nuclear theory for chemical evolution of galaxies · 2010-04-30 · stellar input for chemical...

17
Nuclear Theory for Chemical Evolution of Galaxies Yong-Zhong Qian University of Minnesota JINA GCE Workshop “Building Virtual Galaxies” April 30, 2010 (based on review by Janka et al. 2007 in Physics Reports) Friday, April 30, 2010

Upload: others

Post on 17-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

Nuclear Theory for Chemical Evolution of Galaxies

Yong-Zhong QianUniversity of Minnesota

JINA GCE Workshop “Building Virtual Galaxies”

April 30, 2010

(based on review by Janka et al. 2007 in Physics Reports)

Friday, April 30, 2010

Page 2: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

Stellar input for chemical evolution of galaxies

stellar evolution nucleosynthesis

end states

Type Ia & core-collapse SNe

star formation

nucleosynthesisenergy injection, mixing

gas return

Friday, April 30, 2010

Page 3: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

Nuclear theory input for chemical evolution

nuclear reaction rates for:

hydrostatic & explosive burning

r-process, s-process, p-process, rp-process

nuclear equation of state

weak interaction rates

nuclear theory input for core-collapse SNe:

Friday, April 30, 2010

Page 4: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

weak rates during pre-SN evolution & core collapse

mass, Ye, entropy of “Fe” core

mass of inner core

Friday, April 30, 2010

Page 5: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

nuclear equation of state (EOS)radius of inner core at bounce

initial shock energylater neutrino luminosity

Friday, April 30, 2010

Page 6: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

nuclear EoS & neutrino processesneutrino luminosity & spectraexplosion & nucleosynthesis

Friday, April 30, 2010

Page 7: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

e-capture & beta-decay rates for pre-SN evolution Langanke & Martinez-Pinedo (LMP 2000)

B(G

T+)

d!/d"

[mb/

(sr 5

0 ke

V)]

51V(d,2He)51Ti Elab=171 MeV #cm<1˚

Shell-Model Calculation

Ex [MeV]

Ex [MeV]

2.14

MeV

3.62

MeV 4.

88 M

eV

Friday, April 30, 2010

Page 8: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

smaller, non-systematic

differences for beta-decay

comparison withFuller, Fowler, & Newman

(FFN 1980, ’82, ’85)for late stages ofpre-SN evolution

1 4 7 10T9

10-4

10-3

10-2

10-1

10-4

10-3

10-2

10-1

100

! ec (s

"1)

10-15

10-12

10-9

10-6

10-3

LMPFFN

1 4 7 10T9

10-6

10-4

10-2

100

10-6

10-5

10-4

10-3

10-2

10-1

10-3

10-2

10-1

100

#7=10.7

56Fe 56Ni

#7=4.32

#7=4.32

55Co 59Co

#7=33

54Mn

#7=10.7 #7=33

60Co

further constraints onshell model calculations

from FRIB?

Friday, April 30, 2010

Page 9: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

10 15 20 25 30 35 40Star Mass (M!)

0.005

0.010

0.015

0.020

!Y e

0.420

0.425

0.430

0.435

0.440

0.445

0.450

Y e

WWLMP

10 15 20 25 30 35 40Star Mass (M!)

-0.2

-0.1

0.0

0.1

!M

Fe (M

!)

1.4

1.6

1.8

2.0

MFe

(M!)

WWLMP

10 15 20 25 30 35 40Star Mass (M!)

-0.2

-0.1

0.0

0.1

!S

(kB)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cent

ral e

ntro

py /

bary

on (k B

)

WWLMP

Friday, April 30, 2010

Page 10: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

10 100 1000DENSITY [109 g/cm3]

0

10

20

30

40EN

ERG

Y [M

eV]

temperatureQ (proton)Q (nuclei)chem. potential

beta-decay

e-capture

detailed GTstrength

distributionneeded

centroid & totalGT strength

mostly needed

Friday, April 30, 2010

Page 11: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

e capture during core collapse

nuclear statistical equilibrium (NSE) has many nucleiwith significant abundances

reduction of Ye depends on the product of nuclearabundance & the corresponding e-capture rate

decreasing Ye changes NSE composition to favormore n-rich nuclei

when Z<40 & N>40 nuclei have significant abundances,more sophisticated shell model calculations needed,

but computational capability forces alternative:Random Phase Approximation (RPA)

Friday, April 30, 2010

Page 12: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

Independent ParticleShell Model gives noGT strength for e capture on nuclei

with Z<40 & N>40

but finite temperature& residual interaction

lead to unblocking

Friday, April 30, 2010

Page 13: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

-15 -10 -5 0

Q (MeV)

10-2

10-1

100

101

102

103

104

105

!e

c (

s-1

)

"11Ye=0.07, T=0.93

"11Ye=0.62, T=1.32

"11Ye=4.05, T=2.08

Friday, April 30, 2010

Page 14: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

10-4

10-3

10-2

10-1

100

101

102

103

104r ec

(s-1

)

5 10 15 20 25 30 35 40

µe (MeV)

0

10

20

30

!E" e#

(MeV

)

protonheavy

0.3

0.4

0.5

Y e (Ele

ctro

n Fr

actio

n)

1

2

3

Entro

py p

er b

aryo

n

0 0.2 0.4 0.6 0.8 1−8

−6

−4

−2

0

Velo

city

(104 k

m/s

)

Enclosed Mass

Bruenn prescriptionLMP+hybrid rates

Friday, April 30, 2010

Page 15: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

nuclear EoS, neutrino emission & interaction processes

time

Nuclear theory input for supernova neutrino emission

Qian & Woosley 1996

Friday, April 30, 2010

Page 16: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

40 45 50 55 60 65 70 75 80 85 90Mass Number A

100

101

102

103

104Y i/Yi,!

0.5 0.52 0.54 0.56 0.58 0.6Ye

102

103

104

105

106

107

108

Y i/Yi,!

74Se

78Kr

84Sr96Ru

94Mo98Ru

102Pd

92Mo

106Cd108Cd

!p-process

!̄e + p! n + e+

without neutrinos,nuclear flow ends at

64Ge

(n, p) & (p, !)lead to heavier nuclei

Frohlich et al. 2004, ’06Pruet et al. 2005

Friday, April 30, 2010

Page 17: Nuclear Theory for Chemical Evolution of Galaxies · 2010-04-30 · Stellar input for chemical evolution of galaxies stellar evolution nucleosynthesis end states Type Ia & core-collapse

Nuclear theory input for the r-process

possible role of neutrino-induced n emission

n-induced fission cross sections & yields

during the r-process, assuming (n, !) ! (!, n) equilibrium

neutron separation energy, beta-decay ratesboth depend on nuclear masses

macro-microscopic (e.g., FRDM) vs. ab initio (e.g., RMF) mass models

possible role of fission cycling

during freeze-out

n capture cross sections, beta-delayed n emission

Friday, April 30, 2010