number of papers and citations on ”fuel cell membranes” · introduction and background...

21
1 Ionomers and membrane chemistry Patric Jannasch Department of Chemistry Polymer & Materials Chemistry Department of Chemistry, Polymer & Materials Chemistry Lund University, Sweden The membrane-electrode assembly (MEA) in PEMFC, Utö conference center, 21-22 June 2010. Number of papers and citations on ”fuel cell membranes” Web of Science® – with Conference Proceedings Citation Report Topic = (fuel cell* and membrane*) Timespan = All Years. Databases = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH.

Upload: vokhanh

Post on 11-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

1

Ionomers and membrane chemistry

Patric Jannasch Department of Chemistry Polymer & Materials ChemistryDepartment of Chemistry, Polymer & Materials Chemistry

Lund University, Sweden

The membrane-electrode assembly (MEA) in PEMFC,Utö conference center, 21-22 June 2010.

Number of papers and citations on ”fuel cell membranes”

Web of Science® – with Conference Proceedings Citation Report Topic = (fuel cell* and membrane*)Timespan = All Years. Databases = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH.

Page 2: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

2

Outline

Scope of the presentation:“to give selected examples of approaches to

prepare proton-conducting ionomer membranesbased on aromatic polymers”

Introduction and background

Sulfonation of polymers

Macromolecular designs for nanostructured ionomers

H hl h f d ff h d

based on aromatic polymers

Highlight of different approaches to proton conducting aromatic ionomers

A glimpse at the efforts on ionomers in Lund

Polymer and monomer synthesis: molecular design, synthesis and characterisation of polymers

Molecular structures: ionomers, copolymers (block, graft, comb), ladder polymers, networks…

Functional materials: polymer electrolyte membranes, polymers with intrinsic microporosity…

Polymers and membranes -research activities and focus in Lund

Application areas: energy-related electrochemical devices (fuel cells, batteries, EC windows), membrane separations (reverse osmosis, gas separations)

Properties: thermal, mobility (diffusion, etc.), mechanical, optical, self-assembly, solubility…

p y y p y p y

Page 3: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

3

The structure of the perfluorinated NafionTM polymer (ionomer)

side chain

main-chain

The membrane of today - NafionTM

CF2

CF2

CF2

CF

O CF2

CF O CF2

SO3

H

x y

CF2

sulfonic acid

side-chain

Membrane morphology at increasing water contents

2CF

3

2 32

AFM image ofhydrated Nafion

domain size: 5-10 nm

The challenge from industry:increasing the operating temperature and humidity range

- 40 0 90 130 oC

NafionTMNafionTM

expansion of operating temperature

Commercial membranes

AutomotiveYou want tostart from here...

40 0 90 130 C

StationaryCo-generation ofpower and heat…

Great need for new membrane materials based on tailor-made ionomers or other alternative systems

...and get out of there

For excellent overviews, see Adv. Polym. Sci., Vol. 215 and 216, 2008.

Page 4: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

4

Strategy for a successful membrane design

50 nmmolecular structure

membrane morphology transport properties

water sorption stability

ExcellentPEMFC

performance !

High performance engineering polymers Generally characterised by excellent thermal, chemical, and mechanical stabilityWide range of commercially available monomers and polymers

O O

Alternative sulfonated aromatic polymer membranes

O S

O

On O O C

O

n

C O S

OCH3

CH3 O

O n

Polyethersulfone, PES Polyetheretherketone, PEEK

Polysulfone, PSU

S n

Poly(phenylene sulfide), PPSn

Poly(p-phenylene), PPP

Poly(phenylene oxide), PPO

O

CH3

CH3

n

Page 5: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

5

Sulfonated aromatic polymers for new membrane materials

H2SO4 or

ClSO3H

Preparation by:

Direct (post) sulfonation:

Important molecular parameters include:- Degree of sulfonation (IEC : mmol H+ / g dry membrane)

** *

condensation

Metallation-sulfonation:

Direct copolymerisation using sulfonated monomers:

activation reaction

- Polymer structure, architecture and molecular weight (Tg and viscoelastic properties)- Location and distribution of the sulfonic acid units (blocks, side chains)

X Y Z n

SO3HR

Mechanism of sulfonation and desulfonation (simplified)

Sulfonation of aromatics with SO3:

SO3HSO3-

+

SO3-

+

H

SO3+

-

H++

Sulfonation of aromatics with sulfonic cation:

SO3H-

+ +

H

SO3+ H+++ SO3H

H

SO3H HIn dilute acid solutions

Desulfonation of aromatics:

3

+ H O2 H S O4+ 2

In dilute acid solutionsor water

Rule of thumb: easy to sulfonate = easy to desulfonate

O

SO3H

C

SO3H

O

Activated fordesulfonation:

Deactivated fordesulfonation:

Page 6: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

6

O S

O

OnO

Polyphenylsulfone (Radel)

(Tg=210 oC)

Molecular chain characteristics of poly(arylene ether sulfone)s

Arylene ether parts:- unpolar- flexible - electron-rich

Arylene sulfone parts:- polar- rigid- electron-poor

O(Tg 210 C)

Electrophilic Nucleophilic

Inherently difficultto chemically modify

chemically stable polymers

Harsh, yet specific methodsProspects formodification:

aromaticsubstitution

reactions

paromatic

substitutionreactions

Meier-Haack et al. Adv. Polym. Sci., 2008.Guiver et al., ACS Symp. Ser., 2000.

are desired

Direct sulfonation of poly(arylene ether sulfone)s

Electrophilic substitution reactions, i.e., electron-rich arylene rings strongly favoured SO3H

Sulfonatingagent

C O S

OCH3

CH3

OnO C O S

OCH3

CH3

OnO

p y g g y

Sulfonating agents include:SO3 / H2SO4 (Rose, US Pat. 4,273,903 [1981])SO3 in CH2Cl2 (Coplan et al., US Pat.4,413,106 [1983])SO3 complexes with triethylphosphate (Buck, US Pat. 430,513 [1982]) Chlorosulfonic acid, ClSO3H (Bell et al., US Pat. 5,401,410 [1995])Trimethylsilyl chlorosulfonate, (CH3)3SiSO3Cl (Chao et al., US Pat. 4,625,000 [1982])

The methods of direct sulfonation differ in their: Ease and cost of applicationHomogeneity of the reaction medium Levels of reactivity (degradation) and hazard

Iojoiu et al., Fuel Cells, 2005

Page 7: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

7

Metallation-sulfonation of poly(arylene ether sulfone)s

OO S

O

On

butyllithium, -70 deg. C

Sulfonic acid units ortho-to-sulfone in the PSU main-chain: less activated for desulfonation than the sulfonic acid units obtained after electrophilic sulfonation

OO S

O

On

Li

OO S

O

On

SO2Li

SO2

y , g

Kerres et al., J. Membr. Sci., 2001.

O

H2O2

OO S

O

On

SO3H

Morphological features of hydrated membranes

NafionTM Sulfonated PEEKK

CF2

CF2

CF2

CF

O CF2

CF

CF3

O CF2

SO3H

x y

CF2

O O C

O

SO H3

SO HSO H

C

O

n

- wide channels - separated - less branched- good connectivity- small separationbetween sulfonicacid units

- pKa ~ -6

- narrow channels- less separated- highly branched- dead-end channels- large separationbetween sulfonicacid units

- pKa ~ -1

- excessive watert k b

Schematic representations suggested by K.D. Kreuer (J. Membr. Sci., 2001)

uptake above acriticaltemperature

1 nm

Page 8: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

8

Concentration of ionic sites in the membrane by separation into highly sulfonated hydrophilic segments and non-sulfonated hydrophobic segments

Concentrating the acid groups for morphological controland enhanced performance

Statistical ionomer

Segmented ionomer

“Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells”,Holdcroft et al., Adv. Polym. Sci., 2008

Ionic aggregation

Ionic aggregationand self-assembly

(ideally)

Macromolecular designs for nanostructured membranes

Statistical copolymer

Graft copolymer

Alternating multiblock copolymer

Random multiblock copolymerSide-chain modified copolymer

Microblock copolymer

Triblock copolymer Starblock copolymer

Page 9: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

9

Tailoring side-chain sulfonated polymers

flexible side chains…

tiff

sulfonation

Aromatic polymer

…stiffer…

…longer…

…di-sulfonated...

Isolated acid groups on side-chains to- increase amphiphilicity- increase local acid unit mobility

…tri-sulfonated...Minimized local inter-acid distances to- concentrate acid units- further increase the amphiphilicity

Side-chain sulfonated polysulfones

O O S

O

On

S

O

O

O

SO3H

HO3S

SO3H

O

S

O

O

O

OS

O

O

O

O

S

O

OO

SO3H

S

O

OSO

3H

S

O

O

O

O

SO3H

ds

sbtspb

HO3S

SO3H

HO3S6snb

7snb

dsnb

Jutemar et al., J. Membrane Sci., 2010.

Page 10: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

10

Polysulfones with sulfoaryloxybenzoyl side chains

1. butyl lithiumO SO2

OC

Cl

F

O

2.

precursor

O O SO n2

F

O

O

SO3H

O

O

SO3H

HO3S

O

O

HO3S

SO H

O

O

HO S

Synthesised derivatives:

80-90 °CDMSO

K2CO3

O SO2

O

HO-Aryl—SO K3 x

Puchner et al., Macromol. Rapid Commun., 2005. Lafitte et al., Adv. Funct. Mater., 2007.

SO3H HO

3S

SO3H

Highly activated and reactive fluorine Low temperature necessary in the SNAr reactions Complete displacement of fluorine Close to 100% yield reached with pre-made potassium salt

O

Aryl—SO K3 x

SAXS profiles of dry membranes

The q-values of the ”ionomer peaks”relate to characteristic separationlengths between the ionic domains.

Braggs spacing, d = 2/qd= 71 Å

624544

Proton conductivity of fully immersed membraneswith similar IEC valuesd= 44 Å

4140

d= 44 Å3737

Jutemar et al., J. Membrane Sci., 2010.

(d= 22 Å)( 27 )

d= 25 Å24

d= 35 Å

Page 11: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

11

F F F F

Li

F F

O

SO3LiO

S

O

OO

n-BuLi

THF, -70 oC THF, -70 oC

Sulfonated aromatic polymers by direct polycondensation

2,6-difluoro-2’-sulfobenzophenone

O O

O

SO3K

n

OH

OH

F F

O

SO3Li

DFSBP

+1. 160 oC, 3 h2. 175 oC, 21 h

K2CO3

DMAc / toluene

PAE

(DFSBP)

S S

S

O

SO3K

mF F

O

SO3Li

SH

S

SH

+1. 110 oC, 3 h2. 175 oC, 15 h

K2CO3

DMAc / cyclohexane

PAS

Jutemar et al., Macromol. Rapid Commun., in press 2010

Sulfonated aromatic polymers by direct polycondensation

PAS membrane

PAS

Various aromatic polysulfones, polysulfides, polyketones, and polyethersare currently under investigation.

PAE

Page 12: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

12

1.

Amphoteric compounds capable of acting as both proton source and solvent in the membrane at high temperatures

Immobilised alternative proton conducting units

H+

H+

H+

2.

3.

No need for water All-polymeric

monomeric oligomeric

H+

H+

Conduction by structure diffusion Requirements for the immobilisation

depend on the nature of the amphotericcompound

H+polymeric

Tg = -30 °C

benzimidazole aggregation

Intrinsically conducting polymers tethered with benzimidazole

N

NH

N

NH

-10

-8

-6

-4

-2

log

(/

Sc

m-1

)

g

Tg = 57 °C

160 oC

30 oC

60 oC

Low molecular mobility and degree ofautoprotolysis limit the conductivity

1000/T (K-1

)

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6-14

-12

Tg = 24 °C

Persson et al., Macromolecules, 2005. Persson, Chem. Mater., 2007.

Page 13: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

13

Phosphonated polymers and membranes

Represent a viable alternative to sulfonated PEMFC membranes

phosphoric acid methylphosphonic acid

Some possibilities and challenges:

Intrinsic conductivity Lower water uptake Enhanced stability Anhydride formation More challenging

POH

OH

O

POH

O

O

POH

OH

O

POH

OH

O

POH

OH

OP OH

O

OHPOH

O

OH

POH OH

OHP

OH

O

OH

+

OO P

OH

O

Overall aim of the research:

Develop and investigate various synthetic strategies to promoteconductivity at high temperatures and low humidification

B. Lafitte, P. Jannasch, Advances in Fuel Cells, 2007.M. Schuster, K.D. Kreuer, et al., Solid State Ionics, 2008.

PO

OH

OH

OH

H

Phosphonated polymers and membranes

0

H PO

200 150 100 75125175 50oC

-4

-3

-2

-1

log

/ S

cm

-1)

n = 2

n = 6

O Si

CH3

x

H3PO

3H3PO4

n = 4

PO

OH

OH

P

OH

OH

O

P

OH

OH

O

-7

-6

-5

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

1000/T / K-1

CH2 n

x

P OHOH

O

Nominally dry conductivityKreuer et al., Fuel Cells, 2005.

Page 14: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

14

Synthetic approaches to new phosphonatedpolymer membrane materials at Lund

Commercially availablearomatic polysulfones :

S

O

O

O* O *n

O S

O

O O

Arylphosphonic acid(J. Polym. Sci., Polym. Chem., 2005)

Poly(vinylphosphonic acid)(Macromolecules, 2008)

S

O

O O

P

OOH OH

S

O

O

O O

C O S

O

O

O O

S

O

O

O O

C

C

O

F

P

F

O

OHOH

O

*

P

m

OOH

OH

Difluoromethylphosphonic acid(J. Polym. Sci., Polym. Chem., 2007)

Alkylphosphonic acid(J. Mater. Chem., 2008) AlkylBis(phosphonic acid)

(J. Mater. Chem., 2008)

Block copolymers : Poly(styrene-b-vinylphosphonic acid)(Macromolecules, 2009)

POHO

OH

O

P

P

O

O

OHOH

OH

OH

OH

**

P

x y

O OH

OH

Why polysulfones grafted with poly(vinylphosphonic acid)?

Immobilisation of proton source and solvent Formation of very high local concentrations of interacting phosphonic acid Phase separation for membrane stability under humidified conditions High thermal and chemical stability

Poly(vinyl phosphonic acid) grafts:- Acidic and hydrophilic- Hydrogen bonding- ”Flexible” chain

Polysulfone main chain:- Hydrophobic- Rigid chain

Page 15: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

15

Controlled grafting of poly(vinylphosphonic acid) from polysulfonesthrough anionic polymerisations

m

OOn

S

O

O

O On

S

O

O

lithiation butyl lithium

P

O

OEt

OEt

P

m

OO

OH

nS

O

O

hydrolysis aq. HCl, reflux

Designation:PVPA IEC DS

OOn

Li

S

O

O

activation

P

O

OEt

OEtgrafting

P

O

OH

OHgPVPA_IEC_DS

Achievements: Well-defined samples prepared with DS: 1-4 side chains/10 PSU units,

IEC: 0.4 – 6.0 mmol/g MW of PVPA side chains: 500 - 6000 g/mol Structure confirmed by FTIR, TGA and 13C, 31P, 1H NMR Quantitative hydrolysis of ester

J. Parvole, P. Jannasch, Macromolecules 2008.

Copolymers and membranes

More than 30 different copolymers prepared

All the polymers nicely soluble in organic solvents

Selected copolymer and membrane data

Flexible and robust membranes cast from DMAc,NMP and DMSO solutions.

T5% (°C) 5% weight loss under

PVPA content (wt%)

IEC (mmol

/g)Sample

Area (%)

H2O Uptake (%)20 °C,

98% RH

Mn(PVPA)

(kg/mol)

Mn(copol.) (kg/mol)

DS(1H NMR)

297474.3gPVPA_4.3_2

279575.2gPVPA_5.2_1

286484.4gPVPA_4.4_1

320322.9gPVPA_2.9_1

air(wt%)/g)

7430

15546

10434

4419

( )98% RH

2.0

5.8

4.0

2.0

(kg/mol)

52

62

52

40

(kg/mol)

1

( )

1

2

1

Page 16: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

16

AFM phase images of copolymer membranes shownanophase separated morphologies

200 nm200 nm Tg (PSU)

Tg (PVPA)

Tg (PSU)

Tg (PVPA)

200 nm

gPVPA_3.0_433 wt% PVPAM = 500 g/mol DS = 0.4IEC = 3.0 meq/g

0.2

W/g

gPVPA_4.3_2

gPVPA_4.4_1

gPVPA_2.9_1

gPVPA_3.0_4

0.2

W/g

gPVPA_4.3_2

gPVPA_4.4_1

gPVPA_2.9_1

gPVPA_3.0_4

Images recorded under ambient air atmosphere by Dr. Matti Elomaaat the University of Helsinki

gPVPA_5.3_155 wt% PVPAM = 5400 g/molDS = 0.1IEC = 5.3 meq/g

50 100 150 200 250 300

Temperature (oC)

gPVPA_5.3_1

PSU

50 100 150 200 250 300

Temperature (oC)

gPVPA_5.3_1

PSU

Proton conductivity under humidified conditions

Effects of water meltin

Immersed 100% RH

-0.50-20 oC020406080100120

1 0

20 oC507090120

Immersed 100% RH

-0.50-20 oC020406080100120

1 0

20 oC507090120-0.50

-20 oC020406080100120

1 0

20 oC507090120

Effects of water meltingat sub-zero temperatures

Dilution effects of gPVPA_5.3_1 at hightemperatures

Long side chains seembeneficial for theconductivity at given IEC:

id t ti

a. b.

-2.5

-2.0

-1.5

-1.0

gPVPA_5.3_1

log

(/

S c

m-1

)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

gPVPA 5.3 1

log

(/

S c

m-1

)

a. b.

-2.5

-2.0

-1.5

-1.0

gPVPA_5.3_1

log

(/

S c

m-1

)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

gPVPA 5.3 1

log

(/

S c

m-1

)

a. b.

-2.5

-2.0

-1.5

-1.0

gPVPA_5.3_1

log

(/

S c

m-1

)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

gPVPA 5.3 1

log

(/

S c

m-1

)

- acid concentration- percolation

-3.5

-3.0

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA-3.0_4Nafion 115 -2.4

-2.2

2.4 2.6 2.8 3.0 3.2 3.4 3.6

gPVPA_5.3_1gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA_3.0_4Nafion 115

1000/T (K-1) 1000/T (K-1)

-3.5

-3.0

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA-3.0_4Nafion 115 -2.4

-2.2

2.4 2.6 2.8 3.0 3.2 3.4 3.6

gPVPA_5.3_1gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA_3.0_4Nafion 115

1000/T (K-1) 1000/T (K-1)

-3.5

-3.0

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA-3.0_4Nafion 115 -2.4

-2.2

2.4 2.6 2.8 3.0 3.2 3.4 3.6

gPVPA_5.3_1gPVPA_4.4_1gPVPA_2.9_1gPVPA_4.3_2gPVPA_3.0_4Nafion 115

1000/T (K-1) 1000/T (K-1)

Page 17: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

17

c.

-2.0-20

oC020406080100120

c.

-2.0-20

oC020406080100120

Nominally dryProton conductivity under nominally dry conditions

C d ti it t l d d t

-8.0

-6.0

-4.0

log

(/

S c

m-1

)

-8.0

-6.0

-4.0

log

(/

S c

m-1

)

Conductivity strongly dependenton phosphonic acid concentration

Condensation at high temperatures

Membrane gPVPA_5.3_1 reached5 mS/cm at 130 oC

-12

-10

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

gPVPA_5.3_1gPVPA4.4_1gPVPA_2.9_1gPVPA_4.3_2Nafion 115

1000/T (K-1)

-12

-10

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

gPVPA_5.3_1gPVPA4.4_1gPVPA_2.9_1gPVPA_4.3_2Nafion 115

1000/T (K-1)

Doping phosphonated membranes with a perfluorosulfonic acid polymer

Challenge: Reduce excessive water uptakeunder high humidifications leading to dilution ff t d h i l ti

240

260

280

Blend9-2 3%)

gPVPA_5.3_1Blend9-2 3+ 2.3% N11

240

260

280

Blend9-2 3%)

gPVPA_5.3_1Blend9-2 3+ 2.3% N11

Immersed

effects and poor mechanical properties.

Strategy: Introduce ionic crosslinks by dopingwith a perfluorosulfonic acid polymer (N11).

Formation of ionic complexes100

120

140

160

180

200

220Blend9 2.3Blend9-5.0

Wa

ter

up

take

(%

Blend9 2.3Blend9-5.0

2.3% N11+ 5.0% N11

+ 18.0% N11

100

120

140

160

180

200

220Blend9 2.3Blend9-5.0

Wa

ter

up

take

(%

Blend9 2.3Blend9-5.0

2.3% N11+ 5.0% N11

+ 18.0% N11

PO OH

OH

CF2

SO

O

OH

CF2

SO

O

O POH

OHOH

+

Alkylphosphonic acid: (amphoter)

[-SO3] / [-PO3] = 1/25 to 1/250

Perfluoroalkylsulfonic acid: (strong acid)

0 20 40 60 80 100 120 1400 20 40 60 80 100 120 140

Temperature (oC)

0 20 40 60 80 100 120 1400 20 40 60 80 100 120 140

Temperature (oC)

Page 18: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

18

Phosphonated membranes doped with perfluorosulfonic acid polymer- Proton conductivity under 100% RH and nominally dry conditions

-1.0

-0.9020

oC507090120

-1.0

-0.9020

oC507090120

100% RH Nominally dry-3.0

-2.0020406080100120 -20 oC020406080100120 C

-3.0

-2.0020406080100120 -20 oC020406080100120 C

-1.5

-1.4

- 1.3

- 1.2

-1.1

gPVPA_5.3_1

Nafion 115

log(

/ S

cm

-1)

+ 2.3% N11+ 5.0% N11

-1.5

-1.4

- 1.3

- 1.2

-1.1

+ 18% N11

-1)

-8.0

-7.0

-6.0

-5.0

-4.0

gPVPA_4.4_1

gPVPA_5.3_1

log

(/ S

cm

-1)

+ 2% N11

+ 5% N11

log

(/ S

cm

-1)

-8.0

-7.0

-6.0

-5.0

-4.0

gPVPA_4.4_1

gPVPA_5.3_1

log

(/ S

cm

-1)

+ 2% N11

+ 5% N11

log

(/ S

cm

-1)

No significant loss of conductivity afterdoping

Positive effect at low T Macrophase separation at 18% N11

-1.62.6 2.8 3.0 3.2 3.4

Nafion 115

1000/T (K-1)

-1.6

-)

Doping of gPVPA_4.4_1 enhancedconductivity. The effect less clear withgPVPA_5.3_1.

Doped membranes more influenced bycondensation reactions than undoped.

-9.02.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

1000/T (K-1

)

+ 5% N11

-1)

Nafion 115-9.0

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

1000/T (K-1

)

+ 5% N11

-1)

Nafion 115

PO

O

O

1. DEVP

Polystyrene – poly(vinylphosphonic acid) block copolymersby sequential anionic polymerisation

P

OO

O

O

x Li

P

OOH

OH

1. n-BuLi, THF, -75 oC

2.

reflux in fuming HCl

2. MeOH

Hx y Hx y

PSxbPVPAyPSxbPDEVPy

R. Perrin, M. Elomaa, P. Jannasch, Macromolecules, 2009.

Page 19: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

19

80

100

80

100

80

100

Thermal stability under nitrogen and air

20

40

60

80

RP045 (ester)

We

igh

t (%

)

20

40

60

80

RP045 (air)

RP047 (air)

RP046 (air)

We

igh

t (%

)

PS PVPA 34 50 b

PS PVPA 68 69 b

PS PVPA 34 71 bPS PVPAb

PS PDEVP 34 50 b20

40

60

80

We

igh

t (%

)

N2 at 10 oC/min. air at 1 oC/min.

0100 200 300 400 500 600

RP045 (acid)

Temperature / oC

00 100 200 300 400 500 600

RPLastPS PVPA 337 139 bPS PVPA 34 50 b

0100 200 300 400 500 600

Temperature / oC Temperature / oCTemperature / oC

Phase separation, condensation and glass transitions

Tg (PS)

scan sequence:

PS PVPA DSC heating thermograms of 337 139 b

0 oCTg (PVPA)

Tg (PVPA)

Tg (PVPA)

0.5

Jg

-1e

xo

0 oC

1500

2000

250

PO

OH

OH

PO

OH

OH

PO

O PO

- H2O+ H

2O

0 50 100 150 200 250 300

Temperature / oC

2500

300 oC

OOH

OOH

Page 20: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

20

AFM images of block copolymer morphologies and structures

Spherical block copolymer aggregates forming

linear “necklace-like” chain structures

self-assemblyP

n

OO

OH

m

HP

n

OO

OH

m

H

a b ca b c

PS34bPVPA71 PS68bPVPA69 PS337bPVPA139

Thin block copolymer films withcontinuous PVPA phase domains

400 nm

chain structures

ph

as

e

50 nm 50 nm

50 nm 50 nm 50 nm

50 nm50 nm 50 nm

50 nm 50 nm 50 nm

50 nm

100 nm

PS34bPVPA71

top

og

rap

hy

Images recorded by Dr. Matti Elomaa at the University of Helsinki

10-1

Proton conductivity of PS-PVPA block copolymers

10-3

10-2

/ S

cm

-1

RP045 (air)PS PVPA 34 50 b

RP047 (air)PS PVPA 68 69 b

Conductivity data measured by EIS in a sealed cell after equilibration at 98% RH and 25 ˚C.

10-5

10-4

-20 0 20 40 60 80 100 120 140

Temperature / oC

Nafion 115

RP046 (air)PS PVPA 34 71 b

Page 21: Number of papers and citations on ”fuel cell membranes” · Introduction and background Sulfonation of polymers ... Electrophilic substitution reactions, i.e., electron-rich ar

21

General conclusions

The demands on the PEMFC membrane are very severe and complex, balancingon the edge of what a polymer material can fulfill.

Progress has been made but there is still a need for new innovations and PEMFCmembranes.

Establishing systematic structure-(morphology)-property relationships is crucial inthe design of successful membrane materials.

There is a need to develop synthetic pathways to polymers which will allow for a higher degree of order and morphological control

A wide variety of different approaches for HT membranes are currently being A wide variety of different approaches for HT membranes are currently beingpursued, some based on intrinsic proton conduction.

Properly designed phosphonated membranes may show some advantages incomparison with sulfonated ones.

Dr. Lina Karlsson

Acknowledgements

Co workersin the lab:

Dr. Julien ParvoleDr. Christian PerssonDr. Benoît LafitteM.Sc. Elin Persson

Funding:

in the lab: Dr. Renaud PerrinDr. Francois PaoloniM. Sc. Shogo Takamuku