nucleon form factors on the lattice - home | jefferson lablhpc nf = 2 +1 dwf 0.114 243 × 64 2.74...

46
Nucleon Form Factors on the Lattice Meifeng Lin Massachusetts Institute of Technology Lattice QCD and Experiment Workshop Jefferson Lab, November 21-22, 2008 Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 1 / 46

Upload: others

Post on 21-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Nucleon Form Factors on the Lattice

Meifeng Lin

Massachusetts Institute of Technology

Lattice QCD and Experiment WorkshopJefferson Lab, November 21-22, 2008

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 1 / 46

Page 2: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 2 / 46

Page 3: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 3 / 46

Page 4: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Electromagnetic Form Factors

Electromagnetic form factors

〈N(P′)|JµEM(x)|N(P)〉 = u(P′)

[

γµF1(q2) + iσµν qν

2MNF2(q

2)

]

u(P)eiq·x

- Proton: JµEM = 2

3 uγµu − 13 dγµd

- Neutron: JµEM = − 1

3 uγµu + 23 dγµd

q = P′ − P,Q2 = −q2.

Elastic electron-proton scattering givesinformation about size, shape, charge andcurrent distributions of the nucleon.

p’

p q=P’ − P

PP’

We want to determine the matrix element 〈N(P′)|JµEM(x)|N(P)〉 on

the lattice.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 4 / 46

Page 5: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Nucleon Matrix Elements

Lattice three-point correlation function:

C3ptα′α[(t′,~p′); (τ,~q); (t,~x)] =

~x′

e−i~p′·~x′∑

~y

ei~q·~y〈Nα′(t′,~x′)O(τ,~y)Nα(t,~x)〉

where O(τ,~y) can be operators of interest, such as JµEM mentioned earlier

Fixed momentum transfer ~q and sink momentum ~p′, and sourcemomentum determined as ~p = ~p′ −~q.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 5 / 46

Page 6: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Connected vs. Disconnected

Written in terms of quark fields, nucleon operator (neutron) istypically

N(x) = ǫabc(daCγ5ub)dc

Together with the current operator, two types of contractionscontribute

t t’

τ

t t’

τ

Disconnected diagram is expensive to calculate (more later).

In the isovector case (p − n), only connected diagrams contribute.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 6 / 46

Page 7: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Nucleon Matrix Elements

Ground state dominates when t′ ≫ τ ≫ t

C3ptα′α[(t′,~p′); (τ,~q); (t,~x)] →

12E~p′2E~p

e−E~p′(t′−τ)e−E~p(τ−t)e−i~p·~x

× 〈Ω|Nα′ |N,~p′, s′〉〈N,~p, s|Nα|Ω〉〈N,~p′, s′|O|N,~p, s〉

Two-point correlation function:

C2ptαα′(t′,~p′; t,~x) →

12E~p′

e−i~p′·~xe−E~p′(t′−t)〈Ω|Nα′ |N,~p′, s〉〈N,~p′, s|Nα|Ω〉

Proper three-point to two-point ratio cancels out commonfactors

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 7 / 46

Page 8: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Three-point to two-point ratio

Choice not unique. A good example:

RO(τ, p′, p) =C3ptO

(τ, p′, p)

C2pt(t′, p′)

×

[

C2pt(t′ − τ + t, p) C2pt(τ, p′) C2pt(t′, p′)

C2pt(t′ − τ + t, p′) C2pt(τ, p) C2pt(t′, p)

]1/2

RO(τ, p′, p) should exhibit a constant region where it is free ofexcited-state contamination;

The average of the plateau R is proportional to 〈N(~p′)|O|N(~p)〉

For different components of the current operator (e.g. µ = 1, 2, 3, 4), weget a set of equations

Ri =∑

i

AijFj

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 8 / 46

Page 9: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Overdetermined Analysis

Typically the number of equations exceeds the number of formfactors to be determined.

⇓We have an overdetermined problem!

χ2 minimization to determine the optimal values for the formfactors Fj

χ2 =N∑

i=1

(

∑nj=1 AijFj − Ri

σi

)2

n – number of form factors to be determinedN – number of non-zero contributionsAij’s are known analytically. Fit parameters are Fj’s.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 9 / 46

Page 10: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Nucleon Matrix Elements from the Lattice

Overdetermined Analysis - An Example

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

µ=1

up quark, p=(0,0,0), p’=(-1,0,0)

Imfit t=4-5

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

0 1 2 3 4 5 6 7 8 9

µ=2

up quark, p=(0,0,0), p’=(-1,0,0)

Refit t=4-5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9

µ=4

up quark, p=(0,0,0), p’=(-1,0,0)

Refit t=4-5

Im 〈N(p′)|J1|N(p)〉 ∝ F1(Q2) −Q2

4M2N

F2(Q2)

Re〈N(p′)|J2|N(p)〉 ∝ F1(Q2) + F2(Q2)

Re〈N(p′)|J4|N(p)〉 ∝ c

»

F1(Q2) −Q2

4M2N

F2(Q2)

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 10 / 46

Page 11: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Accessing Different Momentum Transfer on the Lattice

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 11 / 46

Page 12: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Accessing Different Momentum Transfer on the Lattice

Lattice Momenta

Momenta discrete on the latticePeriodic Boundary Condition

ψ(xi + L) = ±ψ(xi) ⇒ ~p = ~pFT = ~n2πL,

ni ∈ −L,−L + 1, ...,L

- finite number of momenta accessible- large gap between adjacent momenta

(Partially) Twisted B.C.

ψ(xi + L) = eiθiψ(xi) ⇒ ~p = ~pFT + ~θ/L

- allows to tune the momenta continuously- increase the resolution at small momentum transfer- Be careful with enhanced finite size effects!

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 12 / 46

Page 13: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Control of Systematic Errors

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 13 / 46

Page 14: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Lattice Methodology Control of Systematic Errors

Sources of Systematic Errors

Finite Volume:- Lattice volume V should be large enough to “fit” a nucleon- Common wisdom: mπL should be greater than 4

Finite Lattice Spacing (Discretization Errors)- Typical fermion formulation has O(a2) discretization errors

Chiral Extrapolations- Quark masses mq (or pion masses) in the simulations are heavier

than physical ones.

Continuum QCD is recovered only in the limits of- V → ∞- a → 0- mq → mphys

q

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 14 / 46

Page 15: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results

Overview

In past few years, many collaborations have carried outlarge-scale dynamical calculations for quantities ranging fromnucleon electromagnetic form factors to generalized form factors.

Collaboration Fermion a [fm] L3× T [l.u.] L [fm] mπ [MeV]

ETMC Nf = 2 tmQCD 0.089 243× 48 2.13 313, 390, 447

LHPC Nf = 2 + 1 DWF 0.114 243× 64 2.74 330

0.084 323× 64 2.69 298, 356, 406

DWF on Asqtad 0.124 203× 64 2.48 293, 356, 495, 688, 758

283× 64 3.47 356

QCDSF Nf = 2 Clover 0.07 - 0.11 - 1.4 − 2.6 350 - 1170

RBC/UKQCD Nf = 2 + 1 DWF 0.114 243× 64 2.74 330, 420, 560, 670

ReferencesETMC, arXiv:0811.0724LHPC, PoS(LAT2008)169, arXiv:0810.1933QCDSF, arXiv:0709.3370, arXiv:0710.2159RBC/UKQCD, arXiv:0810.0045Reviews at lattice conferences

J. Zanotti, PoS(LATTICE2008)007Ph. Hägler, PoS(LATTICE2007)013K. Orginos, PoS(LATTICE2006)018

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 15 / 46

Page 16: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 16 / 46

Page 17: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Q2 scaling

Benchmark calculations: isovector electromagnetic form factors

Fpi = 2

3Fui −

13Fd

iFn

i = −13Fu

i + 23Fd

i

⇒ Fp−ni = Fu

i − Fdi

Sachs form factors:

GE(Q2) = F1(Q2) −

Q2

4M2N

F2(Q2), GM(Q2) = F1(Q

2) + F2(Q2)

- With isospin symmetry, disconnected diagrams do not contribute

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 17 / 46

Page 18: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Q2 scaling – Gp−nE

Simulations done at pion masses heavier than physical

Extrapolations are needed to have a direct comparison with experiment

0 0.2 0.4 0.6 0.8 1 1.2Q

2 [GeV

2]

0

0.2

0.4

0.6

0.8

1

GE

p-n

mπ = 293 MeVmπ = 495 MeVmπ = 597 MeVmπ = 688 MeVExperiment [J.J.Kelly 2004]

LHPC [DWF on Asqtad]arXiv:0810.1933

0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Q2 in GeV2

GE

µ = 0.0085, m

π = 447 MeV

µ = 0.0064, mπ = 390 MeV

µ = 0.004, mπ = 313 MeV

experiment

ETMC [Nf = 2 tmQCD]arXiv:0811.0724

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 18 / 46

Page 19: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Q2 scaling – Gp−nM

Simulations done at pion masses heavier than physical

Extrapolations are needed to have a direct comparison with experiment

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

GM

p-n (Q

2 )

Q2 [GeV2]

mπ=293 MeVmπ=495 MeVmπ=597 MeVmπ=688 MeVExperiment [J.J.Kelly 2004]

LHPC [DWF on Asqtad]

0 0.5 1 1.5 2−1

0

1

2

3

4

Q2 in GeV2

GM

µ = 0.0085, m

π = 447 MeV

µ = 0.0064, mπ = 390 MeV

µ = 0.004, mπ = 313 MeV

experiment

ETMC [Nf = 2 tmQCD]arXiv:0811.0724

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 19 / 46

Page 20: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

at Zero Momentum Transfer

The slopes of form factors at Q2 = 0 give mean squared radii:

〈r2i 〉 = −6

∂Fi(Q2)

∂Q2 |Q2=0, i = 1,2

F1(0) : charge of the proton/neutron;- Measured directly on the lattice- F1(0) ≡ 1 sets the renormalization constant

F2(0) = µN − 1 ≡ κ, anomalous magnetic moment- Not directly measurable on the lattice- Extrapolated from fits to the Q2 dependence

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 20 / 46

Page 21: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Isovector Dirac Radius 〈r21〉

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

-0.16

-0.08

0

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64<

r 1v2>

[fm

2 ]

Fit to LHPC mixed action dataLHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmLHPC domain wall, a = 0.114 fmETMC Twisted Mass (2f), a = 0.089 fmRBC/UKQCD domain wall, a = 0.114 fmExperiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 21 / 46

Page 22: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Isovector Dirac Radius 〈r21〉

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

-0.16

-0.08

0

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64<

r 1v2>

[fm

2 ]

Fit to LHPC mixed action dataLHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmLHPC domain wall, a = 0.114 fmETMC Twisted Mass (2f), a = 0.089 fmRBC/UKQCD domain wall, a = 0.114 fmExperiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 22 / 46

Page 23: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Baryon chiral perturbation theory

Current state-of-the-art lattice calculations have pion massesmπ & 300MeV

Need a theoretical framework to guide the extrapolation to thephysical pointHeavy baryon chiral perturbation theory with ∆ degree of freedom(small scale expansion – SSE) BERNARD, FEARING, HERMERT AND MEISSNER (1998)

Low-energy effective theoryExpansion parameters

m2π

Λ2χ

,q2

Λ2χ

,∆2

Λ2χ

Low-energy constantsgA, Fπ, MN , ∆, cA, cV , . . . + counter terms∆ here is the ∆-N mass difference in the chiral limit

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 23 / 46

Page 24: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Chiral Formulae

(rv1)

2 = −1

(4πFπ)2

1 + 7g2A +

(

10g2A + 2

)

log

[

Λχ

]

−12B(r)

10 (Λχ)

(4πFπ)2 +c2

A

54π2F2π

26+ 30 log

[

Λχ

]

+30∆

∆2 − m2π

log

[

mπ+

∆2

m2π

− 1

]

.

Ideally would like to determine all the constants from lattice.

Reality: Not enough data to constrain all the parameters;use phenomenological input for gA, Fπ, MN , ∆ and cA

Only one free parameter B(r)10 (λ) to fit

Extrapolation curve greatly constrained by the chiral formula

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 24 / 46

Page 25: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Isovector Pauli Radius 〈r22〉

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

-0.5

0

0.5

1<

r 2v2>

[fm

2 ]

LHPC domain wall, a = 0.114 fmLHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmETMC Twisted Mass (2f), a = 0.089 fmRBC domain wall, a = 0.114 fmExperiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 25 / 46

Page 26: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Anomalous Magnetic Moments

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

1

1.5

2

2.5

3

3.5

4

κ vlat M

N

phys/M

N

lat

LHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmRBC domain wall, a = 0.114 fmExperiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 26 / 46

Page 27: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Some Remarks

Calculations by different collaborations show a consistent picture,albeit differences in fermion discretization, lattice spacings, etc.

Lattice results still lack of the curvature as predicted by heavybaryon chiral perturbation theory at current pion masses

Lighter pion masses are needed to have unambiguous chiralextrapolations

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 27 / 46

Page 28: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Accessing small Q2

Traditional lattice calculations are performed using periodicboundary conditions for the fermion fieldsBig gap between first non-zero momentum transfer and Q2 = 0

QCDSF, Lattice 2008

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 28 / 46

Page 29: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Accessing small Q2

Using twisted boundary conditions for the valence quarks allowsto vary Q2 continuouslyHelp to constrain the fits at small momentum transfer

QCDSF, Lattice 2008

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 29 / 46

Page 30: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Large-Q2 Behavior – Experiment

Possible zero crossing for isovectorelectric form factor at Q2 ∼ 4.5 GeV2

Proton electric and magnetic formfactor ratio decreases with Q2,instead of being a constant!

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 30 / 46

Page 31: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Electromagnetic Form Factors

Accessing large Q2

Zero-crossing for Gp−nE ?

First step: getting good signals at high Q2 (usually very noisy)Exploratory studies by H.W.Lin et al, arXiv:0810.5141

Quenched anisotropic latticesVariational methods to obtain principal correlatorsFit two-point and three-point principal correlators directly to extractthe nucleon matrix elements (as opposed to ratio method)

0 1 2 3 4 50

0.25

0.50

0.75

1.00

Q2 HGeV2

L

F1u-

d

0 1 2 3 4 50

1

2

3

4

Q2 HGeV2

L

F2u-

d

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 31 / 46

Page 32: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 32 / 46

Page 33: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Axial and induced pseudoscalar form factors

〈p(P′)|A+µ (x)|n(P)〉 = up(P

′)

[

γµγ5GA(q2) + qµγ5GP(q2)

2MN

]

un(P)eiq·x

What’s interesting...- Nucleon axial charge gA ≡ GA(q2 = 0)- gA = 1.2695(29) experimentally well-known- The ability to reproduce the experiment serves as a precision test

of lattice QCD techniques.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 33 / 46

Page 34: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Q2 Scaling - GA(Q2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q2[GeV

2]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

mfa=0.005

mfa=0.01

mfa=0.02

mfa=0.03

experiment

GA(q

2)

RBC/UKQCD, arXiv:0810.0045

0 0.5 1 1.5 2−1

−0.5

0

0.5

1

1.5

2

Q2 in GeV2G

A

µ = 0.0085, m

π = 447 MeV

µ = 0.0064, mπ = 390 MeV

µ = 0.004, mπ = 313 MeV

experiment

ETMC, arXiv:0811.0724

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 34 / 46

Page 35: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Nucleon Axial Charge gA

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

1

1.1

1.2

1.3

1.4

1.5

g A

LHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmLHPC domain wall, a = 0.114 fmETMC Twisted Mass (2f), a = 0.089 fmRBC/UKQCD domain wall, a = 0.114 fmExperiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 35 / 46

Page 36: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Nucleon Axial Charge gA

0 0.1 0.2 0.3 0.4 0.5 0.6mπ [GeV]

1

1.1

1.2

1.3

1.4

1.5

g A

LHPC mixed action, a = 0.124 fmLHPC domain wall, a = 0.084 fmLHPC domain wall, a = 0.114 fmETMC Twisted Mass (2f), a = 0.089 fmRBC/UKQCD domain wall, a = 0.114 fmExperiment

Puzzle: all the data fall on a horizontal line (more or less), 10%lower than experiment

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 36 / 46

Page 37: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Axial Form Factors

Finite Volume Effects?

2 3 4 5 6 7 8 9 10 11 12mπL

0.70.80.9

11.11.21.3

Nf=0(3.6fm)

Nf=0(2.4fm)

Nf=0(1.8fm)

Nf=0(1.2fm)

Nf=2 Imp. Wilson β=5.20

Nf=2 Imp. Wilson β=5.25

Nf=2 Imp. Wilson β=5.29

Nf=2 Imp. Wilson β=5.400.7

0.80.9

11.11.21.3

Nf=2 Wilson β=5.50

Nf=2 Wilson β=5.60

Nf=2 Wilson β=5.60

0.70.80.9

11.11.21.3

Nf=2+1(2.7fm)

Nf=2+1(1.8fm)

Nf=2(1.9fm)

Nf=0(2.4fm)

Nf=2+1 Mix(2.5fm)

gA (Wilson)

gA (DWF)

gA (qDWF)

T. Yamazaki et al, PRL100, 032001(2008)

When mπL < 5, gA appears tobend down, away from theexperimental value

FVE to be the cause for thelack of curvature?

Comparison with larger andsmaller volume simulations isneeded to confirm.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 37 / 46

Page 38: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Strangeness Form Factors

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 38 / 46

Page 39: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Strangeness Form Factors

Strangeness Form Factors

In QCD, proton is not just composed of up and down quarks

Strange quarks are present as vacuum polarizations

How do they contribute to the nucleon form factors?

We can calculate the matrix element on the lattice:

〈N(t′)|sΓs(τ)|N(t)〉

Γ = γµ → GsE,G

sM

Γ = γµγ5 → GsA

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 39 / 46

Page 40: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Strangeness Form Factors

Experiment

?"#&'&#'".<2'"@A$BC)*)D<(**E'F8&G+&HI

PVES + BNL E734 (!G':%"##&@$5L=

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 40 / 46

Page 41: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Strangeness Form Factors

Disconnected Diagrams

t t’

τ

Only disconnected diagrams contribute to 〈N(t′)|sΓs(τ)|N(t)〉

Need to calculate

C1(τ) =∑

~x

Tr[Γ D−1(~x, τ)]

Number of matrix inversions ∝ lattice volume

Too expensive! ⇒ resort to stochastic methods

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 41 / 46

Page 42: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Strangeness Form Factors

Preliminary Results

/0123435607

R. Babich, Lattice 2008Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 42 / 46

Page 43: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Other Form Factor Calculations

Outline

1 Lattice MethodologyNucleon Matrix Elements from the LatticeAccessing Different Momentum Transfer on the LatticeControl of Systematic Errors

2 Current Lattice ResultsElectromagnetic Form FactorsAxial Form FactorsStrangeness Form FactorsOther Form Factor Calculations

3 Summary and Outlook

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 43 / 46

Page 44: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Current Lattice Results Other Form Factor Calculations

I have not talked about...

Generalized form factors

∆ electromagnetic form factors

N − ∆ transition form factors

N−Roper transition form factors

...

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 44 / 46

Page 45: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Summary and Outlook

Summary

Lattice calculations for nucleon form factors with dynamicalfermions are available with pion masses & 300 MeV.

Results for isovector quantities show qualitative agreement withexperiment.

The range of Q2 accessible to lattice QCD is being extended, inboth directions.

Strangeness content of the nucleon is also being pursued.

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 45 / 46

Page 46: Nucleon Form Factors on the Lattice - Home | Jefferson LabLHPC Nf = 2 +1 DWF 0.114 243 × 64 2.74 330 0.084 323 × 64 2.69 298, 356, 406 DWF on Asqtad 0.124 203 × 64 2.48 293, 356,

Summary and Outlook

Outlook

A number of systematic effects need to be addressed, includingfinite volume effects, discretization errors and chiral extrapolationerrors.

- Simulations with lighter pion masses, finer lattice spacings andlarger volumes are underway.

- Will help control these systematic errors.

Calculations of disconnected diagrams remain challenging. But alot of progress has been made.

Precision calculations of the nucleon form factors from lattice QCDare accessible.

Finally making contact with experiments?

Meifeng Lin (MIT) Nucleon Form Factors on the Lattice November 21, 2008 46 / 46