Іnstitute of physics nasu the development of new organic probes for two-photon induced fluorescence...

15
Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga V. Przhonska Institute of Physics, Prospect Nauki, 46, Kiev-28, 03028, Ukraine

Upload: isabell-aster

Post on 01-Apr-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

The development of new organic probes for two-photon induced fluorescence microscopy application

Mykhailo V. Bondar and Olga V. Przhonska

Institute of Physics, Prospect Nauki, 46, Kiev-28, 03028, Ukraine

Page 2: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Outline

Stimulated and spontaneous transitions in organic molecules

Linear spectral characterization

Two-photon absorption spectra

Transient absorption spectroscopy and superfluorescence

Stimulated emission depletion properties

Conclusions

Two-photon absorbing organic molecules with efficient stimulated emission depletion (STED) for bioimaging

2

Page 3: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Stimulated and spontaneous transitions in organic molecule

Abs Fluor

S0

S1

SnESA

hv, 2hvStimulatedEmission

NR

NR

01() 3.8*10-21 () [M-1cm-1] ~ 10-16 cm2; 10() ~ 10-16 cm2; 2PA() ~ 10-48 cm4s

Simplified molecular electronic model

3

K.D. Belfield, et al., J. Phys. Chem. B, 2009, 113, 1701.

Page 4: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

S1

S0

/1I

S2

S3

S4

1hv quenchpump

Ifl0 ~ Ip; (1-Ifl/Ifl

0) ~ Iq

pump quench

I(r,t) = I0exp[-(r2/r02 + t2/ 2)]

Delay 10 ps

dN1(r,t)/dt = N001I(r,t) - N1[1/ + 10I(r,t)]

N0(r,t) + N1(r,t) = NC

ò N1(r,t)dt = N1(r,p)

dN1(r,t)/dt = N1(r,t)2PEI2q(r,t)

(1 - Ifl/Ifl0) = 2PE{q(/8)1/2[rq

2/(rp2+rq

2)]}Iq2

Ifl0 ~ N1(r,p)rdrd

Ifl ~ N1q(r,p)rdrd

N1q(r,p) = N1(r,p)[1- 2PE(/2)1/2qI2

q(r)]

J.R. Lakowicz, et al., J. Photochem. Photobiol., 1994, 60, 546.

2hv quench

ESA

Fluorescence quenching method

4

Page 5: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fl

Norm

aliz

ed A

bso

rban

ce

Wavelength, nm

Abs#38 CHF

Norm

aliz

ed F

luore

scen

ce

pumpprobe

I(r,t) = I0exp[-(r2/r02 + t2/ 2)]

Delay 10 ps

0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25#38 CHF, cuv. 1mmexc. =400 nmquench. =1400 nm100 fs1 kHz

(IF

0-IF

)/IF

0

E2p, J

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

#38 CHF, cuv. 1mmexc. =400 nmquench. =750 nm100 fs1 kHz

(IF

0-IF

)/IF

0

Ep, J

y=A+B*xA=-0.02097B=0.13038R=0.9937

Fluorescence quenching method

5

K.D. Belfield, et al., J. Phys. Chem. B, 2009, 113, 1701.

Page 6: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

MIRA 900-F

Ve

rdi-V

10

Legend EliteOPA

OperaSolo

Z

SM

F SF

DL

WP

800 nm, 1kHz

DC400 nm

P

SF

240–20000 nm

F

SampleOceanOptics

800 nm, 76 MHz, 200 fs

P ~ 100 fs

PD

PD

S

Experimental setup for pump-probe and single beam experiments

PD

600 800 10000.0

0.5

1.0#38 CHF1mm Cuv.1280 nm100 fs

Eq = 4 mkJ

Eq = 2.6 mkJ

Flu

ore

scence inte

nsity, a.u

.

Wavelength, nm

Eq=1.6 mkJ

6

K.D. Belfield, et al., ChemPhysChem, 2011, 12, 2755.

Page 7: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Linear photophysical and photochemical properties

C2H5

C2H5

N

O

NC CN

NC2H5

C2H5

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3'-6'2'1'CHXTOLCHFTHFODCBDCM

Norm

alize

d A

bsorb

ance

Wavelength, nm

ACNCHXTHFTOLDCMCHFODCB

1-7

Norm

alize

d F

luore

scence

FPh 410-7

0 2 4 6 8 1010

100

1000CHX - 0.20 nsTOL - 0.95 nsCHF - 2.4 nsODCB - 1.9 nsTHF - 1.4 nsDCM - 0.63 ns (75%) 2.6 ns (25%)

Inte

nsi

ty, a

.u.

t, ns

t = tR QY; A = 1 / tR

IRF ~ 80 pslexc = 440 nm

300 400 500 600

0.0

0.1

0.2

0.3

Anis

otr

opy

Wavelength, nm

CHX

THF

pTHF

ODCB

CHF

TOL

DCM

Abs-ODCB

Abs-CHX

7

0.0 0.1 0.2 0.3

4000

5000

6000

7000

8000

Sto

kes S

hift, c

m-1

f

38 in:CHXTOLCHFODCBTHFDCMACN

constahc

fv

2

3

2

dEN

c

A

)()10ln()(1500

0101

2

01

Diode laser

(532 nm)

f = 5 cmsample

P0 = 85 mW/cm2

K.D. Belfield, et al., ChemPhysChem, 2011, 12, 2755.

Page 8: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Two-photon absorption spectra

400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2800 1000 1200 1400 1600

10

100

1000

TOL DCM

Anis. pTHF

2PA

1PA

Norm

alize

d A

bsorb

ance

1PA Wavelength, nm

2P

A, G

M

2PA Wavelength, nm

N+NC6H13

C6H13C6H13

C6H13HO

HO

OH

OH

O

O- C6H13

C6H13

N

S

NC CN

N

C6H13

C6H13

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

800 1000 1200 1400

200

400

600 TOL DCM

Anis. pTHF2PA

1PA

Norm

alize

d A

bsorb

ance

Anis

otr

opy

1PA Wavelength, nm

2P

A, G

M

2PA Wavelength, nm

SQ FD

8

Page 9: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Transient absorption spectroscopy

9

N+N

C6H13

C6H13C6H13

C6H13

HO

HO

OH

OH

O

O-

S1

S0

I

S2

S3

S4

Pump

650 nm

ESAProbe450 750 nm

I

/1TOL 3.0 ns 3.3 ns

–TOL

DCM

S1

S0

I

S2

S3

S4

Pump

650 nm

ESAProbe450 750 nm

I

/1TOL 3.0 ns 3.3 ns

–TOL

DCM

-0.5 0.0 0.5 1.0 1.5 2.0-0.3

-0.2

-0.1

0.0610 nm probe

630 nm probe

D

Delay, ps

640 nm probe

-0.5 0.0 0.5 1.0 1.5 2.0-0.3

-0.2

-0.1

0.0

660 nm probe

630 nm probe

D

Delay, ps

640 nm probe

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.05

0.10

510 nm probe

490 nm probe

D

Delay, ps

470 nm probe

#44 TOL

#44 TOL #44 DCM

SQ

K.D. Belfield, et al., ChemPhysChem, 2013, 14, 1-14.

Page 10: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Transient absorption spectroscopy

10

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 520 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 540 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 680 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 720 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 740 nm

0 2 4 6 8 10

-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 840 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 880 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 920 nm

0 2 4 6 8 10-0,04

-0,02

0,00

0,02

0,04

D

Delay, ps

pr = 960 nm

FD in СН2Cl2

K.D. Belfield et al., J. Phys. Chem. C, 2013, 117, 11941.

C6H13

C6H13

N

S

NC CN

N

C6H13

C6H13

FD

400 600 800 1000 12000.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CHXTOLTHFDCM

FluorescenceAbsACNCHXTHFTOLDCM

Norm

aliz

ed A

bso

rban

ce

Wavelength, nm

Norm

aliz

ed F

luore

scen

ce

Page 11: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Superfluorescence properties

11

650 700 7500,0

3,0x103

6,0x103

9,0x103

650 700 750

0,0

0,2

0,4

0,6

0,8

1,0

1,2

EP

1- 1.5 J2- 2.8 J3- 4.0 J

Inte

nsi

ty, c

ou

nts

/sec

Wavelength, nm

1

2

3a

No

rma

lize

d f

luo

res

ce

nc

e

4

650 700 7500,0

3,0x105

6,0x105

9,0x105

1,2x106 650 700 750

0,0

0,2

0,4

0,6

0,8

1,0

1,2

3

2

1

EP

1- 0.125 J2- 0.4 J3- 0.6 J

4

c

Inte

nsi

ty, c

ou

nts

/sec

Wavelength, nm

x103

No

rma

lize

d f

luo

res

ce

nc

e

0 15 30 45 600

1x106

2x106

3x106

4x106

1 2 30,0

5,0x102

1,0x103

1,5x103

2,0x103

Inte

nsi

ty, c

ou

nts

/sec

Pulse Energy, J

b

Inte

nsi

ty, c

ou

nts

/sec

Pulse Energy, J

0,0 1,5 3,0 4,50

1x106

2x106

3x106

4x106

0,0 0,2 0,4 0,60,0

5,0x105

1,0x106

1,5x106

Inte

nsi

ty, c

ount

s/se

c

Pulse Energy, J

dIn

ten

sity

, co

un

ts/s

ec

Pulse Energy, J

С 7.5·10-5 М (a, b)

С 1.8·10-3М (c, d)

Pump 650 nm, 100 fs, 1 кHz

K.D. Belfield, et al., ChemPhysChem, 2013, 14, 1-14.

N+N

C6H13

C6H13C6H13

C6H13

HO

HO

OH

OH

O

O-

Page 12: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Two-photon absorption and STED spectra

400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2800 1000 1200 1400 1600

0

500

1000

1500

2000

2500

No

rma

lize

d A

bso

rba

nc

e, F

luo

res

cen

ce

1PA wavelength, nm

2

31'

1

2PA wavelength, nm

5

2P

E G

M,

10 ,

a.u

.

41hvSTED

2PA2hvSTED

(A. Penzkofer, et al., Chem. Phys., 1990, 142, 123.)

)(8

)(0

2

4

Eqcn RF

em

12

K.D. Belfield, et al., ChemPhysChem, 2011, 12, 2755.

0.5 1.0 1.50.00

0.05

0.10

0.15

0.20

830 nm

750 nm

710 nm

1 - I F

/ I

F0

Eq / J

a

20 40 60 800.00

0.01

0.02

0.03

0.04

b

1400 nm

1360 nm

1 - I F

/ I

F0

Eq2 / J

1280 nm

Page 13: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

0 2 4 6 80.0

0.1

0.2

0.3

1 - F / F

0

Eq, J

580 nm

520 nm

640 nm

600 nm

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

0

2

4

6

8

Norm

aliz

ed A

bso

rbance

and F

luore

scence

Wavelength, nm

10*1

017

, cm

2

C2H5C2H5

N

S

H3C

H3C

O

# 40

#40 in Toluene

1hv quench Abs Em Em

CHFTOL

Pq

qp

qqFF E

rrchII

)(

)(2/1

20

20

100

K.D. Belfield et al., ChemPhysChem, 2012, 13, 3481.

0 10 20 300.00

0.02

0.04

0.06

0.08

1400 nm

1360 nm1240 nm

1 - F / F

0

E2, J

1320 nm

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2600 800 1000 1200 1400 1600

0

150

300

450

600

750

Norm

aliz

ed A

bso

rban

cean

d F

luore

scen

ce

1PA Wavelength, nm 2P

E, G

M

2PA and 2PE Wavength, nm

x)/8(/1 2/150 FF II

2hv quench

Abs Em

2PA 2PE

22

02

02

022

22

)2(

)()(x P

qqpq

q

qPEq Errrch

Two-photon absorption and STED spectra

13

Page 14: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Bioimaging application of new fluorene derivative

Images of HCT 116 cells incubated with 1. (A) DIC; (B) One photon fluorescence image; (C) 3D reconstruction from overlaid two-photon fluorescence images (Ex: 940 nm; Power: 120 mW; Em. short-pass filter 800 nm).

14K.D. Belfield, et al., ChemPhysChem, 2011, 12, 2755. X. Wang, et al., Biomed. Opt. Express, 2010, 1, 453.

Images of Hela cells incubated with SNP-DBF-NHFA (20 μM, 2 h). (b) 3D reconstruction from overlaid two-photon fluorescence images (Ex: 740 nm; Power: 30 mW; Em. short-pass filter 690 nm) 10 μm grid, (c) 2P-FLIM image (Ex: 740 nm; Power: 30 mW).

Page 15: Іnstitute of Physics NASU The development of new organic probes for two-photon induced fluorescence microscopy application Mykhailo V. Bondar and Olga

Іnstitute of PhysicsNASU

Fluorescence quenching methodology is a promising

technique for STED investigations

Two-photon stimulated emission spectra were obtained in

a broad spectral range and high STED cross sections were

observed for fluorene molecule

New fluorene derivatives with large two-photon

absorption,

efficient STED and high photostability has a good

potential

for application in fluorescence bioimaging

Conclusions

15