nuclear physics in storage rings yuri a. litvinov institute of theoretical physics (itp), cas,...

32
Nuclear Physics in Storage Rings Nuclear Physics in Storage Rings Yuri A. Litvinov Yuri A. Litvinov Institute of Theoretical Physics (ITP), CAS, Institute of Theoretical Physics (ITP), CAS, Beijing Beijing 10.06.2010 10.06.2010 Max-Planck-Institut für Kernphysik, Heidelberg Max-Planck-Institut für Kernphysik, Heidelberg Broad band mass measurements Broad band mass measurements Beta decay of highly-charged ions Beta decay of highly-charged ions Nuclear magnetic moments Nuclear magnetic moments Nuclear reactions on thin targets Nuclear reactions on thin targets Capture reactions at low energies [(p, Capture reactions at low energies [(p, ),( ),( , , )…] )…] Reactions in inverse kinematics [ Reactions in inverse kinematics [ 15 15 O( O( ) ) 19 19 Ne] Ne] Experiments with isomeric beams Experiments with isomeric beams Experiments with polarized beams Experiments with polarized beams

Upload: tracy-owens

Post on 18-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Nuclear Physics in Storage RingsNuclear Physics in Storage Rings

Yuri A. Litvinov Yuri A. Litvinov

Institute of Theoretical Physics (ITP), CAS, BeijingInstitute of Theoretical Physics (ITP), CAS, Beijing10.06.201010.06.2010

Max-Planck-Institut für Kernphysik, HeidelbergMax-Planck-Institut für Kernphysik, Heidelberg

1. Broad band mass measurements1. Broad band mass measurements2. Beta decay of highly-charged ions2. Beta decay of highly-charged ions3. Nuclear magnetic moments3. Nuclear magnetic moments4. Nuclear reactions on thin targets4. Nuclear reactions on thin targets5. Capture reactions at low energies [(p,5. Capture reactions at low energies [(p,),(),(,,)…])…]6. Reactions in inverse kinematics [6. Reactions in inverse kinematics [1515O(O())1919Ne]Ne]7. Experiments with isomeric beams7. Experiments with isomeric beams8. Experiments with polarized beams8. Experiments with polarized beams

Beta-decay on the Chart of NuclidesBeta-decay on the Chart of Nuclides

p-process

rp-processνp-process

fussion

Astrophysical scenarios:high temperature = high degree of ionization

r-process

Half-life modifications Half-life modifications

G.T. Emery, Annu. Rev. Nucl. Sci. 22 (1972) 165: Effects of less than 1%

Pressure, Temperature, Electromagnetic fields, Chemistry ...

Modification of the electron density at the nucleus

Fundamental question:

“Can we change the nuclear decay rate or it is a basic property ?!“

Highly-ChargedHighly-Charged Ions Ions

W.R. Phillips, et al., Phys. Rev. Lett. 62 (1989) 1025W.R. Phillips, et al., Phys. Rev. A47 (1993) 3682

Internal conversion in few-electron 57Fe ions

F. Attallah, et al., Phys. Rev. C55 (1997) 1665

Internal conversion in few-electron 125Te ions

Half-life prolongations ranging from a few 10% up to 670%

F.F. Karpeshin, et al., Phys. Rev. C53 (1996) 1640M.R. Harston, et al., Nucl. Phys. A676 (2000) 143

New decay mode: Bound Internal Conversion (BIC)

Two-body beta decay of stored and cooled Two-body beta decay of stored and cooled highly-charged ionshighly-charged ions

Fragment Separator

FRS

Productiontarget

Storage RingESR

Heavy-IonSynchrotron

SIS

LinearAccelerator

UNILAC

Production, storage and cooling of HCI at GSIProduction, storage and cooling of HCI at GSI

ESR : EESR : Emaxmax = 420 MeV/u, 10 Tm; = 420 MeV/u, 10 Tm; ee--, stochastic cooling , stochastic cooling

ESR: B. Franzke, NIM B 24/25 (1987) 18 Stochastic cooling: F. Nolden et al., NIM B 532 (2004) 329Electron cooling: M. Steck et al., NIM B 532 (2004) 357

Electron CoolingElectron Cooling

momentum exchange with 'cold', collinear e- beam. The ions get the sharp velocity of the electrons, small size and divergence

time

SMSSMS

4 particles with different m/q

Sin(1)

Sin(2)

Sin(3)

Sin(4)

1234time

Fast Fourier Transform

SMSSMS

SMS: Broad Band Frequency Spectra

Nuclear Decays of Stored Single AtomsNuclear Decays of Stored Single Atoms

Time-resolved SMS is a perfect tool to study dynamical processes in the ESR

Nuclear electron capture, β+,β- and bound-β decays were observed

Fully-Ionized AtomsFully-Ionized Atoms

John N. Bahcall, “Theory of Bound-State Beta Decay”,Phys. Rev. 124 (1961) 495

John N. Bahcall, “Beta Decay in Stellar Interiors”, Phys. Rev. 126 (1962) 1143

Koji Takahashi, Koichi Yokoi, “Nuclear Beta-Decays of Highly-Ionized Heavy Atoms in Stellar Interiors”,

Nucl. Phys. A 404 (1983) 578

Koji Takahashi, Koichi Yokoi, “Beta-Decay Rates of Highly-Ionized Heavy Atoms in Stellar Interiors”,

Atomic Data Nucl. Data Tables 36 (1987) 375

Half-Lives of Nuclear IsomersHalf-Lives of Nuclear Isomers

Neutral atom is 0.49(2) s

laboratory frame

Fully ionized atom is 11(1) s

T1/2 (fully ionized)

T1/2 (neutral)= 22(2)

Yu.A. Litvinov, et al., PLB 573 (2003) 80-85

Observation of 133mSb isomeric state

17 17 s isomeric state in neutral s isomeric state in neutral 133133SbSb

Expected half-live of bare isomer: ~ 17 ms, t~991

A new half-live domain for storage-ring experiments

RIMS=200 000

B. Sun et al., PLB 688 (2010) 294

Bound-State Bound-State -decay-decay

187Re0

9.8 keV

TT½ ½ = 42 Gy; Q = 2.7 = 42 Gy; Q = 2.7 keVkeV

g.s.β-

T½ = 33 y

9.8 keVg.s.

187187ReRe75+75+

βb Q = 62 keV

F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

Bound-State Bound-State -decay of -decay of 187187ReRe

E

The 7 Nuclear Clocks for the Age of the Earth, the Solar System, the Galaxy, and the Universe

clockclock TT1/21/2[10[1099 y] y]

4040K/K/4040Ar (Ar ()) 1.31.3

238238U…Th…U…Th…206206Pb (Pb ()) 4.54.5

232232Th…Ra…Th…Ra…208208Pb (Pb ()) 1414

176176Lu/Lu/176176Hf (Hf ()) 3030

187187Re/Re/187187Os (Os ()) 4242

8787Rb/Rb/8787Sr (Sr ()) 5050

147147Sm/Sm/143143Nd (Nd ()) 100100

Clayton (1964): a mother-daughter couple (187Re/187Os) is the “best” radioactive clock

5/2+1/2-3/2-

p process

160 164 162 161

163

164 166

DyHoEr

r process

s process

162

165

163 163

s process: slow neutron capture and β- decay near valley of β stability at kT = 30 keV; → high atomic charge state → bound-state β decay

branchings caused by bound-state β decay

M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

Bound-State Bound-State -decay of -decay of 163163DyDy

T1/2 = 48 days

Bound-State Bound-State -decay in -decay in 206,207206,207TlTl

λb

λ = λb+λc+λR

bound/continuum branching ratio

T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501

Next Step: Bound-State Next Step: Bound-State -decay of -decay of 205205TlTl

F. Bosch et al., GSI Proposal

Hydrogen-Like IonsHydrogen-Like Ions

I. Iben et al., “The Effect of Be7 K-Capture on the Solar Neutrino Flux”, Ap. J. 150 (1967) 1001

L.M. Folan, V.I. Tsifrinovich, “Effects of the Hyperfine Interaction on Orbital Electron Capture”,

Phys. Rev. Lett. 74 (1995) 499

Decay schemes H-like ions; g.s. Decay schemes H-like ions; g.s. →→ g.s.; no third particle g.s.; no third particle

EC in Hydrogen-like IonsEC in Hydrogen-like Ions

Expectations: EC(H-like)/EC(He-like) ≈ 0.5

EC(H-like)/EC(He-like) = 1.49(8)

Yu.A. Litvinov et al., Phys. Rev. Lett. 99 (2007) 262501

140Pr

EC(H-like)/EC(He-like) = 1.44(6)

142Pm

N. Winckler et al., Phys. Lett. B579 (2009) 36

Electron Capture in Helium-like IonsElectron Capture in Helium-like Ions

I = 1

S = 0

Gamow-Teller transition →

EC

I = 0

s = 1/2

F = 1 F = 1

s = 1/2

Electron Capture in Hydrogen-like IonsElectron Capture in Hydrogen-like Ions

I = 1

s = 1/2

Gamow-Teller transition →

EC

I = 0

s = 1/2

F = I + s3/2

1/2F = 1/2

Z. Patyk et al., Phys. Rev. C 77 (2008) 014306

S. Typel and L. Grigorenko

Probability of EC Decay

µ = +2.7812µN

Neutral 140Pr: P = 2.381

Gamow-Teller transition →

Electron Capture in Hydrogen-like IonsElectron Capture in Hydrogen-like Ions

Z. Patyk

H-like 140Pr: P = 3

He-like 140Pr: P = 2

Theory:The H-Like ion should really decay 20% faster than neutral atom!

(2I+1)/(2F+1)

Z. Patyk et al., Phys. Rev. C 77 (2008) 014306

Next StepNext StepB.M. Dodsworth et al., Phys. Rev. 142 (1966) 638.

µ (64Cu) = −0.217(2) N

Some speculations on the EC-decay of Some speculations on the EC-decay of 77Be Be A.V. Gruzinov, J.N. Bahcall, Astroph. J. 490 (1997) 437Ionization of 7Be in the Sun can be ~ 20-30 %

(2I+1)/(2F1+1)Transition (F=1F=1) is accelerated by i.e. by 8/3

of 7Be in this state (2F1+1)/((2F1+1)+(2F2+1)) = 3/8However, there are only

Electron Capture in Hydrogen-like IonsElectron Capture in Hydrogen-like Ions

F = I + s4

3F = I + s

5

4

Possibility to address the electron screening in beta decay under very clean conditions !

Single-Particle Decay Single-Particle Decay SpectroscopySpectroscopy

Decay schemes H-like ions; g.s. Decay schemes H-like ions; g.s. →→ g.s.; no third particle g.s.; no third particle