nuclear magnetic resonance in ferromagnetic multilayersand...

38
Nuclear Magnetic Resonance in ferromagnetic multilayers and nanocomposites: Investigations of their structural and magnetic properties Christian MENY, Pierre PANISSOD Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 ULP-ECPM-CNRS, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 2, France QMMRC - IPCMS Winter School 2009, Feb. 09-13, Seoul

Upload: others

Post on 23-Oct-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Nuclear Magnetic Resonance in ferromagnetic

    multilayers and nanocomposites: Investigations of

    their structural and magnetic properties

    Christian MENY, Pierre PANISSOD

    Institut de Physique et Chimie des Matériaux de StrasbourgUMR 7504 ULP-ECPM-CNRS, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 2, France

    QMMRC - IPCMS Winter School 2009, Feb. 09-13, Seoul

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • NMR in ferromagnets: an analyses tool among others

    • Free surface

    – Electron Diffraction : RHEED, LEED: Growth mode, 2D Surface structure, Orientations

    – Auger Spectroscopy : AES: Growth mode, Surface diffusion & segregation– Imaging : STM, AFM: Direct topological view

    • Volume

    – Xray Diffraction : XRD : Xtal Structure, Super-period, Texture, Interface roughness

    – Transmission Electron Microscopy : TEM : Stacking, Grain structure, Superlattice coherence, Misfit dislocations, Interface roughness, chemical analyses when combined with EELS/EDXS

    – Extended Xray Absorption Fine Strusture : EXAFS Chemical & Topological Short Range Order

    – Rutherford Back Scattering : RBS : Concentration profiles – Hyperfine techniques: Nuclear Magnetic Resonance, Mössbauer

    Spectroscopy : Chemical & Topological Short Range Order

  • Bulk Structure

    Xtal StructureXtal OrientationTexture, Stacking

    MosaicityGrain Size

    Impurities atdefects

    Interface nanostructure

    Extended defects,Grain boundaries

    Point Defects,Impurities

    XRD EXAFS NMRTEM

  • Interface Structure

    Long RangeRoughness

    InterfaceCompound

    AlloyedInterfaceDislocations

    XRD

    SurfaceAFMSTMAES

    LEEDRHEED

    TEM

    NMR

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • • NMR signal can be obtained for all nuclei with non zero nuclear spin

    • Quantum mechanics: Resonant Absorption of Photon

    Basis of Nuclear Magnetic Resonance

    Spin 1/2H0 = 0

    hωLPhoton

    H1(ω)+1/2

    −1/2

    H0 ≠ 0 Resonance: ω = ωL

    H0: Static magnetic field: Zeeman Effect H1: Radiofrequency field : Resonant Absorption

  • Observable Elements & Sensitivity

    To increase sensitivity:Low Temperature : NMR signal increases as 1/T (Curie law)High Field : NMR signal increases as ωωωω2 =γγγγ2H2

    In practice: Organic materials: H, F, P (17O, 14N, 13C)Metalloids: Ga, B, As, In (Si, Se, Te)Normal metals: Li, Na, Al (Be, K) Transition Metals: V, Mn, Co, Cu, Nb, La, Re (Y, Pt, Ta)Rare Earths: Pr, Eu, Tb, Ho (Nd, Gd)

    H HeLi Be B C N O F NeNa Mg Al Si P S Cl ArK Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br KrRb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I XeCs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

    Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

    MediumGood Bad No

  • NMR in ferromagnets: Particularities

    •In ferromagnets the magnetic field H0 is the field inside the material on the nuclei sites (For example 20 Tesla for Cobalt nuclei in bulk Co).

    •It is called the Hyperfine Field (HF)•The HF strength depends on the local symmetry and local chemicalenvironment of the probed nuclei

    •An NMR spectrum in a ferromagnet is measured by frequency sweeps• it is a number of atoms versus a resonance frequency.

    •Among the “traditional” ferromagnets (Fe, Co and Ni), •Co has the highest sensitivity (104 time larger than Fe for example)

    Spin 1/2H0 = 0

    hωLPhoton

    H1(ω)+1/2

    −1/2

    H0 =HFResonance: ω = ωL

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • NMR Frequency and Local symmetry: Bulk CoSpin Echo Intensity

    210 215 220 225 230Frequency (MHz)

    Stackingfaults

    hcpCobalt

    fccCobalt

    FCC Dominant

    210 215 220 225 230Frequency (MHz)

    Stackingfaults

    hcpCobaltfcc

    Cobalt

    HCP Dominant

    x5

    Pure samples: Frequency is the fingerprint of the atom site local symmetry

  • Example : Bulk Structure of Co Thin FilmsQuantitative analysis

    0

    20

    40

    60

    80

    100

    0 1000 2000 3000 4000 5000

    fcc fractionhcp fraction

    3% 30%Stacking faults:

    Volume Fracion (%)

    Layer Thickness (Å)Electrodeposited on very flat Au film

    Initial growth mostly hcp (

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • NMR frequency and Chemical environment

    200 220 240 26050 100 150 200 250

    Spin Echo Intensity

    100 150 200 250

    Co0.90Cu0.10

    Frequency (MHz)

    0 Cu nn

    1 Cu nn

    2 Cu nn

    2 Ru nn

    1 Ru nn

    0 Ru nn

    Frequency (MHz)

    Co0.90Ru0.10

    3 Ru nn

    Frequency (MHz)

    Co0.90Fe0.10

    1 Fe nn

    2 Fe nn

    0 Fe nn

    3 Fe nn

    •Alien atoms as nearest neighbor of the probed atom shifts the resonance frequency.The value and sign of the shift depends on the nature of the neighboring atom. (Cu: -16 MHz;

    Ru:-25 MHz; Fe: +10 MHz)

  • NMR frequency and Chemical environment : quantitative analysis

    Decomposition of NMR spectrum with Gaussian lines.

    NMR intensity increase as 1 NN : grows as C,2 NN : grows as C2,3 NN : grows as C3,C: Concentration in alien atoms

    Random distribution of the alien atoms among the nearest neighbors (NN) of Co.

    The line intensity follows a binomial law

    40 80 120 160 200 240Frequency (MHz)

    Spin Echo Intensity

    0 Crnn2 Crnn

    4 Crnn

    1 Crnn

    3 Crnn

    Co0.86Cr0.14

    Co0.96Cr0.040 Crnn

    1 Crnn

    2 Crnn

  • CoCr: Trend towards segregation at low concentration

    CoCu: Strong trend towards segregation(immiscible elements)

    CoFe: Close to solid solution

    CoRu: Perfect solid solution

    Relative line intensities (0, 1, 2, 3 NN)& binomial probability law(Random site occupancy)

    NMR frequency and Chemical environment : quantitative analysis

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.8

    0.6

    0.4

    0.2

    0.00 5 10 15

    Impurity Content (%)

    CoRu

    CoFe

    CoCu

    CoCr

    Configuration Probability

  • Problem - Bulk Not Understood

    CoPt alloys:– 2 sets of satellites

    • narrow upwards

    • broad downwards

    – Related to position of the nearest neighbor among the 12 NN ?

    – Long range interactions between Pt impurities ?

    – Second neighbor shell ?150 175 200 225 250Frequency (MHz)

    Spin Echo Intensity

    CoPt0.10

    CoPt0.06

    CoPt0.02

  • Examples : Magnetic multilayers

    • Frequency fingerprint ofChemical/Xtallographic Environment

    • Frequency Ranges correspond to Different Sample Parts

    60 100 140 1800.0

    0.2

    0.4

    0.6

    0.8

    Co-X admixture(other mixed planes)

    Co-X admixture(1st mixed plane)

    x10

    Bulk grain boundaries

    Perfect 111 interface

    Spin Echo Intensity (arbitrary)

    Frequency (MHz)210 220 230 240

    0

    2

    4

    6

    8

    Stacking faults(& hcp Co Μ//c)

    hcp CobaltM⊥c

    fcc Cobalt

    Interface spectral range Bulk spectral range

    Co/Cu multilayer

  • .../Cu/Co/Cu/... Interface SpectraNearly perfect interface (111). Single satellite line corresponding to Co atoms with 3 Cu neighbors. Traces of Co with 2 Cu neighbors.

    Excellent multilayered structure. The 3 Cu neighbors line is 30% of the interface spectrum.

    Sharp interfaces but numerous monoatomic step defects

    Mixed interfaces with some flatter areas (3 Cu neighbors line resolved). Steep concentration profile.

    Mixed interfaces. Satellite lines of Co with 1 and 2 Cu neighbors show the presence of several planes containing a weak Cu concentration (3 to 8 %).

    Frequency (MHz)50 100 150 200 250

    Spin

    Echo Intensity

    THO

    IBM

    IEF

    PHI

  • Modeling of Interface SpectraMonoatomic Step Defects

    Simulated Spectra

    d=2, l=2d=2, l=4

    d=2, l=2d=4, l=2

    12 1110 9 8 7 6 5 4 3 2 1 0Number of Alien Nearest Neighbors

    Interface Model

    Parameters of the modeld : Average distance between stepsl : Average length of straight parts

    Application : small roughness

    Cross section view

    l

    Top view of mixed plane

    d

  • Spin Echo Intensity

    120 140 160 180 200 220 240Frequency (MHz)

    Ru/Cu 8Å/Co24Å/Ag 2.4Å/Cu20Å /Ag 2.4Å /Co24Å

    Average distance between steps: 2.8 at.d.Average straight length: 1.6 at.d.

    Cross section view

    l

    Top view of mixed plane

    d

    Modeling of Interface SpectraMonoatomic Step Defects

  • Modeling of Interface SpectraDiffuse Interface

    Cross section view

    3 Mixed Planes6 Mixed Planes

    1 Mixed Plane2 Mixed Planes3 Mixed Planes

    12 1110 9 8 7 6 5 4 3 2 1 0Number of Alien Nearest Neighbors

    Simulated Spectra Interface Model

    Parameters of the modelConcentrations in each plane

    (Concentration profile)Example : Linear profile

    Application: Large admixture >2ML

    C1C2C3C4C5C6C7

  • .../Cr/Co/Cr/... Largely Mixed Interfaces

    Last fullCo plane

    1st mixedplane

    2nd mixedplane

    Spin Echo Intensity

    Frequency (MHz)50 100 150 200 250

    [Co16Å/Cr8Å]Cr con

    centration

    at.%

    Hyprfine Field (% of bulk)

    100

    75

    50

    25

    0

    100

    75

    50

    25

    0-1 0 1 2 3 4 5

    Atomic Layer Index

    Co Hyperfine fieldCr concentration

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • Magnetic information: Hyperfine Field Profile

    Interface Model :Concentration profile

    Side output :Average HF in each atomic plane

    Average HF an estimate of Co magnetic moment at interfaces

    0 1 2 3 4 50

    20

    40

    60

    80

    100

    Ru Concentration(%)

    Co Hyperfine Field(% of bulk)

    Interface Profiles

    Interface Plane Index (1: last pure Co)

    NM R T h eo ryC R u H F /H F b u lk µ /µ b u lk C R u

    0 1 .0 0 1 .0 0 00 0 .9 9 1 .0 3 02 .5 0 .9 4 0 .9 7 01 7 0 .7 5 0 .8 9 2 55 0 0 .4 0 0 .6 3 5 08 2 0 .0 4 0 .1 3 7 5

    Frequency (MHz)50 100 150 200 250

    Co /Ru

    Bulk Co planes

    3rd mixed plane50%Ru

    2nd mixed plane17%Ru

    1st mixed plane2.5% Ru

    Spin Echo Intensity

    32ÅMBE Grown

    X Multilayers

  • Magnetic Properties by NMRWith additional external static magnetic field

    210 215 220 225 230

    Spin Echo Intensity

    Frequency (MHz)

    External field0 Oe

    500 Oe1000 Oe1500 Oe

    Tann = 1000°CTexp = 4.2 K

    Lower frequency lineLarge Co clusters, multidomain, fcc :• No demagnetizing field (217 MHz)• Presence of Bloch walls (no shift in low field)

    Upper frequency lineSmall Co clusters, single domain, fcc :• Not hcp, no HF anisotropy (no broadening with Hext)• Demagnetizing field -6 kOe (223 MHz)• No Bloch wall (shift -γ Hext from the smallest Hext)

    FCC Co ?

  • 210 220 230 240

    Temperature4.2 K77 K

    300 K

    Spin Echo Intensity

    Frequency (MHz)

    Tann = 800°CHext = 0 Oe

    When Co Clusters are superparamagnetic:No NMR signal

    Lower frequency lineLarge Co clusters ferromagnetic :• Constant intensity

    •Upper frequency lineSmall Co clusters superparamagnetic• Loss of intensity with increasing temperature• Large distribution of blocking temperatures

    Large distribution of sizes :Coexistence of small single domain clusters and of large multidomain clusters

    Magnetic Properties by NMRNMR measurements versus temperature

  • Outline of the talk

    • Introduction: NMR in ferromagnets: an analysis tool among others

    • Basis of NMR and particularities of NMR in ferromagnets

    • Structural information by NMR• Local symmetry

    • Local chemical environment

    • Magnetic information by NMR• Hyperfine field profile

    • Field and temperature dependent measurements

    • Local magnetic susceptibility: 3D NMR in Ferromagnets• Restoring field

    • Magnetization reversal inhomogeneity

    • Magnetic anisotropy inhomogeneity

    • Conclusion

  • NMR - Macroscopic ViewpointLaboratory frame Rotating frame (ω)

    Mn(ωL)

    H0

    x

    y

    z

    H1(ω)

    Pulsed H1 Pulse Duration: τ Turn Angle: ω1τ

    Particular Turn Angles π/2 : ⇒Mn⊥H0 π : Mn Reversal

    Measured NMR signal is proportional to the magnitude of the nuclear

    magnetization in the XY plane: Maximum when turn angle ω1τ=γΗ1τ= π/2

    Mn(ωe)

    H0 - ω/γHe

    H1

    Z

    X

    Y

    ω ω ω ω ≠≠≠≠ ωωωωLω ω ω ω ≠≠≠≠ ωωωωL

    Off - Resonance

    Y

    Mn(ω1)

    H1X

    Z

    ω = ωω = ωω = ωω = ωLω = ωω = ωω = ωω = ωL

    At Resonance

    H0 - ω/γ=0

  • Log(H1)

    Hoptimum

    Spin Echo Intensity

    1/3 1 3

    Ext

    erna

    lS

    tati

    c F

    ield

    H0

    10 t

    o 10

    0 kO

    e

    RF Field H110 to 100 Oe

    Non Magnetic Sample

    Bopt = π/2γτ

    1

    Maximum of NMR signal depends only on the properties of the probed Nucleus and on the experimental set up:

    τ is a fixed experimental parameterγ : the gyromagnetic ratio of the nucleus

    NMR intensity (Spin echo intensity) vs RF field strength

  • Restoring Field related to :

    • Anisotropy field (single domain behavior)

    • Coercive field (domain nucleation or domain wall stiffness)

    • Exchange bias, Coupling field (coupling energy between layers/grains)

    (ferro)H2HF/H optres πωτη ==

    HF: Hyperfine Field10 to 500 kG

    Hr : Restoring Field

    Excitation B1 = η η η η H1:B1/H1 = HF/Hr = η

    For the maximum NMR intensity:

    Hr=HF*Hopt(ferro)/Bopt(non ferro)

    Hr=HF*Hopt(ferro)2γτ/π

    Magnetic Sample

    RF Field H10.01 to 1 Oe

    µe

    RF Field B1=ηH110 to 100 G

    Hr

    HF

    1/η ⇒ Hr

    Log(H1)

    Soft

    Log(H1)Spin Echo Intensity

    1/η ⇒ Hr

    Hard

    η

    η

    Enhancement factor & Restoring Field

  • fcc

    Co

    210 215 220 225 2300

    200

    400

    600

    800

    1000

    Restoring Field (Oe)

    Frequency (MHz)

    hcp

    Co M⊥c

    Stac

    king

    Faul

    ts

    3D NMR spectra in ferromagnets

    How to visualize inhomogeneities

    NMR Intensity vs• Frequency : StructuralNMR• RF Field : Magnetic stiffness

    Line of

    Crest

    Scaled RF Field (Oe)

    "Single Xtal" hcp Co

    210215

    220225

    230

    40100

    200400

    fcc Co

    StackingFaults

    hcp CoM⊥c

    Frequenc

    y (MHz)

    3D Curves

    The larger the strength of the H1field we need to apply, the stiffer the part of the sample under investigation

  • From softestGrain boundaries (small grains)Interface planesStacking faults (zones of)Bulk hcp (M⊥c axis)Bulk fccBulk hcp (M//c axis)

    To hardest

    Structure & Magnetic Stiffness

    /NiFe/FeMn22/CuCo75Spin Valve (IBM)

    Gra

    inbo

    unda

    ries

    Inte

    rface

    100 120 140 160 180 200

    10

    20

    30

    40

    50

    60

    70

    Frequency (MHz)

    Restoring Field (Oe)

    Spectrum

    fcc

    Co hc

    p C

    o

    220

    Frequency= environment-High frequency, bulk Co : Co atoms surrounded by other Co atoms

    -The frequency gives the local symmetry (fcc or hc Co)

    -Low frequency, interface: Co atoms by Co and Cu atoms

    Radiofrequency strength vsfrequency :-shows how magnetically stiff each environment is

    Magnetization reversal initiated where the sample is the less stiff

  • Coupling Oscillations

    • Interface planes partly decoupled from inner planes • softer than bulk (usual)• more sensitive to AF coupling (expected)

    • AF coupling only partly transferred to inner planes

    10 15 20 25 30 350

    200

    400

    600

    800

    1000

    1200

    1400

    Bulk Hr

    Interface Hr

    MR

    Restoring Field (Oe)

    Ru Thickness (Å)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Magn

    etoResistan

    ceRatio (%

    )

    /RuCo32Å X Multilayers

  • Magnetization Process Homogeneity

    Discriminates between • Inhomogeneous

    magnetization process

    And• Coherent rotation of anet remanent magnetization

    e.g. Biquadratic Coupling

    Co/Cu Multilayers

    Co15ÅCu9ÅAF + F coupling

    Co15ÅCu15ÅFerromagnetic coupling

    Co10ÅCu10ÅBiquadratic coupling ?

    180200

    220

    1000 300 100 30180

    200220

    1000 300 100 30Scaled RF Field (Oe)

    180200

    220

    1000 300 100 30 Frequency

    (MHz)

    M/Ms

    -8k -4k 0 4k 8k

    -1.0

    -0.5

    0.0

    0.5

    1.0

    External field (Oe)-8k -4k 0 4k 8k

    -1.0

    -0.5

    0.0

    0.5

    1.0M/Ms

    External field (Oe)

  • Inhomogeneities of Co Dispersion, Inhomogeneities of Magnetic Anisotropy: Co clusters in Cu

    100 1000 10000 1000000

    50

    100

    150

    200

    Hres, 2ν = 200 MHz

    Spin Echo Intensity

    Hres, 1

    100 1000 10000 1000000

    100

    200

    300

    400

    500

    600

    Scaled RF Field strength (Oe)

    Hres, 2

    Hres, 1

    ν = 215 MHz

    Spin Echo Intensity

    50 100 150 2000

    100

    200

    300

    400

    experimental spectrum Stif magnetic Co clusterssoft magnetic Co alloy

    Spin EchoIntensity

    Frequency (MHz)

    Spectrum decomposition into two phaseswith different magnetic anisotropyStif : Pure fcc Co clusters + interface

    Soft : CoCu alloy grains

    Evidence for the existence of two phaseswith different magnetic anisotropies

    The cluster size of the two populations is similar but because of their chemical composition their anisotropy is different

    Magnetic measurements: 2 blocking temperatures; 2 different cluster sizes?

  • ConclusionsNMR allows to get specific information about of the structural and

    magnetic properties in different parts of the sample

    Bulk Co

    • Structure of the bulk of the layers and their respective magnetic stiffness

    Small grains lead to soft layers because of an increased number grain boundaries

    At interfaces• Morphology of the Interfaces

    • Magnetization profile. • Magnetic stiffness depends on interface disorder and defects

    Between layers• Coupling strength• Discriminates between coherent and incoherent magnetization process.

    In granular systems

    • Distribution of sizes, magnetic anisotropy, superparamagnetism.

    Ref:C. MENY, P. PANISSOD Nuclear Magnetic Resonance in Ferromagnetic Multilayers and Nanocomposites: Investigations of Their Structural and Magnetic Properties

    In Modern Magnetic Resonance, G. Webb, Ed., Springer, Heidelberg, 2007. and references therein

  • Kam sah hamnida

    Thank you

    Merci