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Error for equispaced nodes for n=8,16,32,..128

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Error for Gauss nodes for n=8,16,32,..128

A. Donev (Courant Institute) Lecture IX 11/2014 25 / 27

Page 26: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Spectral Approximation

Local polynomial interpolation error

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110

−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Error for linear interpolant for n=8,16,32,..256

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Error for cubic spline for n=8,16,32,..256

A. Donev (Courant Institute) Lecture IX 11/2014 26 / 27

Page 27: Numerical Methods I Orthogonal Polynomialsdonev/Teaching/NMI-Fall2014/... · 2014. 11. 5. · Orthogonal Polynomials Consider a function on the interval I = [a;b]. Any nite interval

Conclusions

Conclusions/Summary

Once a function dot product is defined, one can construct orthogonalbasis for the space of functions of finite 2−norm.

For functions on the interval [−1, 1], triangular families oforthogonal polynomials φi (x) provide such a basis, e.g., Legendreor Chebyshev polynomials.

If one discretizes at the Gauss nodes, i.e., the roots of thepolynomial φm+1(x), and defines a suitable discrete Gauss-weighteddot product, one obtains discretely-orthogonal basis suitable fornumerical computations.

The interpolating polynomial on the Gauss nodes is closely related tothe spectral approximation of a function.

Spectral convergence is faster than any power law of the number ofnodes and is only limited by the global smoothness of the function,unlike piecewise polynomial approximations limited by the choice oflocal basis functions.

One can also consider piecewise-spectral approximations.

A. Donev (Courant Institute) Lecture IX 11/2014 27 / 27