nrri research bulletin no. 17 rice ‒ fish integrated...

40
AnniePoonam,SanjoySaha,P.K.Nayak,D.P.Sinhababu,P.K.Sahu, B.S.Satapathy,M.Shahid,G.A.K.Kumar,N.N.Jambhulkar,M.Nedunchezhiyan, S.C.Giri,SaurabhKumar,SangeetaKujur,A.K.NayakandH.Pathak Rice‒Fish IntegratedFarmingSystems forEasternIndia April,2019 ICAR-NationalRiceResearchInstitute IndianCouncilofAgriculturalResearch Cuttack,Odisha753006 NRRIResearchBulletinNo.17

Upload: others

Post on 30-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

Annie�Poonam,�Sanjoy�Saha,�P.K.�Nayak,��D.P.�Sinhababu,�P.K.�Sahu,�B.S.�Satapathy,�M.�Shahid,��G.A.K.�Kumar,�N.N.�Jambhulkar,�M.�Nedunchezhiyan,��

S.C.�Giri,�Saurabh�Kumar,�Sangeeta�Kujur,�A.K.�Nayak�and�H.�Pathak

Rice�‒�FishIntegrated�Farming�Systems

for�Eastern�India

April,�2019

ICAR-National�Rice�Research�InstituteIndian�Council�of�Agricultural�Research

Cuttack,�Odisha�753006

NRRI�Research�Bulletin�No.�17

Page 2: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

Annie�Poonam,�Sanjoy�Saha,�P.K.�Nayak,��D.P.�Sinhababu,�P.K.�Sahu,�B.S.�Satapathy,�M.�Shahid,��G.A.K.�Kumar,�N.N.�Jambhulkar,�M.�Nedunchezhiyan,��

S.C.�Giri,�Saurabh�Kumar,�Sangeeta�Kujur,�A.K.�Nayak�and�H.�Pathak

Rice�‒�FishIntegrated�Farming�Systems

for�Eastern�India

April,�2019

ICAR-National�Rice�Research�InstituteIndian�Council�of�Agricultural�Research

Cuttack,�Odisha�753006

NRRI�Research�Bulletin�No.�17

Page 3: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

Annie�Poonam,�Sanjoy�Saha,�P.K.�Nayak,��D.P.�Sinhababu,�P.K.�Sahu,�B.S.�Satapathy,�M.�Shahid,��G.A.K.�Kumar,�N.N.�Jambhulkar,�M.�Nedunchezhiyan,��

S.C.�Giri,�Saurabh�Kumar,�Sangeeta�Kujur,�A.K.�Nayak�and�H.�Pathak

Rice�‒�FishIntegrated�Farming�Systems

for�Eastern�India

April,�2019

ICAR-National�Rice�Research�InstituteIndian�Council�of�Agricultural�Research

Cuttack,�Odisha�753006

NRRI�Research�Bulletin�No.�17

Page 4: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

CO

NTE

NT

SCorrectCitation

Annie Poonam, Saha S, Nayak PK, Sinhababu DP, Sahu PK,Satapathy BS, Shahid M, Kumar GAK, Jambhulkar NN,Nedunchezhiyan M, Giri S, Saurabh Kumar, Sangeeta K,NayakAKandPathakH(2019).Rice–FishIntegratedFarmingSystems for Eastern India. NRRI Research Bulletin No. 17,ICAR-National Rice Research Institute, Cuttack 753006,Odisha,India.pp33+iii.

Publishedby

Director

ICAR-NationalRiceResearchInstitute

Cuttack753006,Odisha,India

April2019

Disclaimer:ICAR-NationalRiceResearchInstituteisnotliablefor any loss arising due to improper interpretation of thescientificinformationprovidedinthebook.

LasertypesetattheFingerprint,Bhubaneswar,Odisha,Indiaand printed in India by the Print-Tech Offset Pvt. Ltd.,Bhubaneswar751024,Odisha,PublishedbytheDirectorforICAR-National Rice Research Institute, Cuttack 753006,Odisha.

Foreword 02

ExecutiveSummary 03

1. Introduction 05

2. ImportanceofIFSinIndianagriculture 06

3. ModelsofIFSdevelopedatNRRI 07

4. Onstationresearch

i)Riceandfishgrowth 15

ii)Rice–fishenvironment 17

iii)Bio-controlofricepests 19

iv)Lowlandweedsandtheirbio-control 20

v)VarietiesforRice-FishSystem 21

vi)Importantcropsinmainfieldafterrice 23

vii)Rainwaterbudgetingandproductivity 24

viii) Rice-ornamentalfishculture 24

5. Adoptionofrice–fishfarmingsystemineasternIndia 25

6. Constraints 29

7. Challengesandissues 29

8. Futureperspective 30

9. Conclusion 30

10. References 31

Page 5: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

CO

NTE

NT

SCorrectCitation

Annie Poonam, Saha S, Nayak PK, Sinhababu DP, Sahu PK,Satapathy BS, Shahid M, Kumar GAK, Jambhulkar NN,Nedunchezhiyan M, Giri S, Saurabh Kumar, Sangeeta K,NayakAKandPathakH(2019).Rice–FishIntegratedFarmingSystems for Eastern India. NRRI Research Bulletin No. 17,ICAR-National Rice Research Institute, Cuttack 753006,Odisha,India.pp33+iii.

Publishedby

Director

ICAR-NationalRiceResearchInstitute

Cuttack753006,Odisha,India

April2019

Disclaimer:ICAR-NationalRiceResearchInstituteisnotliablefor any loss arising due to improper interpretation of thescientificinformationprovidedinthebook.

LasertypesetattheFingerprint,Bhubaneswar,Odisha,Indiaand printed in India by the Print-Tech Offset Pvt. Ltd.,Bhubaneswar751024,Odisha,PublishedbytheDirectorforICAR-National Rice Research Institute, Cuttack 753006,Odisha.

Foreword 02

ExecutiveSummary 03

1. Introduction 05

2. ImportanceofIFSinIndianagriculture 06

3. ModelsofIFSdevelopedatNRRI 07

4. Onstationresearch

i)Riceandfishgrowth 15

ii)Rice–fishenvironment 17

iii)Bio-controlofricepests 19

iv)Lowlandweedsandtheirbio-control 20

v)VarietiesforRice-FishSystem 21

vi)Importantcropsinmainfieldafterrice 23

vii)Rainwaterbudgetingandproductivity 24

viii) Rice-ornamentalfishculture 24

5. Adoptionofrice–fishfarmingsystemineasternIndia 25

6. Constraints 29

7. Challengesandissues 29

8. Futureperspective 30

9. Conclusion 30

10. References 31

Page 6: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17 April, 2019 03

RainfedlowlandsineasternIndiaarehighlydiverse,complexandfragilein

naturewithabundanceofnaturalresources.Theregionexperiencesseveral

abiotic stresses suchasdrought, submergence,waterlogging, flash floods,

cyclonicdisturbances and salinity affecting cropproductivity, incomeand

livelihoodoffarmers.Ricegrowingfarmersinthisregionmostlyhassmall-

holdingsandgrowricewithlowinputs.Thelowlandandwater-loggedareas

dryupaftertherainyseasonresultinginnon-availabilityofwaterforgrowing

rabiseasoncrop.

Integrated farming system (IFS) provides an opportunity to increase the

economicyieldperunitareaperunitoftimebyvirtueofintensificationand

integrationofcropandalliedenterprises.Thoughtraditionally,farmershave

beenpracticingIFSintheirhomesteadlandbutisnotfoolproofincombating

climaticvagariesand ismostlynon-interactive.Theavailableresources in

these areas are not utilized efficiently to reduce the risk related to land

sustainabilityvis-a–visemploymentproblem.Mainreasonforunderutilization

of resources is lack of proper understanding of interaction and linkages

betweenthecomponentswhichhelpinreducinginputcost, increasetotal

productivity,reduceenvironmentalriskandgenerateemployment.Effortsto

diversifythericecroptoothercompatiblealliedenterprisesaccompaniedby

improvedmanagementwouldenhancelandproductivityandincome;ensure

additionalemploymentaswellasresourcecyclingwithreducedinputs.

ICAR- National Rice Research Institute, Cuttack has developed three

adoptable models: 1) Rice-fish diversified farming system for semi-deep

areas(upto50cmwaterdepth),2)Multi-tierrice-fishhorticulturecropbased

farmingsystemfordeepwater(upto1mormorewaterdepth)and3)Rice-

based integrated farming system for irrigated lowlands. These rice-based

farmingsystemsmodelshavebeenvalidatedandupscaledinfarmersfields

throughfarmersparticipatorymode(FPM).Thesesystemswithhigherland

andwaterproductivityensurefood,nutritionandlivelihoodsecurityforthe

farmingcommunities,particularlyforthesmallandmarginalfarmersalong

withemploymentgenerationthroughengagementoffamilymembersinthe

farming.

Interactions among the rice and non-rice enterprises for increased

productivity,bioresourceflow,resourcerecyclingandenvironmentalimpact

Executive Summary

02

Page 7: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17 April, 2019 03

RainfedlowlandsineasternIndiaarehighlydiverse,complexandfragilein

naturewithabundanceofnaturalresources.Theregionexperiencesseveral

abiotic stresses suchasdrought, submergence,waterlogging, flash floods,

cyclonicdisturbances and salinity affecting cropproductivity, incomeand

livelihoodoffarmers.Ricegrowingfarmersinthisregionmostlyhassmall-

holdingsandgrowricewithlowinputs.Thelowlandandwater-loggedareas

dryupaftertherainyseasonresultinginnon-availabilityofwaterforgrowing

rabiseasoncrop.

Integrated farming system (IFS) provides an opportunity to increase the

economicyieldperunitareaperunitoftimebyvirtueofintensificationand

integrationofcropandalliedenterprises.Thoughtraditionally,farmershave

beenpracticingIFSintheirhomesteadlandbutisnotfoolproofincombating

climaticvagariesand ismostlynon-interactive.Theavailableresources in

these areas are not utilized efficiently to reduce the risk related to land

sustainabilityvis-a–visemploymentproblem.Mainreasonforunderutilization

of resources is lack of proper understanding of interaction and linkages

betweenthecomponentswhichhelpinreducinginputcost, increasetotal

productivity,reduceenvironmentalriskandgenerateemployment.Effortsto

diversifythericecroptoothercompatiblealliedenterprisesaccompaniedby

improvedmanagementwouldenhancelandproductivityandincome;ensure

additionalemploymentaswellasresourcecyclingwithreducedinputs.

ICAR- National Rice Research Institute, Cuttack has developed three

adoptable models: 1) Rice-fish diversified farming system for semi-deep

areas(upto50cmwaterdepth),2)Multi-tierrice-fishhorticulturecropbased

farmingsystemfordeepwater(upto1mormorewaterdepth)and3)Rice-

based integrated farming system for irrigated lowlands. These rice-based

farmingsystemsmodelshavebeenvalidatedandupscaledinfarmersfields

throughfarmersparticipatorymode(FPM).Thesesystemswithhigherland

andwaterproductivityensurefood,nutritionandlivelihoodsecurityforthe

farmingcommunities,particularlyforthesmallandmarginalfarmersalong

withemploymentgenerationthroughengagementoffamilymembersinthe

farming.

Interactions among the rice and non-rice enterprises for increased

productivity,bioresourceflow,resourcerecyclingandenvironmentalimpact

Executive Summary

02

Page 8: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

April, 2019NRRI Research Bulletin No. 17

Rice, the leadingcereal crop, isgrown in114countriesacross theworldon160million

hectares(Mha),constitutingnearly11%oftheworld'scultivatedland(Pathaketal.,2018).

Indiaisthelargestriceproducingcountryintheworldandthecropcontributesover40%to

the annual food grain production of the country and is grown in varied ecologies from

irrigatedtoupland,rainfedlowland,deepwaterandtidalwetlandecologiescoveringmore

than 43.0Mha fromKashmir inNorth to Kanyakumari in South and Gujarat inWest to

Arunachal Pradesh in East. The cultivation of almost 90% of the world's rice crops in

irrigated, rainfedanddeep-water systemsequivalent to about134Mhaoffersa suitable

environmentforfishandotheraquaticorganisms.Theintegrationsofriceandfishfarming–

eitheronthesameplot,oradjacentplotswhereby-productsofonesystemareusedasinputs

fortheother,orconsecutively–areallvariationsofproductionsystemsthataimtoincrease

theproductivityofwater,landandassociatedresourceswhilecontributingtoincreasedfish

production.

Asiaaccountedforabout90%of672milliontons(Mt)ofriceproducedintheworld(FAO,

2012b).RicefarminginAsiausedtobecharacterizedbysmallscale,labour-intensiveness

andon-siterecyclingofgreenandanimalmanures.Althoughrice farming isstill labour-

intensiveinremoteareasofAsiandevelopingcountries,ithasrapidlybeenmechanizedand

agrochemicals-intensive.Inresponsetocommercializationofagriculture,itisimportantto

shiftfromroutinefoodgrainproductionsystemtonewercrops;cropping/farmingsystems

tomeettheincreasingdemandofpulses,oilseeds,fodder,vegetablesandothercommercial

cropsalongwithlivestockandfishesdependingupontheclimaticconditionsaswellasagro-

ecosystemsandmakeagricultureanattractive,profitableandsustainablebusiness.

Furuno(2001)formulatedtheideaofsystematicallyintegratingricewithducks,basedonthe

notionthattwoproductshighlycomplementarytoeachothercanbejointlyproduced.Inthe

integratedrice–duckfarming(IRDF)system,ricepaddiesprovidefood(weedsandpests)for

ducks,andducksplayaroleinfertilizingriceplants.Integratedfarmingsystems(IFS)have

traditionally been undertaken by farmers in countries like Indonesia, China, Malaysia,

Vietnam,RwandaandThailand.However,inmanycountriesthesetraditionalsystemshave

beenreplacedbytheestablishmentofcommercialcashandstaplecropproductionsystems

thathavebeenpromotedbyGovernments(RuaysoongnernandSuphanchaimart,2001).The

systemsare important in these countriesbecause theyprovidehousehold food security,

reduce the impact of agriculture on the environment, and may be less affected than

conventional systems by climate change. Integrated rice-fish production can optimize

resourceutilizationthroughthecomplementaryuseof landandwater.Thispracticealso

improvesdiversification,intensification,productivity,profitability,andsustainabilityofthe

riceagro-ecosystem.

Introduction

hasbeenassessed.Fishproductivitywasmorewhen integratedwith rice

ratherthansolefishinthetank.Itwasfurtherincreasedwithwiderspacingof

rice over closed spacing or random planting. Continuous addition of fish

excretainthericefishsystemincreasedtheorganiccarboncontentofsoil.

Emissionofmethane(CH )increasedwithfishinricefieldbutnitrousoxide4

(N O)emissionwasrelativelylowduringtheentirecroppingperiodexcept2

towardsmaturitywhenthewaterrecedesleavingthefielddry.Fishactsas

effectivebio-controlagentformajorricepestslikehoppers,caseworm,stem

borer, gall midge, leaf folder and snails. Insecticides (phosphamidon,

monocrotophos,quinalphos,ethofenprox,carbofuran)thoughdidnotkillthe

reared fishes (common carp, catla, mrigal) instantly, but showed varying

degreeofdeleteriouseffectsongrowth,survivalandyield.Efficientspeciesof

fish are Ctenopharyngodon idella, Puntius gonionotus, Oreochromis

mossambicus, Trichogaster pectorals and Cyprinus carpio for controlling

weeds directly by feeding or indirectly increasingwater turbidity and/or

causingmechanicalinjuryunderconstantflooding.

Sunflower is one of themost promising crops after ricewith 2-3 limited

irrigations utilizing the water stored in pond. Watermelon was another

promisingcropinthissystemwhensownduringmidJanuaryinpitswithspot

irrigation.EasternIndiaishavingpotentialtoharvestrainwaterduringpeak

monsoonperiod(July-September)thatstoredinthepondrefugecanhelpto

growseveralwintervegetableslikepumpkin,bittergourd,lady'sfingerand

chillieitheronbundsorinmainricefield.Othercropsviz.,pulseslikeblack

gramandgreengramoroilseedsviz.,sunflower,groundnutandsesamumcan

begrownduringthedryseason(January–earlyApril)withlimitedirrigation

bystoredwater.

Rice-basedIFShasimmensepotentialityineasternIndiatoemergeoutasan

effectivetoolforimprovementofruraleconomyduetolowinvestmentand

highprofitability.However,thereisastrongneedtomonitortheentirerice-

basedproductionsystem in termsof suitabilityof cropvarieties,nutrient

dynamics,watertableandqualityofirrigationwater,insect,diseaseandweed

problems,aswellaseconomicfeasibilityandenvironmentalsustainabilityto

evolve site-specific IFS model. Large scale adoption of IFS model by the

farming community depends mostly on socio-economic factors such as

labour availability, credit requirement, cost of inputs, processing,

marketabilityandpriceofproduce,riskinvolvedandsocialacceptabilityof

thenewsystem.Thuswhiledesigningafarmingsystemmodel,thetechnical,

environmental and economic feasibilities should be considered for its

successfulimplementation.

0504

Page 9: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

April, 2019NRRI Research Bulletin No. 17

Rice, the leadingcereal crop, isgrown in114countriesacross theworldon160million

hectares(Mha),constitutingnearly11%oftheworld'scultivatedland(Pathaketal.,2018).

Indiaisthelargestriceproducingcountryintheworldandthecropcontributesover40%to

the annual food grain production of the country and is grown in varied ecologies from

irrigatedtoupland,rainfedlowland,deepwaterandtidalwetlandecologiescoveringmore

than 43.0Mha fromKashmir inNorth to Kanyakumari in South and Gujarat inWest to

Arunachal Pradesh in East. The cultivation of almost 90% of the world's rice crops in

irrigated, rainfedanddeep-water systemsequivalent to about134Mhaoffersa suitable

environmentforfishandotheraquaticorganisms.Theintegrationsofriceandfishfarming–

eitheronthesameplot,oradjacentplotswhereby-productsofonesystemareusedasinputs

fortheother,orconsecutively–areallvariationsofproductionsystemsthataimtoincrease

theproductivityofwater,landandassociatedresourceswhilecontributingtoincreasedfish

production.

Asiaaccountedforabout90%of672milliontons(Mt)ofriceproducedintheworld(FAO,

2012b).RicefarminginAsiausedtobecharacterizedbysmallscale,labour-intensiveness

andon-siterecyclingofgreenandanimalmanures.Althoughrice farming isstill labour-

intensiveinremoteareasofAsiandevelopingcountries,ithasrapidlybeenmechanizedand

agrochemicals-intensive.Inresponsetocommercializationofagriculture,itisimportantto

shiftfromroutinefoodgrainproductionsystemtonewercrops;cropping/farmingsystems

tomeettheincreasingdemandofpulses,oilseeds,fodder,vegetablesandothercommercial

cropsalongwithlivestockandfishesdependingupontheclimaticconditionsaswellasagro-

ecosystemsandmakeagricultureanattractive,profitableandsustainablebusiness.

Furuno(2001)formulatedtheideaofsystematicallyintegratingricewithducks,basedonthe

notionthattwoproductshighlycomplementarytoeachothercanbejointlyproduced.Inthe

integratedrice–duckfarming(IRDF)system,ricepaddiesprovidefood(weedsandpests)for

ducks,andducksplayaroleinfertilizingriceplants.Integratedfarmingsystems(IFS)have

traditionally been undertaken by farmers in countries like Indonesia, China, Malaysia,

Vietnam,RwandaandThailand.However,inmanycountriesthesetraditionalsystemshave

beenreplacedbytheestablishmentofcommercialcashandstaplecropproductionsystems

thathavebeenpromotedbyGovernments(RuaysoongnernandSuphanchaimart,2001).The

systemsare important in these countriesbecause theyprovidehousehold food security,

reduce the impact of agriculture on the environment, and may be less affected than

conventional systems by climate change. Integrated rice-fish production can optimize

resourceutilizationthroughthecomplementaryuseof landandwater.Thispracticealso

improvesdiversification,intensification,productivity,profitability,andsustainabilityofthe

riceagro-ecosystem.

Introduction

hasbeenassessed.Fishproductivitywasmorewhen integratedwith rice

ratherthansolefishinthetank.Itwasfurtherincreasedwithwiderspacingof

rice over closed spacing or random planting. Continuous addition of fish

excretainthericefishsystemincreasedtheorganiccarboncontentofsoil.

Emissionofmethane(CH )increasedwithfishinricefieldbutnitrousoxide4

(N O)emissionwasrelativelylowduringtheentirecroppingperiodexcept2

towardsmaturitywhenthewaterrecedesleavingthefielddry.Fishactsas

effectivebio-controlagentformajorricepestslikehoppers,caseworm,stem

borer, gall midge, leaf folder and snails. Insecticides (phosphamidon,

monocrotophos,quinalphos,ethofenprox,carbofuran)thoughdidnotkillthe

reared fishes (common carp, catla, mrigal) instantly, but showed varying

degreeofdeleteriouseffectsongrowth,survivalandyield.Efficientspeciesof

fish are Ctenopharyngodon idella, Puntius gonionotus, Oreochromis

mossambicus, Trichogaster pectorals and Cyprinus carpio for controlling

weeds directly by feeding or indirectly increasingwater turbidity and/or

causingmechanicalinjuryunderconstantflooding.

Sunflower is one of themost promising crops after ricewith 2-3 limited

irrigations utilizing the water stored in pond. Watermelon was another

promisingcropinthissystemwhensownduringmidJanuaryinpitswithspot

irrigation.EasternIndiaishavingpotentialtoharvestrainwaterduringpeak

monsoonperiod(July-September)thatstoredinthepondrefugecanhelpto

growseveralwintervegetableslikepumpkin,bittergourd,lady'sfingerand

chillieitheronbundsorinmainricefield.Othercropsviz.,pulseslikeblack

gramandgreengramoroilseedsviz.,sunflower,groundnutandsesamumcan

begrownduringthedryseason(January–earlyApril)withlimitedirrigation

bystoredwater.

Rice-basedIFShasimmensepotentialityineasternIndiatoemergeoutasan

effectivetoolforimprovementofruraleconomyduetolowinvestmentand

highprofitability.However,thereisastrongneedtomonitortheentirerice-

basedproductionsystem in termsof suitabilityof cropvarieties,nutrient

dynamics,watertableandqualityofirrigationwater,insect,diseaseandweed

problems,aswellaseconomicfeasibilityandenvironmentalsustainabilityto

evolve site-specific IFS model. Large scale adoption of IFS model by the

farming community depends mostly on socio-economic factors such as

labour availability, credit requirement, cost of inputs, processing,

marketabilityandpriceofproduce,riskinvolvedandsocialacceptabilityof

thenewsystem.Thuswhiledesigningafarmingsystemmodel,thetechnical,

environmental and economic feasibilities should be considered for its

successfulimplementation.

0504

Page 10: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

SincemajorityoffarmersineasternIndiaareresourcepoorandhavemarginalandsmall

economicholdings,itisverydifficulttoenhancethefarmfamilyincomeunlesscropbased

agricultureissupplementedbysomeotherfarmenterpriseslikelivestockproduction,bee

keeping, poultry, fisheries, horticulture, etc. Being inter andmultidisciplinary approach,

farmingsystemwouldbehighlyeffectiveinprovidingbalancedfood,regularemployment,

sustainingsoilhealth,mitigatingaberrantweathersituation,increasedthefarmproductivity

andfarmfamilyincome,whichultimatelyincreasedthepurchasingpowerofthefarmer.In

thisbulletin,importantenterprisesunderintegratedfarmingsystemandtheirmanagement

underdifferentriceenvironmentshavebeendiscussedbasedontheresearchworkscarried

outatNRRIsourceaswellason-farmtrialsineasternIndia.

Importance of IFS in Indian AgricultureTheIFSisareliablewayofobtaininghighproductivitywithsubstantialnutrienteconomyin

combinationwithmaximumcompatibilityandreplenishmentoforganicmatterbywayof

effectiverecyclingoforganicresidues/wastesetc.obtainedthroughintegrationofvarious

landbasedenterprises(Gilletal.,2010,Sanjeevetal.,2011)Anexperimentonpaddycum

fishculturewasstartedinWestBengalin1945inanareaof280hectaresadjoiningthepaddy

fieldsand itwasremarkablynotedthat thegrowthof tank fisheswasslowerthanthose

liberatedinthepaddyfields.ThethenricecommitteeofFAOin1948stronglyadvocatedthe

practiceoffishcultureinthericefieldforincreasedproductionofrice.Thefarmersofthe

NortheasternpartofIndiasevenstatesviz.Assam,ArunachalPradesh,Nagaland,Meghalaya,

Mizoram, Manipur and Tripura cultivate rice as their staple food and a fish crop is

traditionallyraisedonlyfromthepaddiesofrainfedlowlands(bothshallowanddeepwater).

Traditionalrice-fishproductionsystemshaveanimportantsocio-economicpartinthelifeof

the farmers and fishers in the region. Shamim Al Mamun et al. (2011) reported that

integrationoffishwiththelivestockandcrophashelpedtoimprovethefertilizerandfeed

supplies, plus the highmarket value of fish as feed and/or food increasing the incomes

substantially. Integration of various agricultural enterprises viz., cropping, animal

husbandry,fishery,forestryetc.notonlysupplementtheincomeofthefarmersbutalsohelp

inincreasingthefamilylaboremploymentthroughouttheyear(Jayanthi,2002).

Incomefromrainfedricecropandotherseasonalfieldcropsonsmallandmarginalfarmsis

hardlysufficienttosustaintheirfamily.Integratedfarmingsystem(IFS)hasbeenadvocated

asoneofthetoolforharmonioususeofinputsandtheircompoundedresponsetomakethe

agriculture in the region profitable and sustainable. The IFS aims at an appropriate

combinationoffarmenterpriseslikefieldcrops,diary,piggery,poultry,apiculture,goatery,

mushroom cultivation etc. for a productive, profitable and sustainable agriculture.

IFS interact appropriately with the environment without dislocating the ecological and

socio-economicbalanceononehandandattempttomeetthefarmersneedontheother.

Rice-fishdiversified farmingsystemdevelopedby ICAR-NationalRiceResearch Institute,

Cuttackcanbeadoptedbothinrainfedwaterlogged,deepwaterandirrigatedconditionsfor

06 April, 2019

increasingfarmproductivity,income,employment,sustainabilityandhouseholdfoodand

nutritionalsecurity.Thissystemintegratescomponentssuchasimprovedricevarieties,fish,

prawn,azolla,poultry,goateryanddifferentcropsafterriceinthefieldandvegetables,fruit

crops,agro-forestryandothercomponentsonbunds.

Models of IFS developed at NRRIEasternIndia,inparticularwithabout5.6Mhairrigatedareaand14.0Mharainfedlowlands

ofthetotal26.58Mharicearea,offershighpotentialforrice-baseddiversifiedintegrated

farmingsystem,especiallyinviewoftheresources,foodhabitsandsocio-economicneedsof

the people. These systems with higher water and land productivity and employment

opportunities can ensure food, nutrition and livelihood security for the farming

communities,particularlyforthelargestgroupsofsmallandmarginalfarmersalongwith

employment generation through engagement of family members in the farming. These

systemscanbemixedorconcurrent,sequentialorrotational.However,thetechniquesdiffer

basedonthephysical,biologicalandsocio-economicprofilesofthetargetagro-ecosystem.

Model I : Rice–fish–livestock-horticulture-based farming system for rainfed

lowlandareas

Inordertoimproveandstabilizefarmproductivityandincomefromrainfedwaterlogged

lowlandareas,theInstitutehasdevelopedanadoptabletechnologyof'Rice-fishdiversified

farmingsystem'.Farmsizemayvaryfromminimumofaboutoneacretoonehectareormore.

Fielddesignincludeswidebunds(dykes)allaround,apondrefugeconnectedwithtrenches

on two sides (water harvesting come fish refuge system) and guarded outlet. The

approximateareaallotmentswillbe,20%forbunds,13%forpondrefugeandtrenchesand

rest67%formainfield.Thepondrefugemeasures10mwideand1.75mdeepconstructedin

thelowerendofthefield.Thetwosidetrenchesof3mwidthandaverage1mdepthhave

gentle(0.5%) bed slope towards the towards the pond refuge. Small low cost

(Thatched/asbestostop)duckhouseandpoultryunitareconstructedonbundswithafloor

spaceofabout1.5sq.ft.foreach

duck and 1 sq.ft . for each

poultrybird.Poultryunitmaybe

projected upto 50% over the

water in the pond refuge to

utilizethedroppingasfishfood

and manure in the system. In

suchcasebirdscanbehousedin

cageofmadeofwirenet.Asmall

goathouseismadeonthebund

withfloorspaceofabout2sq.ft

foreachanimal.

07

Rice–Fish–Livestock-Horticulturebasedfarmingsystemforrainfedlowlandareas

Page 11: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

SincemajorityoffarmersineasternIndiaareresourcepoorandhavemarginalandsmall

economicholdings,itisverydifficulttoenhancethefarmfamilyincomeunlesscropbased

agricultureissupplementedbysomeotherfarmenterpriseslikelivestockproduction,bee

keeping, poultry, fisheries, horticulture, etc. Being inter andmultidisciplinary approach,

farmingsystemwouldbehighlyeffectiveinprovidingbalancedfood,regularemployment,

sustainingsoilhealth,mitigatingaberrantweathersituation,increasedthefarmproductivity

andfarmfamilyincome,whichultimatelyincreasedthepurchasingpowerofthefarmer.In

thisbulletin,importantenterprisesunderintegratedfarmingsystemandtheirmanagement

underdifferentriceenvironmentshavebeendiscussedbasedontheresearchworkscarried

outatNRRIsourceaswellason-farmtrialsineasternIndia.

Importance of IFS in Indian AgricultureTheIFSisareliablewayofobtaininghighproductivitywithsubstantialnutrienteconomyin

combinationwithmaximumcompatibilityandreplenishmentoforganicmatterbywayof

effectiverecyclingoforganicresidues/wastesetc.obtainedthroughintegrationofvarious

landbasedenterprises(Gilletal.,2010,Sanjeevetal.,2011)Anexperimentonpaddycum

fishculturewasstartedinWestBengalin1945inanareaof280hectaresadjoiningthepaddy

fieldsand itwasremarkablynotedthat thegrowthof tank fisheswasslowerthanthose

liberatedinthepaddyfields.ThethenricecommitteeofFAOin1948stronglyadvocatedthe

practiceoffishcultureinthericefieldforincreasedproductionofrice.Thefarmersofthe

NortheasternpartofIndiasevenstatesviz.Assam,ArunachalPradesh,Nagaland,Meghalaya,

Mizoram, Manipur and Tripura cultivate rice as their staple food and a fish crop is

traditionallyraisedonlyfromthepaddiesofrainfedlowlands(bothshallowanddeepwater).

Traditionalrice-fishproductionsystemshaveanimportantsocio-economicpartinthelifeof

the farmers and fishers in the region. Shamim Al Mamun et al. (2011) reported that

integrationoffishwiththelivestockandcrophashelpedtoimprovethefertilizerandfeed

supplies, plus the highmarket value of fish as feed and/or food increasing the incomes

substantially. Integration of various agricultural enterprises viz., cropping, animal

husbandry,fishery,forestryetc.notonlysupplementtheincomeofthefarmersbutalsohelp

inincreasingthefamilylaboremploymentthroughouttheyear(Jayanthi,2002).

Incomefromrainfedricecropandotherseasonalfieldcropsonsmallandmarginalfarmsis

hardlysufficienttosustaintheirfamily.Integratedfarmingsystem(IFS)hasbeenadvocated

asoneofthetoolforharmonioususeofinputsandtheircompoundedresponsetomakethe

agriculture in the region profitable and sustainable. The IFS aims at an appropriate

combinationoffarmenterpriseslikefieldcrops,diary,piggery,poultry,apiculture,goatery,

mushroom cultivation etc. for a productive, profitable and sustainable agriculture.

IFS interact appropriately with the environment without dislocating the ecological and

socio-economicbalanceononehandandattempttomeetthefarmersneedontheother.

Rice-fishdiversified farmingsystemdevelopedby ICAR-NationalRiceResearch Institute,

Cuttackcanbeadoptedbothinrainfedwaterlogged,deepwaterandirrigatedconditionsfor

06 April, 2019

increasingfarmproductivity,income,employment,sustainabilityandhouseholdfoodand

nutritionalsecurity.Thissystemintegratescomponentssuchasimprovedricevarieties,fish,

prawn,azolla,poultry,goateryanddifferentcropsafterriceinthefieldandvegetables,fruit

crops,agro-forestryandothercomponentsonbunds.

Models of IFS developed at NRRIEasternIndia,inparticularwithabout5.6Mhairrigatedareaand14.0Mharainfedlowlands

ofthetotal26.58Mharicearea,offershighpotentialforrice-baseddiversifiedintegrated

farmingsystem,especiallyinviewoftheresources,foodhabitsandsocio-economicneedsof

the people. These systems with higher water and land productivity and employment

opportunities can ensure food, nutrition and livelihood security for the farming

communities,particularlyforthelargestgroupsofsmallandmarginalfarmersalongwith

employment generation through engagement of family members in the farming. These

systemscanbemixedorconcurrent,sequentialorrotational.However,thetechniquesdiffer

basedonthephysical,biologicalandsocio-economicprofilesofthetargetagro-ecosystem.

Model I : Rice–fish–livestock-horticulture-based farming system for rainfed

lowlandareas

Inordertoimproveandstabilizefarmproductivityandincomefromrainfedwaterlogged

lowlandareas,theInstitutehasdevelopedanadoptabletechnologyof'Rice-fishdiversified

farmingsystem'.Farmsizemayvaryfromminimumofaboutoneacretoonehectareormore.

Fielddesignincludeswidebunds(dykes)allaround,apondrefugeconnectedwithtrenches

on two sides (water harvesting come fish refuge system) and guarded outlet. The

approximateareaallotmentswillbe,20%forbunds,13%forpondrefugeandtrenchesand

rest67%formainfield.Thepondrefugemeasures10mwideand1.75mdeepconstructedin

thelowerendofthefield.Thetwosidetrenchesof3mwidthandaverage1mdepthhave

gentle(0.5%) bed slope towards the towards the pond refuge. Small low cost

(Thatched/asbestostop)duckhouseandpoultryunitareconstructedonbundswithafloor

spaceofabout1.5sq.ft.foreach

duck and 1 sq.ft . for each

poultrybird.Poultryunitmaybe

projected upto 50% over the

water in the pond refuge to

utilizethedroppingasfishfood

and manure in the system. In

suchcasebirdscanbehousedin

cageofmadeofwirenet.Asmall

goathouseismadeonthebund

withfloorspaceofabout2sq.ft

foreachanimal.

07

Rice–Fish–Livestock-Horticulturebasedfarmingsystemforrainfedlowlandareas

Page 12: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1708 April, 2019 09

DesignandLayout

Fig1.LayoutofRice–fish–Livestock-Horticulturebasedfarmingsystem

forrainfedlowlandareas

fedat2%oftotalbiomasswithmixturecontaining95%ofoilcake+ricebran(1:1)and5%of

fish meal. After rice, various crops like watermelon, green gram, sunflower, groundnut,

sesameandvegetablesaregrowninthefieldwithlimitedirrigationsfromtheharvested

rainwater.Onbundsdifferentseasonalvegetablesarecultivatedroundtheyearincluding

creepersontheraisedplatform,spicesandpineapplesaregrowninshades.Thefruitcrops

onbundsincludevarietiesofdwarfpapaya,bananaTxDcoconutandarecanut.Flowerslike

tuberose,marigold,etc.arealsocultivatedonthebunds.Bothstrawandoystermushroom

cultivationaredoneinthethatchedorpolytheneenclose.Beerearingispracticein2-3bee

boxes on bunds. Agro-forestry component on the bund include short termplantation of

mainlyAccaciaspp.(A.mangium,A.auriculiformes).Animalcomponentconstitutesimproved

breedsofduck,poultrybirdsandgoats.Ducksareallowedinthericefielduptothebeginning

offloweringstageandlaterinanenclosureinpondrefugetilltheharvestofricecrop.Live-1Azollaisreleasedat0.5-1.0tha andismaintainedtosupplementduckfeedandalsotosome

extentfishfeed,besidesnutritiontothericecrop.Freshwaterpearlcultureisintegratedin

thesystemusingthehostmussel(Lamellidensmarginalis),whichisnormallyavailableinthe

lowlandriceecology.Componentscanhowever,beincludedinthesystembasedonlocation

–specificrequirements.

Productivityandeconomics:Thericefishfarmingsystemcanannuallyproducearound16

to18toffoodcrops,0.6toffishandprawn,0.55tofmeat,8000-12,000eggsbesidesflowers,

fuelwoodandanimalfeedasricestrawandothercropresiduesfromonehectareoffarm.The

netincomeinthesystemisaboutRs.76,000inthefirstyear.Subsequently,thisincreasesto

around1,30,000inthesixthyear.Thissystemthusincreasesfarmproductivitybyabout

fifteentimesandnetincomeby20foldsoverthetraditionalricefarminginrainfedlowlands

(Table 1). It also generates additional farm employment of around 250 – 300 man-

days/hectare/year.

Table1.Costofraisingrice-fish-horticulturalmodelin1haareaatNRRI

Sl.No Particular Amount(Rs.)

13Constructionofpondrefugeandtrenchesanddykes(2000m x35) 70,000

2 Constrictionofplatforms16No.@200/- 3200

3 Pitdigging,plantingoffruitandsilviculturalplants(125-130No.) 4000

4 Costofseeds/seedlings/saplings 8,000

5 CostofFYM/vermi-compost 5000

6 Costoffingerlings 8000

7 Costoffishfeed 5000

8 Smallfarmimplements/equipments 5000

9 [email protected] 60,000

Total 1,68,200

ProductionTechnology:ProductionTechnologybroadly involvesgrowingof improved

photo-periodsensitivesemitallandtallwetseasonricevarietiestoleranttomajorinsect-

pestsanddiseases.ThesuitablericevarietiesareGayatri,Sarala,CRDhan500,CRDhan505,

Jalmani, Varshadhan, etc. forOdisha; Sabita, Jogen,Hanseswari, Varshadhanetc. forWest

Bengal;SudhaforBihar;MadhukarandJalpriyaforeasternUttarPradeshandRanjit,Mashuri

andSabitaforAssam.Managementofinsect-pestsinricecropisdonewiththeuseofsex

pheromentraps,lighttrapsandbotanicals(Netherin/Nimbicidinsprayat1%).

Indian major carps i.e., Catla [Catla catla(Ham.)]; Rohu [Labeo rohita(Ham.)]; Mrigal

[Cirrhinus mrigala(Ham.)]; exotic carps, common carp [Cyprinus carpio(L.)];silver carp

[Ctenopharyngodonidella(Val.)];silverbarb[Puntiusgonionotus(Bleeker)]andfreshwater

giantprawn[Macrobrachiumrosenbergii]fingerlingsof3-4”sizeandprawnjuvenilesof2-3”

sizearereleasedinaratioof75%and25%,respectivelyat10,000perhectareofwaterarea

aftersufficientwateraccumulationintherefugeandinthefield.Fishandprawnareregularly

Page 13: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1708 April, 2019 09

DesignandLayout

Fig1.LayoutofRice–fish–Livestock-Horticulturebasedfarmingsystem

forrainfedlowlandareas

fedat2%oftotalbiomasswithmixturecontaining95%ofoilcake+ricebran(1:1)and5%of

fish meal. After rice, various crops like watermelon, green gram, sunflower, groundnut,

sesameandvegetablesaregrowninthefieldwithlimitedirrigationsfromtheharvested

rainwater.Onbundsdifferentseasonalvegetablesarecultivatedroundtheyearincluding

creepersontheraisedplatform,spicesandpineapplesaregrowninshades.Thefruitcrops

onbundsincludevarietiesofdwarfpapaya,bananaTxDcoconutandarecanut.Flowerslike

tuberose,marigold,etc.arealsocultivatedonthebunds.Bothstrawandoystermushroom

cultivationaredoneinthethatchedorpolytheneenclose.Beerearingispracticein2-3bee

boxes on bunds. Agro-forestry component on the bund include short termplantation of

mainlyAccaciaspp.(A.mangium,A.auriculiformes).Animalcomponentconstitutesimproved

breedsofduck,poultrybirdsandgoats.Ducksareallowedinthericefielduptothebeginning

offloweringstageandlaterinanenclosureinpondrefugetilltheharvestofricecrop.Live-1Azollaisreleasedat0.5-1.0tha andismaintainedtosupplementduckfeedandalsotosome

extentfishfeed,besidesnutritiontothericecrop.Freshwaterpearlcultureisintegratedin

thesystemusingthehostmussel(Lamellidensmarginalis),whichisnormallyavailableinthe

lowlandriceecology.Componentscanhowever,beincludedinthesystembasedonlocation

–specificrequirements.

Productivityandeconomics:Thericefishfarmingsystemcanannuallyproducearound16

to18toffoodcrops,0.6toffishandprawn,0.55tofmeat,8000-12,000eggsbesidesflowers,

fuelwoodandanimalfeedasricestrawandothercropresiduesfromonehectareoffarm.The

netincomeinthesystemisaboutRs.76,000inthefirstyear.Subsequently,thisincreasesto

around1,30,000inthesixthyear.Thissystemthusincreasesfarmproductivitybyabout

fifteentimesandnetincomeby20foldsoverthetraditionalricefarminginrainfedlowlands

(Table 1). It also generates additional farm employment of around 250 – 300 man-

days/hectare/year.

Table1.Costofraisingrice-fish-horticulturalmodelin1haareaatNRRI

Sl.No Particular Amount(Rs.)

13Constructionofpondrefugeandtrenchesanddykes(2000m x35) 70,000

2 Constrictionofplatforms16No.@200/- 3200

3 Pitdigging,plantingoffruitandsilviculturalplants(125-130No.) 4000

4 Costofseeds/seedlings/saplings 8,000

5 CostofFYM/vermi-compost 5000

6 Costoffingerlings 8000

7 Costoffishfeed 5000

8 Smallfarmimplements/equipments 5000

9 [email protected] 60,000

Total 1,68,200

ProductionTechnology:ProductionTechnologybroadly involvesgrowingof improved

photo-periodsensitivesemitallandtallwetseasonricevarietiestoleranttomajorinsect-

pestsanddiseases.ThesuitablericevarietiesareGayatri,Sarala,CRDhan500,CRDhan505,

Jalmani, Varshadhan, etc. forOdisha; Sabita, Jogen,Hanseswari, Varshadhanetc. forWest

Bengal;SudhaforBihar;MadhukarandJalpriyaforeasternUttarPradeshandRanjit,Mashuri

andSabitaforAssam.Managementofinsect-pestsinricecropisdonewiththeuseofsex

pheromentraps,lighttrapsandbotanicals(Netherin/Nimbicidinsprayat1%).

Indian major carps i.e., Catla [Catla catla(Ham.)]; Rohu [Labeo rohita(Ham.)]; Mrigal

[Cirrhinus mrigala(Ham.)]; exotic carps, common carp [Cyprinus carpio(L.)];silver carp

[Ctenopharyngodonidella(Val.)];silverbarb[Puntiusgonionotus(Bleeker)]andfreshwater

giantprawn[Macrobrachiumrosenbergii]fingerlingsof3-4”sizeandprawnjuvenilesof2-3”

sizearereleasedinaratioof75%and25%,respectivelyat10,000perhectareofwaterarea

aftersufficientwateraccumulationintherefugeandinthefield.Fishandprawnareregularly

Page 14: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

Multi-tierrice-fish-prawn-horticulture-agro-forestrybasedfarmingsystemfordeepwater

10

ModelII:Multi-tierrice-fish-horticulture-agro-forestry-basedfarmingsystem

fordeepwater

Withtheaimofenhancingfarmproductivityindeepwaterareas(50-100cmwaterdepth),a

multi-tierrice-fish–prawnhorticulturecrops-agro-forestry-basedfarmingsystemmodelhas

alsobeendevelopedin0.06hectaresareaatInstituteFarm.

Fig2.Rice-Fish–Horticulture-basedfarmingsystemmodelindeepwater(1haarea)

April, 2019 11

ProductionMethodology:Thedesignofthesystemincludeslandshapingintheformof

uplands(tierIandtierII)coveringabout15%offieldareafollowedbyricefieldareaof40%

asrainfedlowland(tierIII)anddeepwater(tierIV).Thisricefieldisconnectedtoamicro

watershed-cumfishrefuge(pond)of20%areaforgrowingfishes(catla,rohu,mrigal,silver

carp,silverbarb) andfreshwatergiantprawnalongwiththericecrop.Raisedandwide

bundsaremadeallaroundusing25%ofthefarmarea.Theproductiontechnologyincludes

growingofhighyieldingvarietiesofrainfedlowlandrice(Gayatri,Sarala,Pooja)intierIIIand

deepwaterrice(JayantiDhan,CRDhan500,CRDhan505CRDhan508,PradhanDhanand

Varshadhan)intierIValongwiththefishandprawnduringwetseason.Dryseasoncropslike

sweetpotato,mung,sunflower,groundnut,vegetablesaregrownafterlowlandriceintierIII.

DryseasonriceiscultivatedafterthedeepwaterriceisharvestedintheirIV.Harvestedrain

waterinthepondrefugeisusedforirrigationofthedryseasoncrops.Improvedvarietiesof

perennial(mango,guava,sapota)andseasonalfruitcrops(papaya,banana,pineapple,etc.)

aregrowninTierI.Roundtheyeardifferentseasonalvegetablesandtubercropsviz.,sweet

potato,elephantfootyam,yambean,colocasiaandgreateryamarecultivatedinTierII.Agro-

forestry(Acaciamangium)andplantationcrops(Coconutandarecanut)areplantedonthe

northernsideofthebunds.Greateryamisgrownwiththesupportoftrunkofagroforestry

tree.Poultryandduckerycomponentsareintegratedonbundsofthepondrefuge.

Productivityandeconomics :Multi-tier rice-fish-horticulture-based farmingsystemcan

annuallyproduceabout14-15toffoodcrops,1toffishandprawn,0.5-0.8tofmeat,10000-

12000eggsinadditiontoflowersand3-5tofanimalfeedfrom1hectarefarmarea.The

productivityoffoodcropsfurtherincreasesto16-17tbesides,10-12toffiber/fuelwood

fromeightyearonwardsduetoadditionofproducefromperennialfruitcropsandagro-

forestrycomponents.ThenetincomeinthissystemisaroundRs.100000/hainthefirstyear.

ThiswillincreasetoRs1,50,000ormorefromtheeightyearonwards.

Fig3.TransverseSectionthroughlengthofaDeepwaterRice-fishFarm(1haarea)

Page 15: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

Multi-tierrice-fish-prawn-horticulture-agro-forestrybasedfarmingsystemfordeepwater

10

ModelII:Multi-tierrice-fish-horticulture-agro-forestry-basedfarmingsystem

fordeepwater

Withtheaimofenhancingfarmproductivityindeepwaterareas(50-100cmwaterdepth),a

multi-tierrice-fish–prawnhorticulturecrops-agro-forestry-basedfarmingsystemmodelhas

alsobeendevelopedin0.06hectaresareaatInstituteFarm.

Fig2.Rice-Fish–Horticulture-basedfarmingsystemmodelindeepwater(1haarea)

April, 2019 11

ProductionMethodology:Thedesignofthesystemincludeslandshapingintheformof

uplands(tierIandtierII)coveringabout15%offieldareafollowedbyricefieldareaof40%

asrainfedlowland(tierIII)anddeepwater(tierIV).Thisricefieldisconnectedtoamicro

watershed-cumfishrefuge(pond)of20%areaforgrowingfishes(catla,rohu,mrigal,silver

carp,silverbarb) andfreshwatergiantprawnalongwiththericecrop.Raisedandwide

bundsaremadeallaroundusing25%ofthefarmarea.Theproductiontechnologyincludes

growingofhighyieldingvarietiesofrainfedlowlandrice(Gayatri,Sarala,Pooja)intierIIIand

deepwaterrice(JayantiDhan,CRDhan500,CRDhan505CRDhan508,PradhanDhanand

Varshadhan)intierIValongwiththefishandprawnduringwetseason.Dryseasoncropslike

sweetpotato,mung,sunflower,groundnut,vegetablesaregrownafterlowlandriceintierIII.

DryseasonriceiscultivatedafterthedeepwaterriceisharvestedintheirIV.Harvestedrain

waterinthepondrefugeisusedforirrigationofthedryseasoncrops.Improvedvarietiesof

perennial(mango,guava,sapota)andseasonalfruitcrops(papaya,banana,pineapple,etc.)

aregrowninTierI.Roundtheyeardifferentseasonalvegetablesandtubercropsviz.,sweet

potato,elephantfootyam,yambean,colocasiaandgreateryamarecultivatedinTierII.Agro-

forestry(Acaciamangium)andplantationcrops(Coconutandarecanut)areplantedonthe

northernsideofthebunds.Greateryamisgrownwiththesupportoftrunkofagroforestry

tree.Poultryandduckerycomponentsareintegratedonbundsofthepondrefuge.

Productivityandeconomics :Multi-tier rice-fish-horticulture-based farmingsystemcan

annuallyproduceabout14-15toffoodcrops,1toffishandprawn,0.5-0.8tofmeat,10000-

12000eggsinadditiontoflowersand3-5tofanimalfeedfrom1hectarefarmarea.The

productivityoffoodcropsfurtherincreasesto16-17tbesides,10-12toffiber/fuelwood

fromeightyearonwardsduetoadditionofproducefromperennialfruitcropsandagro-

forestrycomponents.ThenetincomeinthissystemisaroundRs.100000/hainthefirstyear.

ThiswillincreasetoRs1,50,000ormorefromtheeightyearonwards.

Fig3.TransverseSectionthroughlengthofaDeepwaterRice-fishFarm(1haarea)

Page 16: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

ModelIII:Rice-basedfarmingsystemunderirrigatedlowlands

Withtheobjectiveofimprovementoflivelihoodofsmallandmarginalfarmers,rice-based

integratedfarmingsystemmodelforirrigatedareashasbeendevelopedatNRRI,Cuttack.

Fig4.Transversesectionofthericebasedintegratedfarmingsystemforirrigatedarea

Ricebasedintegratedfarmingsystemmodelforsmallandmarginalfarmers

12 April, 2019 13

ProductionMethodology:Aboutanacreofintegratedfarmareahasbeenreorientedforthe

farmingsystemofwhich30%oftheareaisconvertedtotworice-fishfieldsof600sq.marea

eachwitharefugeof15%areaandanother30%areaisdevelopedintotwonurseryfish2

pondsofequalsize for fingerlingsrearing(Fig.4).Theremaining40%(1500m )area is

utilizedasbundsforgrowingvegetables,horticulturalcropsandagro-forestry.Threerice

cropsaregrowninsequenceofkharifrice(var.CRDhan505/Varshadhan)followedbyrabi

rice(Naveen/Highproteinrice)andthensummerrice(Vandana/Sidhant).Yellowstemborer

iscontrolledbyusingpheromonetrapsorbyapplying1%Nethrin/Nimbecidine.Fishculture

istakenupwithcatla,rohuandmrigalspecies.Thefishfingerlingsarerearedinthetwo

nurserypondsandareusedforculturewithricecropinthesystem.Theexcessfingerlingsare

soldout.Onthebundsagro-forestryplantsliketeak,Accacia,Sisoo,Neem,Aonlaandbamboo

areplantedonthenorthernandsouthernbunds.

Horticulturalcropssuchasbanana,papayaandarecanutaregrownonthebunds.Pineapple

andspicesarecultivatedintheshade.FlowerslikeMarigold,HibiscusandJasminearealso2cultivatedinthewesternbundin50m area.Twoplantsoflemonandeachofguava,jackfruit,

mangoandlitchiarealsoplantedonthesouthernbundnearthefarmhousetomeetthe

householdrequirement.Onepoultryandoneduckeryunitareintegratedinthesystemin

which40poultrybirdsareraisedduringthedryseasons(OctobertoApril)and20ducksare

rearedduringthewetseason(JulytoDecember).

Productivityandeconomics:Threecropofriceyields800to1000kgofgrainperyear.Entire

produceissufficienttocatertheneedofthesmallfarmfamily.Thestrawisusedforthecattle

feed,mushroombaseandroofofthefarmhouse.RestofthestrawissoldtoearnRs.500-1000

peryear.Aftertwotothreemonthsofrearing,fishfryworthofRs.4000-5000issoldtoother

farmers.Fishareharvestedaccordingtotheneedafterthesizebecomes250-300gafter6

monthsor0.5-1.0kgafterayear.TheincomefromfishrearinginthesystemisRs.20,000.

Pulses(greengram,blackgramandpigeonpea)takenontheslopeandbundsarejustenough

tomeettheproteinrequirementofthefarmfamily.

Model IV : Rice-fish-horticulture farming system for rainfed lowland rice

ecologyatRRLRRS,Gerua,Assam

Thoughtraditionallyrice-fishfarmingisacommonpracticeinAssambuttheproductivityof

theexisting local systems is lowdue to lackofproper scientific interventions.Rice-fish-

horticulturemodelforrainfedlowlandriceecologydevelopedatNRRI,Cuttackhasbeen

modifiedandvalidatedinthefarmofRegionalRainfedLowlandRiceResearchStation(NRRI-

RRLRRS),Gerua,Assam.

Rice-fish-horticulturefarmingsystemforrainfedlowlandriceecologyatGerua,Assam

Page 17: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

ModelIII:Rice-basedfarmingsystemunderirrigatedlowlands

Withtheobjectiveofimprovementoflivelihoodofsmallandmarginalfarmers,rice-based

integratedfarmingsystemmodelforirrigatedareashasbeendevelopedatNRRI,Cuttack.

Fig4.Transversesectionofthericebasedintegratedfarmingsystemforirrigatedarea

Ricebasedintegratedfarmingsystemmodelforsmallandmarginalfarmers

12 April, 2019 13

ProductionMethodology:Aboutanacreofintegratedfarmareahasbeenreorientedforthe

farmingsystemofwhich30%oftheareaisconvertedtotworice-fishfieldsof600sq.marea

eachwitharefugeof15%areaandanother30%areaisdevelopedintotwonurseryfish2

pondsofequalsize for fingerlingsrearing(Fig.4).Theremaining40%(1500m )area is

utilizedasbundsforgrowingvegetables,horticulturalcropsandagro-forestry.Threerice

cropsaregrowninsequenceofkharifrice(var.CRDhan505/Varshadhan)followedbyrabi

rice(Naveen/Highproteinrice)andthensummerrice(Vandana/Sidhant).Yellowstemborer

iscontrolledbyusingpheromonetrapsorbyapplying1%Nethrin/Nimbecidine.Fishculture

istakenupwithcatla,rohuandmrigalspecies.Thefishfingerlingsarerearedinthetwo

nurserypondsandareusedforculturewithricecropinthesystem.Theexcessfingerlingsare

soldout.Onthebundsagro-forestryplantsliketeak,Accacia,Sisoo,Neem,Aonlaandbamboo

areplantedonthenorthernandsouthernbunds.

Horticulturalcropssuchasbanana,papayaandarecanutaregrownonthebunds.Pineapple

andspicesarecultivatedintheshade.FlowerslikeMarigold,HibiscusandJasminearealso2cultivatedinthewesternbundin50m area.Twoplantsoflemonandeachofguava,jackfruit,

mangoandlitchiarealsoplantedonthesouthernbundnearthefarmhousetomeetthe

householdrequirement.Onepoultryandoneduckeryunitareintegratedinthesystemin

which40poultrybirdsareraisedduringthedryseasons(OctobertoApril)and20ducksare

rearedduringthewetseason(JulytoDecember).

Productivityandeconomics:Threecropofriceyields800to1000kgofgrainperyear.Entire

produceissufficienttocatertheneedofthesmallfarmfamily.Thestrawisusedforthecattle

feed,mushroombaseandroofofthefarmhouse.RestofthestrawissoldtoearnRs.500-1000

peryear.Aftertwotothreemonthsofrearing,fishfryworthofRs.4000-5000issoldtoother

farmers.Fishareharvestedaccordingtotheneedafterthesizebecomes250-300gafter6

monthsor0.5-1.0kgafterayear.TheincomefromfishrearinginthesystemisRs.20,000.

Pulses(greengram,blackgramandpigeonpea)takenontheslopeandbundsarejustenough

tomeettheproteinrequirementofthefarmfamily.

Model IV : Rice-fish-horticulture farming system for rainfed lowland rice

ecologyatRRLRRS,Gerua,Assam

Thoughtraditionallyrice-fishfarmingisacommonpracticeinAssambuttheproductivityof

theexisting local systems is lowdue to lackofproper scientific interventions.Rice-fish-

horticulturemodelforrainfedlowlandriceecologydevelopedatNRRI,Cuttackhasbeen

modifiedandvalidatedinthefarmofRegionalRainfedLowlandRiceResearchStation(NRRI-

RRLRRS),Gerua,Assam.

Rice-fish-horticulturefarmingsystemforrainfedlowlandriceecologyatGerua,Assam

Page 18: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

ProductionMethodology:Thefielddesignandcomponentsofrice-fish-horticulturemodel

covering0.5haareaconsistsofriceasthemajorcomponentoccupying60%ofthetotalarea

followedbyhorticultureandagro-forestry(23%).Thepondrefuge(30mx12mx2m)was

constructedatthelowerend(downslope)ofthefieldoccupying7.2%area.Thetwotrenches

of2.5mwidthoccupying10%ofthetotalareawereconstructedadjacenttothedykesalong

thelongitudinalsideofthefieldandthoseconnectedtothepondrefugeatoneend.The

trenchbottomhadagentleslopeof0.75%towardsthepondrefuge.Thedug-outsoilfromthe

pond refuge and side trencheswasused for constructionofwidedykes all aroundwith

bottomandtopwidthof4mand2m,respectively.Theaverageheightofthedykeswas1m,

whichwas 0.4m higher than the usualmaximumwater level in the field (Fig 5). Eight

platformsof4mx3.5msizewereconstructedfromtheinnersideofthedykehangingoverthe

14 April, 2019

Table2.Economicsofrice-fish-horticulturefarmingsystemcovering0.5haarea

(pooleddataof5years)

Component GR(Rs.)COC(Rs.)

NR(Rs.)

B:CratioREY-I(t/ha)

MDYs

Riceandotherfieldcrops 37190 21820 15370 1.70 - -

Fish 30180 16220 13960 1.86

Vegetables 23180 10190 12990 2.27

Fruits 10700 4120 6580 2.59

Floriculture 3290 1620 1670 2.03

Duckery 16700 13890 2810 1.20

Total 121240 67860 53380 1.79 9.05 206

15

Fig5.LayoutofRice–Fish–Livestock–Horticulturebased

farmingsystemforlowlandareasatGerua,Assam

trenchesforplantingthecreepervegetablesattheinnersideofthedykeandallowingthe

plantstocreepoverit.

Thecroppingsystemsrecommendedforricemainfieldarerice-rice-rice,rice-pulses-rice

and rice-vegetables. Several high yielding varietieswere tested and found thatRanjeet,

Bahadur,Swarnasub-1,CR-Dhan505forsaliandAnjaliandVandanainahuaresuitablefor

growinginrice-fishsystem.CompositefishcultureslikeRohu,Mrigal,Catla,Silvercarpand

Commoncarpwerefoundsuitableforrice-fishfarming.Assamlemon,Coconut,Arecanut,

Banana,Papaya,guavawereestablishedinponddykeandvegetablesweregrownthroughout

theyearinponddykewithacroppingintensityof 300ormorebyusingtheharvestedrain

water.TwentyfiveducklingsofbreedChara-chameliwereintroducedintothesystemfor

betterrecyclingofthebyproducts.

Productivityandeconomics:Therice-fish-horticulturesystemonandaverageproduces5to-1

5.5and3.5to4tha ofriceinsaliandahuseasonrespectively.Thesystem produce5-6

quintalsoffish,25-30quintalsofvegetablesandbesidestheseitalsoyieldedfruits,flowers,

fuelwood,fodder,eggsandmeat.AfterestablishmentyearsthesystemproducesREYof9.05

t/haandgeneratesaveragenetincomeofRs.52380perannumfrom0.5haarea.Besidesthat

italsogeneratesemploymentof206man-days/ha/year(Table2).

On Station Researchi. Riceandfishgrowth

Rice-fish interactions in integrated farming creates an environment of mutualism and

synergismwherebothriceandfishbenefitfromeachotherandultimatelyrendertherice

fieldecosystemmoreproductive,profitableaswellasenvironmentallysustainable.Rice-fish

farminginrainfedlowlandincreaseseffectivetillersby9-14%andpanicleweightby5-17%

Page 19: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

ProductionMethodology:Thefielddesignandcomponentsofrice-fish-horticulturemodel

covering0.5haareaconsistsofriceasthemajorcomponentoccupying60%ofthetotalarea

followedbyhorticultureandagro-forestry(23%).Thepondrefuge(30mx12mx2m)was

constructedatthelowerend(downslope)ofthefieldoccupying7.2%area.Thetwotrenches

of2.5mwidthoccupying10%ofthetotalareawereconstructedadjacenttothedykesalong

thelongitudinalsideofthefieldandthoseconnectedtothepondrefugeatoneend.The

trenchbottomhadagentleslopeof0.75%towardsthepondrefuge.Thedug-outsoilfromthe

pond refuge and side trencheswasused for constructionofwidedykes all aroundwith

bottomandtopwidthof4mand2m,respectively.Theaverageheightofthedykeswas1m,

whichwas 0.4m higher than the usualmaximumwater level in the field (Fig 5). Eight

platformsof4mx3.5msizewereconstructedfromtheinnersideofthedykehangingoverthe

14 April, 2019

Table2.Economicsofrice-fish-horticulturefarmingsystemcovering0.5haarea

(pooleddataof5years)

Component GR(Rs.)COC(Rs.)

NR(Rs.)

B:CratioREY-I(t/ha)

MDYs

Riceandotherfieldcrops 37190 21820 15370 1.70 - -

Fish 30180 16220 13960 1.86

Vegetables 23180 10190 12990 2.27

Fruits 10700 4120 6580 2.59

Floriculture 3290 1620 1670 2.03

Duckery 16700 13890 2810 1.20

Total 121240 67860 53380 1.79 9.05 206

15

Fig5.LayoutofRice–Fish–Livestock–Horticulturebased

farmingsystemforlowlandareasatGerua,Assam

trenchesforplantingthecreepervegetablesattheinnersideofthedykeandallowingthe

plantstocreepoverit.

Thecroppingsystemsrecommendedforricemainfieldarerice-rice-rice,rice-pulses-rice

and rice-vegetables. Several high yielding varietieswere tested and found thatRanjeet,

Bahadur,Swarnasub-1,CR-Dhan505forsaliandAnjaliandVandanainahuaresuitablefor

growinginrice-fishsystem.CompositefishcultureslikeRohu,Mrigal,Catla,Silvercarpand

Commoncarpwerefoundsuitableforrice-fishfarming.Assamlemon,Coconut,Arecanut,

Banana,Papaya,guavawereestablishedinponddykeandvegetablesweregrownthroughout

theyearinponddykewithacroppingintensityof 300ormorebyusingtheharvestedrain

water.TwentyfiveducklingsofbreedChara-chameliwereintroducedintothesystemfor

betterrecyclingofthebyproducts.

Productivityandeconomics:Therice-fish-horticulturesystemonandaverageproduces5to-1

5.5and3.5to4tha ofriceinsaliandahuseasonrespectively.Thesystem produce5-6

quintalsoffish,25-30quintalsofvegetablesandbesidestheseitalsoyieldedfruits,flowers,

fuelwood,fodder,eggsandmeat.AfterestablishmentyearsthesystemproducesREYof9.05

t/haandgeneratesaveragenetincomeofRs.52380perannumfrom0.5haarea.Besidesthat

italsogeneratesemploymentof206man-days/ha/year(Table2).

On Station Researchi. Riceandfishgrowth

Rice-fish interactions in integrated farming creates an environment of mutualism and

synergismwherebothriceandfishbenefitfromeachotherandultimatelyrendertherice

fieldecosystemmoreproductive,profitableaswellasenvironmentallysustainable.Rice-fish

farminginrainfedlowlandincreaseseffectivetillersby9-14%andpanicleweightby5-17%

Page 20: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1716 March, 2019 17

inrice.ThissystemalsoenhancesNitrogen(N)

uptake by 10-11.8% and Iron (Fe) uptake in

straw by two folds over rice alone. Higher

concentrationanduptakeofPhosphorus(P)in

ricestrawwasalsoobservedinthissystem,but

notinthecaseofothernutrientslikeK,Ca,Mg

andMn.Increasednitrogenuptakeisconsistent

withhighergrainyieldofriceinthepresenceof

fish.(Sinhababuetal,1983,1992;Pandaetal

1987).Riceinthisfarmingsystem,benefitsin

termsofincreaseingrainyieldofaround5to

15%andstrawyieldof5to9%underrainfed

lowlandecologies(Sinhababu,etal,1998).

Fishgrowthinrainfedlowlandsystem(ModelI)rangesfrom300-500gforcatla,150-450g

for rohu, 125-300g formrigal, 350-600g for common carp, and250-450 for silver barb.

Freshwatergiantprawngrowswithin30-70g.Sinhababu(1996)reportedagrowthrateof

150-400gforfishand50-70gforprawninthissystem,andamongfishes,commoncarp

attainedmaximumgrowthfollowedbycatla.Thisgrowthrateisattainedwithinaseasonof

5-7monthsunderastockingdensityof10,000fingerlings/haofwaterarea.Inthemultitier

modelindeepwater(ModelII),fishandprawnregisterabettergrowthrateof,500-800gin

catla,350-500ginrohu,200-400ginmrigal,and40-75ginprawnwithinaseason(7-9

months)underastockingdensityof7,000/ha(7fish:3prawn).

Theproteincontent(dryweightbasis)inthemuscletissueoffishrearedinricefieldwas

74.6%incatla,69.7%inmrigaland69.3%inrohuspecies,respectively(Unpublisheddata).

UseoforganicslikeFYMandfishfeedproduceshigherharvestfishseedandprotein(71.57

and72.50%)infishfleshunderrice-fishseedfarminginrainfedlowland(Sinhababuand

Sarkar,1998).

Experimentconductedduringwetseason2014withrice+fishandricealoneinthemainplot

anddifferentspacinginthesubplotsrevealedthatgrainyieldandfishgrowthwasmaximum

withwiderspacedcrop.Moreover,grainyieldwassignificantlyhigher(4.92t/ha)withthe

presenceoffish(Poonametal.2016).

Table3.Fishgrowthinfluencedbyplantgeometryunderricefishsystem

Treatment Survival(%)Specificgrowthrate(%Bodyweight/day)

FishYield-1(kgha )

S -RandomPlanting1

d44.1c1.51 b202.76

rdS -SkiponeRowafterevery3 rowwith2

15cmx15cma65.8 a1.99 a288.07

S -15cmx15cm3

c50.8 c1.60 b209.47

S -20cmx15cm4

b59.2 b1.79 b227.13

S -25cmx15cm5

ab65.0 a1.91 a280.96

60

65

70

75

80

Catla Rohu Mrigal

Pond Rice-fish

Fig6.Proteincontent(%,drywt.basis)inmuscletissueoffishunderrice-fishfarming

Main Plot Treatments: M Rice Fish, M – Rice-Mono Sub Plot Treatments: S - Random Planting, 1 – 2 1

rdS - Skip one Row after every 3 row with 15 cm x 15 cm, S - 15 cm x 15 cm,S - 20 cm x 15 cm, 2 3 4

S - 25cm x 15 cm.5

Fig7.Grainyield(t/ha-¹)asinfluencedbyplantgeometryunderrice-fishsystem

ii. Rice–fishenvironment

Rice-fish interactions in integrated farming creates an environment of mutualism and

synergismwherebothriceandfishbenefitfromeachotherandultimatelyrendertherice

fieldecosystemmoreproductive,profitableaswellasenvironmentallysustainable.

Nutrientchangeinsoilunderricefishsystem

Rice-fishfarminginrainfedlowland increasesorganiccarboncontentofsoil by7%and

exchangeableammoniumby25%,besides6%increaseintheavailableP O (Sinhababuetal.2 5

1998).Continuousadditionoffishexcretainthissystemmayhavesomeroleinenrichingthe

soilnutrients.

Physio-chemicalparametersunderricefishsystem

Available information on soil-water environment of rainfed low land rice-fish farming

indicates compatibility of this system. In shallow and intermediate deepwater rice-fish

ecologies, the pH, temperature and dissolved oxygen (DO) content in water remain

favourable.ThepHofsoilisnearneutral(6.5-7.1)comparingwellwiththemostproductive

pondsoil.DOcontentinwaterintherangeof3.5-5.3ppmunderrice–fishculturecompared

to3.6-6.7ppminricealoneduringtheperiodofAugusttoNovemberinrainfedlowland.DO

contentinwaterincreasesintheafternoon,andiscomparativelyhigherinricefieldwithout0

fish.Thewatertemperatureduringthesameperiod,rangedinbetween25.8–35 Cinrice0

–fishfieldcomparedto26.2-34.5 Cinricealone(Sinhababuetal.1983).However,thenatural

fish food organisms (plankton) status (72 to 282 unit/littre) is low in shallow lowland

ecology, requiring enrichment through manuring and supplemental feeding to the fish

Page 21: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1716 March, 2019 17

inrice.ThissystemalsoenhancesNitrogen(N)

uptake by 10-11.8% and Iron (Fe) uptake in

straw by two folds over rice alone. Higher

concentrationanduptakeofPhosphorus(P)in

ricestrawwasalsoobservedinthissystem,but

notinthecaseofothernutrientslikeK,Ca,Mg

andMn.Increasednitrogenuptakeisconsistent

withhighergrainyieldofriceinthepresenceof

fish.(Sinhababuetal,1983,1992;Pandaetal

1987).Riceinthisfarmingsystem,benefitsin

termsofincreaseingrainyieldofaround5to

15%andstrawyieldof5to9%underrainfed

lowlandecologies(Sinhababu,etal,1998).

Fishgrowthinrainfedlowlandsystem(ModelI)rangesfrom300-500gforcatla,150-450g

for rohu, 125-300g formrigal, 350-600g for common carp, and250-450 for silver barb.

Freshwatergiantprawngrowswithin30-70g.Sinhababu(1996)reportedagrowthrateof

150-400gforfishand50-70gforprawninthissystem,andamongfishes,commoncarp

attainedmaximumgrowthfollowedbycatla.Thisgrowthrateisattainedwithinaseasonof

5-7monthsunderastockingdensityof10,000fingerlings/haofwaterarea.Inthemultitier

modelindeepwater(ModelII),fishandprawnregisterabettergrowthrateof,500-800gin

catla,350-500ginrohu,200-400ginmrigal,and40-75ginprawnwithinaseason(7-9

months)underastockingdensityof7,000/ha(7fish:3prawn).

Theproteincontent(dryweightbasis)inthemuscletissueoffishrearedinricefieldwas

74.6%incatla,69.7%inmrigaland69.3%inrohuspecies,respectively(Unpublisheddata).

UseoforganicslikeFYMandfishfeedproduceshigherharvestfishseedandprotein(71.57

and72.50%)infishfleshunderrice-fishseedfarminginrainfedlowland(Sinhababuand

Sarkar,1998).

Experimentconductedduringwetseason2014withrice+fishandricealoneinthemainplot

anddifferentspacinginthesubplotsrevealedthatgrainyieldandfishgrowthwasmaximum

withwiderspacedcrop.Moreover,grainyieldwassignificantlyhigher(4.92t/ha)withthe

presenceoffish(Poonametal.2016).

Table3.Fishgrowthinfluencedbyplantgeometryunderricefishsystem

Treatment Survival(%)Specificgrowthrate(%Bodyweight/day)

FishYield-1(kgha )

S -RandomPlanting1

d44.1c1.51 b202.76

rdS -SkiponeRowafterevery3 rowwith2

15cmx15cma65.8 a1.99 a288.07

S -15cmx15cm3

c50.8 c1.60 b209.47

S -20cmx15cm4

b59.2 b1.79 b227.13

S -25cmx15cm5

ab65.0 a1.91 a280.96

60

65

70

75

80

Catla Rohu Mrigal

Pond Rice-fish

Fig6.Proteincontent(%,drywt.basis)inmuscletissueoffishunderrice-fishfarming

Main Plot Treatments: M Rice Fish, M – Rice-Mono Sub Plot Treatments: S - Random Planting, 1 – 2 1

rdS - Skip one Row after every 3 row with 15 cm x 15 cm, S - 15 cm x 15 cm,S - 20 cm x 15 cm, 2 3 4

S - 25cm x 15 cm.5

Fig7.Grainyield(t/ha-¹)asinfluencedbyplantgeometryunderrice-fishsystem

ii. Rice–fishenvironment

Rice-fish interactions in integrated farming creates an environment of mutualism and

synergismwherebothriceandfishbenefitfromeachotherandultimatelyrendertherice

fieldecosystemmoreproductive,profitableaswellasenvironmentallysustainable.

Nutrientchangeinsoilunderricefishsystem

Rice-fishfarminginrainfedlowland increasesorganiccarboncontentofsoil by7%and

exchangeableammoniumby25%,besides6%increaseintheavailableP O (Sinhababuetal.2 5

1998).Continuousadditionoffishexcretainthissystemmayhavesomeroleinenrichingthe

soilnutrients.

Physio-chemicalparametersunderricefishsystem

Available information on soil-water environment of rainfed low land rice-fish farming

indicates compatibility of this system. In shallow and intermediate deepwater rice-fish

ecologies, the pH, temperature and dissolved oxygen (DO) content in water remain

favourable.ThepHofsoilisnearneutral(6.5-7.1)comparingwellwiththemostproductive

pondsoil.DOcontentinwaterintherangeof3.5-5.3ppmunderrice–fishculturecompared

to3.6-6.7ppminricealoneduringtheperiodofAugusttoNovemberinrainfedlowland.DO

contentinwaterincreasesintheafternoon,andiscomparativelyhigherinricefieldwithout0

fish.Thewatertemperatureduringthesameperiod,rangedinbetween25.8–35 Cinrice0

–fishfieldcomparedto26.2-34.5 Cinricealone(Sinhababuetal.1983).However,thenatural

fish food organisms (plankton) status (72 to 282 unit/littre) is low in shallow lowland

ecology, requiring enrichment through manuring and supplemental feeding to the fish

Page 22: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1718 April, 2019

Table 4. Cumulative CH , N O and yield in rainfed shallow rice-fish farming system4 2

(2011wetseason).

19

(Sinhababuetal,1992). Inmediumdeepandsemi-deepwater(upto70cmwaterdepth)

condition,thezooplanktonpopulationaverages689units/litre.Amongthezooplankters,

copepodsaredominant(65%),followedbycladocera(28%)androtifers(6%).Diaptomus,

amongcopepods,MoinaandDaphniaamongcladocerans,andBrachionusamongrotifersare

dominantgenerainrice-fishsystem(DasandSinhababu1999).

Methaneandnitrousoxideemissions

Dattaetal.(2009)reportedthatmethane(CH )emissionfromfieldplotssownwithtworice4

cultivars,withorwithoutfish,variedconsiderably.TheCH emissionwaslowinalltheplots4

upto30daysaftersowing(DAS).PresenceoffishresultedinanincreaseinCH emissionfrom4

boththericecultivarswithtwosharppeaksrecordedatfloweringandmaturitystagesofthe2 _1

ricecrop.ThemeanCH emission(mgCH m- h )fromsowingtillharvestfollowedtheorder:4 4

Varshadhan+fish(2.52)>Durga+fish(2.48)>Durga(1.47)>Varshadhan(1.17).Cumulative-1CH emissionwashighestinthetreatmentVarshadhan+fish(96.33kgha )whilethelowest4

emissionwasrecordedinfieldplotsplantedtocv.Varshadhanwithoutfish(45.38kgha_1).

Thus,percentageincreaseinCH emissionasaresultoffishrearingwas112incaseofcv.4

Varshadhanand74incaseofcv.Durga.CH emissionfromtherefugepondfollowedasimilar4

patternasthatfromricefields.

Onthecontrary,unlikeCH ,nitrousoxide(N O)fluxfromricefieldsexhibitedapeakalmost4 2

immediately after germination and stand establishment, at 30–36 DAS and declined

thereafter. In general, N O fluxes were relatively low during the entire cropping period2

increasingonlytowardsmaturityofthericecropwhenthefloodwaterrecededandthefield

starteddrying.N OPercentagedecreaseinN Oemissionasaresultoffishrearingwas29in2 2

caseofVarshadhanand22inDurga.Amongthefourfishspecies(catla,rohu,mrigal,common

carp)grownalongwithrainfedlowlandrice(Varshadhan),themaximumemissionofCH4

(36%higher)wasfoundunderrice+commoncarp,followedbyrice+catla,rice+rohuand

rice+mrigalfarming.Oncontrary,theemissionofN Owassignificantlylowerby9%under2

rice-fishcomparedtoricealone(Table4).

TreatmentCH emission4

-1(kgha )N O-Nemission2

-1(kgha )Riceyield

-1(tha )Fishyield

-1(kgha )Ricestrawyield

-1(tha )

Ra109.3 c0.89 a4.1

a0.0 a7.7

RF-A b125.6 a0.78 ab4.6b195.1 b9.3

RF-B bc136.0 a0.79 a4.1bc207.3 b9.3

RF-Cd148.5 b0.82 b5.1

d238.4 a8.3

RF-D cd141.5 b0.81 a4.3cd226.3 a8.4

CD5% 10.9 0.01 0.62 29.6 0.77

R=Riceonly;RF-A=Rice+Fish(mrigal);RF-B=Rice+Fish(rohu);R-FC=Rice+Fish(commoncarp);RF-D=Rice+Fish(catla),Rice,Varshadhan(transplanted,NPK50:25:25)

Source:Bhattacharyyaetal.(2013)

iii. Bio-controlofricepests

Fishactsaseffectivebio-controlagentformajorricepestslikehoppers,caseworm,stem

borer,gallmidge,leaffolder,besidessnails.Laboratory,greenhouseandfieldstudiesindicate

commoncarpasaneffectivebio-controlagentforthemajorleaffeedinginsectslikeplant

hoppers (60% control), leaf folders (47% control) and case worm (50% control).

ConcentrationofproteolyticenzymeinthegutofBPHfedfishcorroboratesnaturalfeedingof

thepest(Table5).Thisfishisalsoeffectiveinreducingstemborerincidenceinthevegetative

stageandalsotosomeextentinheadingstage(SinhababuandMajumdar,1981;Xiao,1992).

Inastudyunderasimulatedrice–fishconditionatNRRIduring2007-2010,itwasfoundthat

among the fourpotential insectivorous fishspecies,magurshowedhighest bio-control

efficiency(32.5%reduction indeadhurts) foryellowstemborer(YSB) followedbykoi

(27.2%) commoncarp (22.3%) andColisa (13.7%).Magurwasalsohighlyeffective in

contro l (53 .3%) o f brown p lant hopper (BPH) pest o f r i ce , fo l lowed by

koi(41.2%),Colisa(29.8%)and common carp(25.1%).Koi showedmaximumbio-control

efficiency(60.2%)inthecaseofcasewormpestofrice,followedbymagur(21.9%)under

similarsituations.

Sinhababu and Rajamani (2000) studied the feasibility and efficacy of different

recommendedinsecticidesforuseinrainfedlowlandrice-fishseedsystem.Theinsecticides

(phosphamidon,monocrotophos,quinalphos,ethofenprox,carbofuran)thoughdidnotkill

the reared fishes(common carp, catla, mrigal), instantly, but showed varying degree of

deleteriouseffectsongrowth,survivalandyield.Amongtheinsecticides,carbofuranthough

wasfoundmosteffectiveagainstyellowstemborer,butwasmosttoxictofishes.Ethofenprox

(animprovedsyntheticpyrethroid)wasfoundcomparativelysaferforuseinrice–fishfield.

However, two botanicals namely neem (Azadirachta indica) oil and the leaf extract of

Polygonumhydropipercanbe usedattheirrecommended doselevels forcontrolof rice

insectpestsintherice-fisheco-systemavoidinganymortalityintheculturedfishspecies

(Dasetal,2005)

Table5.Feedingintensityandproteolyticactivityinthegutofcommoncarpfedonbrownplant

hopper(BPH).

RepsNoofBPHOffered

No.ofBPHConsumed

Proteolyticenzymeml/gofwettissue

Control Treated

1. 215 129 0.50 0.74

2. 252 145 0.52 0.75

3. 276 172 0.50 0.74

4. 204 120 0.51 0.75

5. 298 186 0.52 0.77

Mean 0.51 0.75

Source:SinhababuandMajumdar,1981

Page 23: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1718 April, 2019

Table 4. Cumulative CH , N O and yield in rainfed shallow rice-fish farming system4 2

(2011wetseason).

19

(Sinhababuetal,1992). Inmediumdeepandsemi-deepwater(upto70cmwaterdepth)

condition,thezooplanktonpopulationaverages689units/litre.Amongthezooplankters,

copepodsaredominant(65%),followedbycladocera(28%)androtifers(6%).Diaptomus,

amongcopepods,MoinaandDaphniaamongcladocerans,andBrachionusamongrotifersare

dominantgenerainrice-fishsystem(DasandSinhababu1999).

Methaneandnitrousoxideemissions

Dattaetal.(2009)reportedthatmethane(CH )emissionfromfieldplotssownwithtworice4

cultivars,withorwithoutfish,variedconsiderably.TheCH emissionwaslowinalltheplots4

upto30daysaftersowing(DAS).PresenceoffishresultedinanincreaseinCH emissionfrom4

boththericecultivarswithtwosharppeaksrecordedatfloweringandmaturitystagesofthe2 _1

ricecrop.ThemeanCH emission(mgCH m- h )fromsowingtillharvestfollowedtheorder:4 4

Varshadhan+fish(2.52)>Durga+fish(2.48)>Durga(1.47)>Varshadhan(1.17).Cumulative-1CH emissionwashighestinthetreatmentVarshadhan+fish(96.33kgha )whilethelowest4

emissionwasrecordedinfieldplotsplantedtocv.Varshadhanwithoutfish(45.38kgha_1).

Thus,percentageincreaseinCH emissionasaresultoffishrearingwas112incaseofcv.4

Varshadhanand74incaseofcv.Durga.CH emissionfromtherefugepondfollowedasimilar4

patternasthatfromricefields.

Onthecontrary,unlikeCH ,nitrousoxide(N O)fluxfromricefieldsexhibitedapeakalmost4 2

immediately after germination and stand establishment, at 30–36 DAS and declined

thereafter. In general, N O fluxes were relatively low during the entire cropping period2

increasingonlytowardsmaturityofthericecropwhenthefloodwaterrecededandthefield

starteddrying.N OPercentagedecreaseinN Oemissionasaresultoffishrearingwas29in2 2

caseofVarshadhanand22inDurga.Amongthefourfishspecies(catla,rohu,mrigal,common

carp)grownalongwithrainfedlowlandrice(Varshadhan),themaximumemissionofCH4

(36%higher)wasfoundunderrice+commoncarp,followedbyrice+catla,rice+rohuand

rice+mrigalfarming.Oncontrary,theemissionofN Owassignificantlylowerby9%under2

rice-fishcomparedtoricealone(Table4).

TreatmentCH emission4

-1(kgha )N O-Nemission2

-1(kgha )Riceyield

-1(tha )Fishyield

-1(kgha )Ricestrawyield

-1(tha )

Ra109.3 c0.89 a4.1

a0.0 a7.7

RF-A b125.6 a0.78 ab4.6b195.1 b9.3

RF-B bc136.0 a0.79 a4.1bc207.3 b9.3

RF-Cd148.5 b0.82 b5.1

d238.4 a8.3

RF-D cd141.5 b0.81 a4.3cd226.3 a8.4

CD5% 10.9 0.01 0.62 29.6 0.77

R=Riceonly;RF-A=Rice+Fish(mrigal);RF-B=Rice+Fish(rohu);R-FC=Rice+Fish(commoncarp);RF-D=Rice+Fish(catla),Rice,Varshadhan(transplanted,NPK50:25:25)

Source:Bhattacharyyaetal.(2013)

iii. Bio-controlofricepests

Fishactsaseffectivebio-controlagentformajorricepestslikehoppers,caseworm,stem

borer,gallmidge,leaffolder,besidessnails.Laboratory,greenhouseandfieldstudiesindicate

commoncarpasaneffectivebio-controlagentforthemajorleaffeedinginsectslikeplant

hoppers (60% control), leaf folders (47% control) and case worm (50% control).

ConcentrationofproteolyticenzymeinthegutofBPHfedfishcorroboratesnaturalfeedingof

thepest(Table5).Thisfishisalsoeffectiveinreducingstemborerincidenceinthevegetative

stageandalsotosomeextentinheadingstage(SinhababuandMajumdar,1981;Xiao,1992).

Inastudyunderasimulatedrice–fishconditionatNRRIduring2007-2010,itwasfoundthat

among the fourpotential insectivorous fishspecies,magurshowedhighest bio-control

efficiency(32.5%reduction indeadhurts) foryellowstemborer(YSB) followedbykoi

(27.2%) commoncarp (22.3%) andColisa (13.7%).Magurwasalsohighlyeffective in

contro l (53 .3%) o f brown p lant hopper (BPH) pest o f r i ce , fo l lowed by

koi(41.2%),Colisa(29.8%)and common carp(25.1%).Koi showedmaximumbio-control

efficiency(60.2%)inthecaseofcasewormpestofrice,followedbymagur(21.9%)under

similarsituations.

Sinhababu and Rajamani (2000) studied the feasibility and efficacy of different

recommendedinsecticidesforuseinrainfedlowlandrice-fishseedsystem.Theinsecticides

(phosphamidon,monocrotophos,quinalphos,ethofenprox,carbofuran)thoughdidnotkill

the reared fishes(common carp, catla, mrigal), instantly, but showed varying degree of

deleteriouseffectsongrowth,survivalandyield.Amongtheinsecticides,carbofuranthough

wasfoundmosteffectiveagainstyellowstemborer,butwasmosttoxictofishes.Ethofenprox

(animprovedsyntheticpyrethroid)wasfoundcomparativelysaferforuseinrice–fishfield.

However, two botanicals namely neem (Azadirachta indica) oil and the leaf extract of

Polygonumhydropipercanbe usedattheirrecommended doselevels forcontrolof rice

insectpestsintherice-fisheco-systemavoidinganymortalityintheculturedfishspecies

(Dasetal,2005)

Table5.Feedingintensityandproteolyticactivityinthegutofcommoncarpfedonbrownplant

hopper(BPH).

RepsNoofBPHOffered

No.ofBPHConsumed

Proteolyticenzymeml/gofwettissue

Control Treated

1. 215 129 0.50 0.74

2. 252 145 0.52 0.75

3. 276 172 0.50 0.74

4. 204 120 0.51 0.75

5. 298 186 0.52 0.77

Mean 0.51 0.75

Source:SinhababuandMajumdar,1981

Page 24: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1720 April, 2019

Nethouseandfieldtrialsonpestcontrol

Weedfloraofdifferentrainfedlowlandecosystemswasstudiedwithspecialreferencetorice-

fishsystematthefarmofNRRI,Cuttackrevealedthattheweedfloradecreasedwithincrease

ofwaterdepth.Therewasreductioninweedsby39%underrice–fishsystemindicatingfish

asapotentialbio-controlagentforaquaticweeds(PatraandSinhababu,1995).Sinhababuet

al.(2013)indicatedthatexoticcarps(grasscarp,silverbarbandcommoncarpinorder)were

moreeffectivethanIndiancarpsforcontrolofweedinrainfedlowlandricefieldsandamong

theIndiancarps,rohushowedpotentialforweedcontrol.Atotalof13majorweedsunderthe

categoriesofgrassy,sedges,broadleafandaquaticweedswereobservedinthericefields.

Grasscarpreducedmaximumweedbiomass(weedcontrolefficiency(WCE)63%at60days

aftertransplanting(DAT)and62%at100DATfollowedbysilverbarbandcommoncarp.

AmongtheIndiancarps,onlyRohuwaseffectiveincontrolofweeds(WCE,23%at60DAT).

21

Fig8.Control(%)ofYSB(DH)andBPHbyfishfingerlingsundercontrolledconditionTable6.Weedfloraandfaunaunderrice-fishsystem

Table7.Weedbiomassandweedcontrolefficiency(WCE)inricealoneandrice-fishfields.

TreatmentsWeedbiomass

(g/sqm)60DAT

WCE(%)

60DAT

Weedbiomass

(g/sqm)100DAT

WCE(%)

100DAT

Rice+grasscarpd0.28 a63.34 d13.87 a62.31

Rice+silverbarbcd0.32 a60.54 cd15.62 ab56.55

Rice+commoncarpc0.43 a46.89 c21.72 b41.81

Rice+rohub0.61 b23.10 b28.40 c23.22

Rice+catla a0.77 c4.99 ab32.86 c8.49

Rice+mrigal a0.76 c3.44 ab31.75 c11.23

Rice a0.80 – a36.42 –

Source;Sinhababuetal.(2013)

Grassyweeds Sedges: Broadleafweeds: Aquaticweeds

Echinochloacolona(L.)Leersiahexandra(Sw.)

Cyperusiria(L.)Schoenoplectusarticulatus(L.)

Ludwigiaadscendens(L.)Ludwigiaoctovalvis(Jacq.),Sphenocleazeylanica(Gaern)

Marsileaquadrifolia(L.),Ipomoeaaquatica(Forsk.)Otelliaalismoides(L.)Vallisneriaspiralis(L.)Limnophilaindica(L)

iv. Lowlandweedsandtheirbio-control

Fishfarmingcontrolsweedinricefieldbothdirectlybyfeedingandindirectlybyincreasing

waterturbidity,doingmechanicalinjuryandconstantflooding.Amongthefishes,mostuseful

species are, Ctenopharyngodon idella, Puntius gonionotus, Oreochromis mossambicus,

TrichogasterpectoralisandCyprinuscarpio.

v. VarietiesforRiceFishSystem

Riceisthemajorcomponentinthissystemasitoccupies60-65%ofthetransformedfarm

areaandwaterdepthremainshigh(20-70cm)inthemainricefieldduringrainyseason,

selection of suitable high yielding, non-lodging andwater stagnation tolerant variety is

neededforenhancingproductivityandprofitabilityofthesystems.

Page 25: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1720 April, 2019

Nethouseandfieldtrialsonpestcontrol

Weedfloraofdifferentrainfedlowlandecosystemswasstudiedwithspecialreferencetorice-

fishsystematthefarmofNRRI,Cuttackrevealedthattheweedfloradecreasedwithincrease

ofwaterdepth.Therewasreductioninweedsby39%underrice–fishsystemindicatingfish

asapotentialbio-controlagentforaquaticweeds(PatraandSinhababu,1995).Sinhababuet

al.(2013)indicatedthatexoticcarps(grasscarp,silverbarbandcommoncarpinorder)were

moreeffectivethanIndiancarpsforcontrolofweedinrainfedlowlandricefieldsandamong

theIndiancarps,rohushowedpotentialforweedcontrol.Atotalof13majorweedsunderthe

categoriesofgrassy,sedges,broadleafandaquaticweedswereobservedinthericefields.

Grasscarpreducedmaximumweedbiomass(weedcontrolefficiency(WCE)63%at60days

aftertransplanting(DAT)and62%at100DATfollowedbysilverbarbandcommoncarp.

AmongtheIndiancarps,onlyRohuwaseffectiveincontrolofweeds(WCE,23%at60DAT).

21

Fig8.Control(%)ofYSB(DH)andBPHbyfishfingerlingsundercontrolledconditionTable6.Weedfloraandfaunaunderrice-fishsystem

Table7.Weedbiomassandweedcontrolefficiency(WCE)inricealoneandrice-fishfields.

TreatmentsWeedbiomass

(g/sqm)60DAT

WCE(%)

60DAT

Weedbiomass

(g/sqm)100DAT

WCE(%)

100DAT

Rice+grasscarpd0.28 a63.34 d13.87 a62.31

Rice+silverbarbcd0.32 a60.54 cd15.62 ab56.55

Rice+commoncarpc0.43 a46.89 c21.72 b41.81

Rice+rohub0.61 b23.10 b28.40 c23.22

Rice+catla a0.77 c4.99 ab32.86 c8.49

Rice+mrigal a0.76 c3.44 ab31.75 c11.23

Rice a0.80 – a36.42 –

Source;Sinhababuetal.(2013)

Grassyweeds Sedges: Broadleafweeds: Aquaticweeds

Echinochloacolona(L.)Leersiahexandra(Sw.)

Cyperusiria(L.)Schoenoplectusarticulatus(L.)

Ludwigiaadscendens(L.)Ludwigiaoctovalvis(Jacq.),Sphenocleazeylanica(Gaern)

Marsileaquadrifolia(L.),Ipomoeaaquatica(Forsk.)Otelliaalismoides(L.)Vallisneriaspiralis(L.)Limnophilaindica(L)

iv. Lowlandweedsandtheirbio-control

Fishfarmingcontrolsweedinricefieldbothdirectlybyfeedingandindirectlybyincreasing

waterturbidity,doingmechanicalinjuryandconstantflooding.Amongthefishes,mostuseful

species are, Ctenopharyngodon idella, Puntius gonionotus, Oreochromis mossambicus,

TrichogasterpectoralisandCyprinuscarpio.

v. VarietiesforRiceFishSystem

Riceisthemajorcomponentinthissystemasitoccupies60-65%ofthetransformedfarm

areaandwaterdepthremainshigh(20-70cm)inthemainricefieldduringrainyseason,

selection of suitable high yielding, non-lodging andwater stagnation tolerant variety is

neededforenhancingproductivityandprofitabilityofthesystems.

Page 26: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1722 April, 2019

Table8.Grainyieldandeconomicsofricevarietiesunderrice-fish-horticulturesystem

atGerua,Assam.

Varieties*Grainyield

-1(tha )NetReturn

-1(Rs.ha )B:CRatio

LodgingBehaviour

Ranjit 5.35 24,739 1.82 NonLodging

Sabita 4.60 14,887 1.52 Lodgingatmaturity

Pooja 4.24 10,745 1.38 NonLodging

Jalpriya 3.72 3965 1.14 SusceptibletoLodging

Mahsuri 4.12 13,109 1.18 SusceptibletoLodging

Swarna 5.50 26,073 1.83 NonLodging

SwarnaSub1 5.22 22,793 1.75 NonLodging

Among the rice varieties evaluated under high level ofwater (>20 cm at transplanting)

Swarnaperformedbetterwhenwaterlevelwaslowduringtilleringstage.Thesubmergence

tolerantvarietySwarnasub-1wasnotsuperiortoexistingSwarnawhenmeanwaterdepth

remained below 40 cm. Ranjit, the popular high yielding variety for shallow lowland

performedconsistentlybetterunderrice-fishsystematAssam.Duringthewetseasontall

varietiesVarshadhan,CRDhan505,CRDhan500,Jalmani,Durga,Poojaperformedbetter

underricefishsystemwiththewaterdepthvaryingbetween20-50cmunderthecoastal

ecosystemofOdisha.VarietyJalmaniresultedinlowyieldduetoitslodgingbehaviorduring

theripeningstage.While,varietiesNaveen,CRDhan305,CRDhan205,Pyariprovedtobe

betteroverCRDhan205,CRDhan202withlimitedirrigationfromwatershedduringdry

seasonatNRRI.

Fig9.Performanceofricevarietiesunderricefishsystemduringthedryandwetseason

23

*Dataaremeansfor3years Suitablevarietiesundertobegrownunderrice–fishsystem

vi. Importantcropsinmainfieldafterrice

Withproperwatermanagementbyutilizingtheharvestedrainwaterstoredinpondrefuge,

togetherwithsoilreclamationandcropmanagementstrategies,itispossibletogrowcertain

pulses,oilseedsandvegetablesinricefieldsduringwinter/summerseasons.Cropslikechilli,

sunflower,groundnut,lady'sfinger,watermelon,Basellacanbegrownafterriceduringdry

season.Thesecropsmustbecarefullyselectedbasedontheirsuitabilitytolocalagro-climatic

conditions,soilsalinity,profitabilityandfarmers'preferences(Sahaet.al.,2007).Thetropical

tubercropssuchassweetpotato,yamsarewelladaptedtothesecoastalagro-ecosystems.

This canensure food,nutrition, economic, employmentandalsoenvironmental security.

Nedunchzhiyanetal,(2013)reportedthatsweetpotatocanbegrowninlowlandricefallow

indeepwaterrice–fishsystemwiththevarietyKishanunderconventionaltillageandSourin

underminimumtillageconditionrealizingrootyieldof20.98and13.95t/ha,respectively.

EasternIndiaishavingpotentialtoharvestrainwaterduringpeakmonsoonperiod(July-

September)thatstoredinthepondrefugecanhelptogrowseveralwintervegetableslike

pumpkin,bittergourd,lady'sfinger,chillietc.eitheronbundsorinmainricefield.Othercrops

viz.,pulseslikeblackgram,greengrametc.oroilseedsviz.,sunflower,groundnut,sesamum

etc.canbegrownduringthedryseason(January–earlyApril)withlimitedirrigationby

storedwater(SahaandBiswal,2004).

Fromearlierstudy,itwasfoundthatsunflowerisoneofthemostpromisingcropsafterrice

with2-3limitedirrigationsbyutilizingthewaterstoredinpond.Ithasbeenfoundthatthe

sunflowerhybridslikeKBSH1,BSH1,PAC36,PAC308,ICI308,TNAUSUF7etc.performed-1

verywellwithanaverageseedyieldof12.8to27.1qha .Theyieldincreaseofthesecultivars

over standard check varietyMorden ranged from54 to75%.All thesehybridsmatured

within90-102days(Sahaet.al.,2006).However,consistentlystableyieldwasrecordedwith-1

hybrid,KBSH1.Thehighestseedyield(23.7qha )wasrecordedbysowingduringsecond

fortnightofJanuaryataspacingof45X30cmwithafertilizerdoseof80:40:40kgN,P O and2 5-1K Oha (SahaandMoorthy2001).2

Page 27: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1722 April, 2019

Table8.Grainyieldandeconomicsofricevarietiesunderrice-fish-horticulturesystem

atGerua,Assam.

Varieties*Grainyield

-1(tha )NetReturn

-1(Rs.ha )B:CRatio

LodgingBehaviour

Ranjit 5.35 24,739 1.82 NonLodging

Sabita 4.60 14,887 1.52 Lodgingatmaturity

Pooja 4.24 10,745 1.38 NonLodging

Jalpriya 3.72 3965 1.14 SusceptibletoLodging

Mahsuri 4.12 13,109 1.18 SusceptibletoLodging

Swarna 5.50 26,073 1.83 NonLodging

SwarnaSub1 5.22 22,793 1.75 NonLodging

Among the rice varieties evaluated under high level ofwater (>20 cm at transplanting)

Swarnaperformedbetterwhenwaterlevelwaslowduringtilleringstage.Thesubmergence

tolerantvarietySwarnasub-1wasnotsuperiortoexistingSwarnawhenmeanwaterdepth

remained below 40 cm. Ranjit, the popular high yielding variety for shallow lowland

performedconsistentlybetterunderrice-fishsystematAssam.Duringthewetseasontall

varietiesVarshadhan,CRDhan505,CRDhan500,Jalmani,Durga,Poojaperformedbetter

underricefishsystemwiththewaterdepthvaryingbetween20-50cmunderthecoastal

ecosystemofOdisha.VarietyJalmaniresultedinlowyieldduetoitslodgingbehaviorduring

theripeningstage.While,varietiesNaveen,CRDhan305,CRDhan205,Pyariprovedtobe

betteroverCRDhan205,CRDhan202withlimitedirrigationfromwatershedduringdry

seasonatNRRI.

Fig9.Performanceofricevarietiesunderricefishsystemduringthedryandwetseason

23

*Dataaremeansfor3years Suitablevarietiesundertobegrownunderrice–fishsystem

vi. Importantcropsinmainfieldafterrice

Withproperwatermanagementbyutilizingtheharvestedrainwaterstoredinpondrefuge,

togetherwithsoilreclamationandcropmanagementstrategies,itispossibletogrowcertain

pulses,oilseedsandvegetablesinricefieldsduringwinter/summerseasons.Cropslikechilli,

sunflower,groundnut,lady'sfinger,watermelon,Basellacanbegrownafterriceduringdry

season.Thesecropsmustbecarefullyselectedbasedontheirsuitabilitytolocalagro-climatic

conditions,soilsalinity,profitabilityandfarmers'preferences(Sahaet.al.,2007).Thetropical

tubercropssuchassweetpotato,yamsarewelladaptedtothesecoastalagro-ecosystems.

This canensure food,nutrition, economic, employmentandalsoenvironmental security.

Nedunchzhiyanetal,(2013)reportedthatsweetpotatocanbegrowninlowlandricefallow

indeepwaterrice–fishsystemwiththevarietyKishanunderconventionaltillageandSourin

underminimumtillageconditionrealizingrootyieldof20.98and13.95t/ha,respectively.

EasternIndiaishavingpotentialtoharvestrainwaterduringpeakmonsoonperiod(July-

September)thatstoredinthepondrefugecanhelptogrowseveralwintervegetableslike

pumpkin,bittergourd,lady'sfinger,chillietc.eitheronbundsorinmainricefield.Othercrops

viz.,pulseslikeblackgram,greengrametc.oroilseedsviz.,sunflower,groundnut,sesamum

etc.canbegrownduringthedryseason(January–earlyApril)withlimitedirrigationby

storedwater(SahaandBiswal,2004).

Fromearlierstudy,itwasfoundthatsunflowerisoneofthemostpromisingcropsafterrice

with2-3limitedirrigationsbyutilizingthewaterstoredinpond.Ithasbeenfoundthatthe

sunflowerhybridslikeKBSH1,BSH1,PAC36,PAC308,ICI308,TNAUSUF7etc.performed-1

verywellwithanaverageseedyieldof12.8to27.1qha .Theyieldincreaseofthesecultivars

over standard check varietyMorden ranged from54 to75%.All thesehybridsmatured

within90-102days(Sahaet.al.,2006).However,consistentlystableyieldwasrecordedwith-1

hybrid,KBSH1.Thehighestseedyield(23.7qha )wasrecordedbysowingduringsecond

fortnightofJanuaryataspacingof45X30cmwithafertilizerdoseof80:40:40kgN,P O and2 5-1K Oha (SahaandMoorthy2001).2

Page 28: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

Watermelonwasfoundanotherpromisingcropinthissystemwhensownduringmiddleof-1

Januaryinpitswithspotirrigation.Itproducedthehighestriceequivalentyield(18.0tha ),-1netreturn(Rs.63423ha )andB:Cratio(8.5).Thewaterproductivity(kgriceequivalent

3yieldm waterapplied)wasalsothehighestforwatermelon(83.2).Chilli,anotherimportant

-1 -1cashcrop,performedwellwithriceequivalentyield(8.7tha )andnetreturn(Rs.29272ha )-1 -1followedbysunflower(6.4tha ;Rs17936ha )insandyloamsoil,whereasinotherlocation

withclayloamsoilriceequivalentyieldandnetreturnwasthehighestforwatermelon(13.0t-1 -1ha ,Rs.49865ha ).Itwasfoundthattherewaswidelocation-wisevariabilityinperformance

ofsomecropsowingtosoiltypeandavailabilityforirrigationwaterinpondrefuge.Basedon

theresearchworkcarriedoutunderdifferenton-farmIFSmodelsincoastalsalineareasof

Jagatsinghpur,watermelon,chilliandsunflowerareprobablythemostpromisingcropsfor

both medium and high salinity areas, while lady's finger is suitable and the most

remunerativeunderlowtomediumsalinityconditions(Singhet.al.,2006).

24 April, 2019

Adoption of rice-fish farming system in eastern India

vii. Rainwaterbudgetingandproductivity

SinhababuandMahata(2007)reportedtheamountofrainwaterharvest,itsutilizationand

waterproductivityinrainfedlowlandrice-fishfarmingsystem.Thewaterharvestedinthe2 3

pondrefugeof1300m areais1820m equivalentto140cmaveragedepthofwater.The

irrigationwaterrequirementfordryseasoncropsinthefieldis21.4%andthatforother

componentsonbundsis10%ofthestoredwater.Thewaterlossduetoevaporationand

percolationis40%.Thus,savingofexcesswatertotheextentof28.6%ispossibleinrainfed

rice–fishsystemundershallowgroundwatertableandlowlandconditioninMahanadidelta3,

areasofOdisha.Thenetwaterproductivityofrainfedrice-fishsystemisRs13.8m ofwhich3 3

wetseasonricecontributesRs1.2m comparedtoRs2.2m inthecaseoffishandprawn.

viii. Rice-ornamentalfishculture

Inordertoutilizethericeecologyforvalueaddedaquaculture,thetechniqueofbreedingand

culture of ornamental fishes in irrigated lowland rice fieldhas beendeveloped atNRRI,

Cuttack.Thericefieldhasbeenrenovatedtomakeapondrefugeandraisebundsallaround.

25

The rainfed rice-fish systemmodel was also developed in ICAR-NRRI Regional Rainfed

LowlandRiceResearchStation(RRLRRS),GeruafarminAssamtofacilitateextensioninthe

StateofAssamandotherStatesofNorthEasternregion.

A) SuccessstoryincoastalOdisha

KunjoMullick of village Gadkujang, Jagasinghpur district belongs to small farmers

category.Hisricefieldwaspronetoflashfloodandsubmergenceduringwetseasondueto

poordrainage,backwaterandremainwaterloggedfornearly4-5months.Riseinsalinity

levelwasanotherproblemduringMarchonwardstotillmonsoonseason.Thefarmermostly-1grewlocalricevarietieswithlowinputsandcouldgetverylowriceproduce(0.8-1.0tha )

andhencecouldnotsustainhislivelihood.

RicebasedintegratedfarmingsystemmodeldevelopedandvalidatedatfarmersfieldinthecoastalSalinesoil

Before After

Ornamentalfishinthericefield

OrnamentalfisheslikeBluegourami,

Redgourami,Pearlgourami,Guppies

are bred and cultured with rice

(lowlandvarieties) cropduringwet

season. During the dry season, rice

(Naveen)cropwasgrownalongwith

ornamental fishes with irrigation.

About25,000-6,00000ornamental

fish/hawasproducedinthesystem,

inaddition to3.5 tand5.0 tof rice

grain during wet and dry season,

respectively(Nayaketal2008).

TheNRRIscientistdidsomebasicsurveyintheJagatsinghpurdistrictandselectedthefarmer

basedonhisavailableresources.Thefarmerlackvisiontoutilizehislandandwaterforcrop

diversification and inability to generate his livelihood from his land. KunjoMullickwas

advisedtoreshapehisriceareaandwastrainedforcropdiversificationbyvisitingNRRI

farmingsystemmodels.WiththeinitialinvestmentofRs72,000wasdonebythefarmerfor

establishmentandshapingofhisricearea(4acres)intowatershed/pondareaofabout1acre

wherehewasadvisedtoputtheIndianmajorcarpsandthedugoutsoilwastransformedinto

raised dykeswhere the farmer grew banana, coconut and vegetable crops like cowpea,

pumpkin,leafygreens,drumsticketc.Poultryandduckerywastakeninthehousemadewith

locallyavailablematerials.AttheendoftheyearhegotnetincomeofRs.150000/-withthe

costbenefitratioof1:2.1.

Page 29: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 17

Watermelonwasfoundanotherpromisingcropinthissystemwhensownduringmiddleof-1

Januaryinpitswithspotirrigation.Itproducedthehighestriceequivalentyield(18.0tha ),-1netreturn(Rs.63423ha )andB:Cratio(8.5).Thewaterproductivity(kgriceequivalent

3yieldm waterapplied)wasalsothehighestforwatermelon(83.2).Chilli,anotherimportant

-1 -1cashcrop,performedwellwithriceequivalentyield(8.7tha )andnetreturn(Rs.29272ha )-1 -1followedbysunflower(6.4tha ;Rs17936ha )insandyloamsoil,whereasinotherlocation

withclayloamsoilriceequivalentyieldandnetreturnwasthehighestforwatermelon(13.0t-1 -1ha ,Rs.49865ha ).Itwasfoundthattherewaswidelocation-wisevariabilityinperformance

ofsomecropsowingtosoiltypeandavailabilityforirrigationwaterinpondrefuge.Basedon

theresearchworkcarriedoutunderdifferenton-farmIFSmodelsincoastalsalineareasof

Jagatsinghpur,watermelon,chilliandsunflowerareprobablythemostpromisingcropsfor

both medium and high salinity areas, while lady's finger is suitable and the most

remunerativeunderlowtomediumsalinityconditions(Singhet.al.,2006).

24 April, 2019

Adoption of rice-fish farming system in eastern India

vii. Rainwaterbudgetingandproductivity

SinhababuandMahata(2007)reportedtheamountofrainwaterharvest,itsutilizationand

waterproductivityinrainfedlowlandrice-fishfarmingsystem.Thewaterharvestedinthe2 3

pondrefugeof1300m areais1820m equivalentto140cmaveragedepthofwater.The

irrigationwaterrequirementfordryseasoncropsinthefieldis21.4%andthatforother

componentsonbundsis10%ofthestoredwater.Thewaterlossduetoevaporationand

percolationis40%.Thus,savingofexcesswatertotheextentof28.6%ispossibleinrainfed

rice–fishsystemundershallowgroundwatertableandlowlandconditioninMahanadidelta3,

areasofOdisha.Thenetwaterproductivityofrainfedrice-fishsystemisRs13.8m ofwhich3 3

wetseasonricecontributesRs1.2m comparedtoRs2.2m inthecaseoffishandprawn.

viii. Rice-ornamentalfishculture

Inordertoutilizethericeecologyforvalueaddedaquaculture,thetechniqueofbreedingand

culture of ornamental fishes in irrigated lowland rice fieldhas beendeveloped atNRRI,

Cuttack.Thericefieldhasbeenrenovatedtomakeapondrefugeandraisebundsallaround.

25

The rainfed rice-fish systemmodel was also developed in ICAR-NRRI Regional Rainfed

LowlandRiceResearchStation(RRLRRS),GeruafarminAssamtofacilitateextensioninthe

StateofAssamandotherStatesofNorthEasternregion.

A) SuccessstoryincoastalOdisha

KunjoMullick of village Gadkujang, Jagasinghpur district belongs to small farmers

category.Hisricefieldwaspronetoflashfloodandsubmergenceduringwetseasondueto

poordrainage,backwaterandremainwaterloggedfornearly4-5months.Riseinsalinity

levelwasanotherproblemduringMarchonwardstotillmonsoonseason.Thefarmermostly-1grewlocalricevarietieswithlowinputsandcouldgetverylowriceproduce(0.8-1.0tha )

andhencecouldnotsustainhislivelihood.

RicebasedintegratedfarmingsystemmodeldevelopedandvalidatedatfarmersfieldinthecoastalSalinesoil

Before After

Ornamentalfishinthericefield

OrnamentalfisheslikeBluegourami,

Redgourami,Pearlgourami,Guppies

are bred and cultured with rice

(lowlandvarieties) cropduringwet

season. During the dry season, rice

(Naveen)cropwasgrownalongwith

ornamental fishes with irrigation.

About25,000-6,00000ornamental

fish/hawasproducedinthesystem,

inaddition to3.5 tand5.0 tof rice

grain during wet and dry season,

respectively(Nayaketal2008).

TheNRRIscientistdidsomebasicsurveyintheJagatsinghpurdistrictandselectedthefarmer

basedonhisavailableresources.Thefarmerlackvisiontoutilizehislandandwaterforcrop

diversification and inability to generate his livelihood from his land. KunjoMullickwas

advisedtoreshapehisriceareaandwastrainedforcropdiversificationbyvisitingNRRI

farmingsystemmodels.WiththeinitialinvestmentofRs72,000wasdonebythefarmerfor

establishmentandshapingofhisricearea(4acres)intowatershed/pondareaofabout1acre

wherehewasadvisedtoputtheIndianmajorcarpsandthedugoutsoilwastransformedinto

raised dykeswhere the farmer grew banana, coconut and vegetable crops like cowpea,

pumpkin,leafygreens,drumsticketc.Poultryandduckerywastakeninthehousemadewith

locallyavailablematerials.AttheendoftheyearhegotnetincomeofRs.150000/-withthe

costbenefitratioof1:2.1.

Page 30: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1726 April, 2019 27

B) Multi-locationdemonstrationofrice-fishsystemmodels

Both the 'Integrated rice-fish farming system models' (rainfed lowland and multitier

deepwatermodels)ofICAR-NRRI,Cuttackweresuccessfullydemonstratedandpopularised

in thefarmers'fieldsofthestatesofOdishaandWestBengal throughExternallyAided

Projects(EAPs)andcollaborationwithNGOs,andbyprovidingtechnicalsupporttofarmers,

NGOsandotherorganizations.Abriefaccountofsomeofthedevelopedrice–fishfarmsis

givenbelow;

I. Rice-fishfarmsdevelopedthroughEAPsofICAR-NRRI

Rice-fish-horticulture based farming system was developed in different villages under

Ersama block of Jagatsinghpur and Astarang block of Puri districts of Odisha with the

supportoffollowingprojects.

III. Rice-fishfarmsdevelopedundertechnicalguidanceofICAR-NRRIScientist

S.No.

ProjectsNameoffarmer

Farmarea(Acre)

Village/District

1.NWDPRAProjectGovtofOdisha,(1997-2000)

AshokeParida 2.2 Kimilo,Jagatsinghpur

2.ICDP-RiceProject,MinistryofAgriculture,Govt.ofIndia(1998-99)

UttamPadaNaik 2.3Oraisal,Jagatsinghpur

3.NATPCoastalProject,ICAR(2001-05)

SukumarJena 1.4 Kiada,Jagatsinghpur

4.NATPProject,ICAR(2001-05)

PurnaChandraJena

1.5Chaulia,Jagatsinghpur

5.NATPCoastalProject,ICAR(2001-05)

RupanDas 1.3 Hiradeipur,Puri

6.NATPCoastalProject,ICAR(2001-05)

LakhsmanSwain

1.2 Sundar,Puri

7. Adoptionbyfarmers15farmersinacluster

15farmswithav.areaof1.5acre

PadampurPanchayat,Jagatsinghpur

S.No.

NGOs/organizationsNameoffarmer

Farmarea(Acre)

Village/District

1. BikramanandaInstituteofRuralDevelopment(BIRD),PuriunderNABARDfinancialsupportofNABARDduring2011-12

SarbeswarPaikray

4.0(rainfedlowlandmodel)

Apithi,Puri

2. do SudamPradhan

2.0(multitierdeepwatermodel)

Bhikaripara,Puri

3. ParadeepPhosphateLtd(PPL),Bhubaneswar,2009-10

SubhasPanda

0.5(rainfedlowlandmodel)

Barakumari,Khurda

Aclusterofrice-fishfarmsinrainfedwaterloggedlowlandsalongwithsomefarmersinErsama,JagatsinghpurdistrictinOdisha

II. Rice–fishfarmsdevelopedthroughcollaboration/MoUswithNGOs

No. FarmersName&Village FarmArea(Acre) Components

A. Regional Centre for Development Cooperation(RCDC), Bhubaneswar, in Rajnagar block ofKendrapara and Balikuda block of Jagatsinghpur district of Odisha during 2012-2013(bothrainfedlowlandandmultitierdeepwatermodels)

1SriPunyabrataMandalVill:GopaljeePatna

1.1Rice,Fish,Horticulture-Vegetables

2SriBhiguramMandalVill:Udyan

0.75Rice-Fish-Horticulture-Duckery-vemi-compost

3SriGopalCh.GiriVill:Birabhanjpur

0.40Rice-Fish-Horticulture-Duckery-vemi-compost

4SriRamakantaPradhanVill:Natchhipada

2.0Rice-fish-Horticulture-Vegetables

5SriAshokDasVill:Junapangara

0.80Rice-fish-Horticulture-Vegetables

6SarbeswarPradhanVill:Baurnipala

2.0Rice-Fish-Horticulture-Duckery-vemi-compost

7SriNandadulalMandalVill:Dekni

1.30Rice-Fish-Horticulture-Duckery-vemi-compost

8PatitpabanKhandaVill:Naupala

0.90Rice-Fish-Horticulture-Duckery-vemi-compost

B. VivekanandaInstituteofBiotechnology(VIB),SriRamkrishnaAshram,Nimpith,WestBengal,inCoastalvillagesofSouth24,Parganasdistrict,WestBengalduring2012.

Total 13 rice-fish farms,mostlymultitiermodel (rice, fish, vegetables, tuber crops, banana) of0.3-1.7acreareadeveloped

Page 31: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1726 April, 2019 27

B) Multi-locationdemonstrationofrice-fishsystemmodels

Both the 'Integrated rice-fish farming system models' (rainfed lowland and multitier

deepwatermodels)ofICAR-NRRI,Cuttackweresuccessfullydemonstratedandpopularised

in thefarmers'fieldsofthestatesofOdishaandWestBengal throughExternallyAided

Projects(EAPs)andcollaborationwithNGOs,andbyprovidingtechnicalsupporttofarmers,

NGOsandotherorganizations.Abriefaccountofsomeofthedevelopedrice–fishfarmsis

givenbelow;

I. Rice-fishfarmsdevelopedthroughEAPsofICAR-NRRI

Rice-fish-horticulture based farming system was developed in different villages under

Ersama block of Jagatsinghpur and Astarang block of Puri districts of Odisha with the

supportoffollowingprojects.

III. Rice-fishfarmsdevelopedundertechnicalguidanceofICAR-NRRIScientist

S.No.

ProjectsNameoffarmer

Farmarea(Acre)

Village/District

1.NWDPRAProjectGovtofOdisha,(1997-2000)

AshokeParida 2.2 Kimilo,Jagatsinghpur

2.ICDP-RiceProject,MinistryofAgriculture,Govt.ofIndia(1998-99)

UttamPadaNaik 2.3Oraisal,Jagatsinghpur

3.NATPCoastalProject,ICAR(2001-05)

SukumarJena 1.4 Kiada,Jagatsinghpur

4.NATPProject,ICAR(2001-05)

PurnaChandraJena

1.5Chaulia,Jagatsinghpur

5.NATPCoastalProject,ICAR(2001-05)

RupanDas 1.3 Hiradeipur,Puri

6.NATPCoastalProject,ICAR(2001-05)

LakhsmanSwain

1.2 Sundar,Puri

7. Adoptionbyfarmers15farmersinacluster

15farmswithav.areaof1.5acre

PadampurPanchayat,Jagatsinghpur

S.No.

NGOs/organizationsNameoffarmer

Farmarea(Acre)

Village/District

1. BikramanandaInstituteofRuralDevelopment(BIRD),PuriunderNABARDfinancialsupportofNABARDduring2011-12

SarbeswarPaikray

4.0(rainfedlowlandmodel)

Apithi,Puri

2. do SudamPradhan

2.0(multitierdeepwatermodel)

Bhikaripara,Puri

3. ParadeepPhosphateLtd(PPL),Bhubaneswar,2009-10

SubhasPanda

0.5(rainfedlowlandmodel)

Barakumari,Khurda

Aclusterofrice-fishfarmsinrainfedwaterloggedlowlandsalongwithsomefarmersinErsama,JagatsinghpurdistrictinOdisha

II. Rice–fishfarmsdevelopedthroughcollaboration/MoUswithNGOs

No. FarmersName&Village FarmArea(Acre) Components

A. Regional Centre for Development Cooperation(RCDC), Bhubaneswar, in Rajnagar block ofKendrapara and Balikuda block of Jagatsinghpur district of Odisha during 2012-2013(bothrainfedlowlandandmultitierdeepwatermodels)

1SriPunyabrataMandalVill:GopaljeePatna

1.1Rice,Fish,Horticulture-Vegetables

2SriBhiguramMandalVill:Udyan

0.75Rice-Fish-Horticulture-Duckery-vemi-compost

3SriGopalCh.GiriVill:Birabhanjpur

0.40Rice-Fish-Horticulture-Duckery-vemi-compost

4SriRamakantaPradhanVill:Natchhipada

2.0Rice-fish-Horticulture-Vegetables

5SriAshokDasVill:Junapangara

0.80Rice-fish-Horticulture-Vegetables

6SarbeswarPradhanVill:Baurnipala

2.0Rice-Fish-Horticulture-Duckery-vemi-compost

7SriNandadulalMandalVill:Dekni

1.30Rice-Fish-Horticulture-Duckery-vemi-compost

8PatitpabanKhandaVill:Naupala

0.90Rice-Fish-Horticulture-Duckery-vemi-compost

B. VivekanandaInstituteofBiotechnology(VIB),SriRamkrishnaAshram,Nimpith,WestBengal,inCoastalvillagesofSouth24,Parganasdistrict,WestBengalduring2012.

Total 13 rice-fish farms,mostlymultitiermodel (rice, fish, vegetables, tuber crops, banana) of0.3-1.7acreareadeveloped

Page 32: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1728 April, 2019 29

4. VivekanandaRegionalRuralDevelopmentOrganization(VRRDO),WestBengalfundedbyDSTProjectduring2010-11,

15farmersin8villages

15smallfarms(multitiermodel)

PatharpratimaandMathurapurblocks,South24Parganasdistrict

5. KVK,Lohit,ICAR-NRConYak,ArunachalPradeshfundedbyNABARDin2012.Rainfedlowlandmodel(rice,fish,pigs,fruitcrops,arecanut,Tocopatatree)

1.5 Lohit,ArunachalPradesh

Sinhababu et al (2006) reported that the rainfed rice–fish diversified farming system

technologynotonlyincreasednetfarmincomebyaroundfifteentimes(Rs44,500/ha/yr)

overtraditionalricefarming,butalsogeneratedadditionalemploymentof110man-daysin

theSuper-cycloneaffectedcoastalvillagesinOdishaunderNATPProject.On-farmvalidationoftheMDWrice-fishfarmingsystemduring2010-12

Rice-fishfarmsinSouth24ParganasW.BthroughcollaborationwithVIB,SRK,Nimpith,2012

Rice–fish–farmatLohit,KVKNRCYak,ArunachalPradesh,2012

AdoptionofRicebasedintegratedFarmingsysteminEasternIndia ConstraintsTherice–fishsystemsinvolvesaconsiderableamountofinitialcapitalcostforlandshaping

andotherinfrastructureslikesmallhousesforbirdsandanimalsetc.Thisconditionimpedes

largescaleadoptionoftherice–fishtechnologies,sincemostofthetargetfarmersineastern

India are small andmarginalwith poor economic condition. Linkageswith the relevant

variousCentralandStateGovernmenton-goingschemesforcostoflandshapingwilleasethe

problem.Fragmentationandmultiownershipofland,andsmallholdingsalsostandinwayof

adoption of this system. Land consolidation and suitablemodification /down scaling of

technologiesforsmallholdingsareneededinthesesituations.Timelyavailabilityofrequired

inputsforthissystem,likeseedandplantingmaterialsofdifferentcrops,fishandprawnseed,

andoffspringofbirdsandanimals,aretobeensuredinthelocality.Marketingofvarious

produces fromthesystem isvery important.Rice–fish farmdevelopment inclusterand

linkageswith themarket chainwill facilitatepropermarketing.Rice–fish–horticulture-

livestock farming is a specialized system, which requires necessary skill development.

Awarenessdevelopmentandcapacitybuildingofthefarmersarenecessaryforsuccessful

adoptionofthissystem.

Challenges and policy issuesRice-fishbasedintegratedfarmingsystemcouldbeaviableoptionforcropdiversification

andreducingtheriskoverricemonocropping.Thisshouldbeencouragedinthelargescaleto

fullyexploitthepotentialareas.Necessaryinitiativesandpublicandprivatesectorinvestments

areneededtorealizethepotentialgrowthofthissystem.Amuchgreaterbenefitcouldbe

obtainedifgovernmentpoliciesencouragethepromotionofintegratedrice-fishfarming,as

wellastheimplementationofaworkablestrategyforlargescaleadoptionindifferentagro-

climatic regions of the eastern India. It is also necessary to provide institutional and

organizationalsupport,especiallysoftbankloanforsuccessofthisfarmingsystem.

Page 33: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1728 April, 2019 29

4. VivekanandaRegionalRuralDevelopmentOrganization(VRRDO),WestBengalfundedbyDSTProjectduring2010-11,

15farmersin8villages

15smallfarms(multitiermodel)

PatharpratimaandMathurapurblocks,South24Parganasdistrict

5. KVK,Lohit,ICAR-NRConYak,ArunachalPradeshfundedbyNABARDin2012.Rainfedlowlandmodel(rice,fish,pigs,fruitcrops,arecanut,Tocopatatree)

1.5 Lohit,ArunachalPradesh

Sinhababu et al (2006) reported that the rainfed rice–fish diversified farming system

technologynotonlyincreasednetfarmincomebyaroundfifteentimes(Rs44,500/ha/yr)

overtraditionalricefarming,butalsogeneratedadditionalemploymentof110man-daysin

theSuper-cycloneaffectedcoastalvillagesinOdishaunderNATPProject.On-farmvalidationoftheMDWrice-fishfarmingsystemduring2010-12

Rice-fishfarmsinSouth24ParganasW.BthroughcollaborationwithVIB,SRK,Nimpith,2012

Rice–fish–farmatLohit,KVKNRCYak,ArunachalPradesh,2012

AdoptionofRicebasedintegratedFarmingsysteminEasternIndia ConstraintsTherice–fishsystemsinvolvesaconsiderableamountofinitialcapitalcostforlandshaping

andotherinfrastructureslikesmallhousesforbirdsandanimalsetc.Thisconditionimpedes

largescaleadoptionoftherice–fishtechnologies,sincemostofthetargetfarmersineastern

India are small andmarginalwith poor economic condition. Linkageswith the relevant

variousCentralandStateGovernmenton-goingschemesforcostoflandshapingwilleasethe

problem.Fragmentationandmultiownershipofland,andsmallholdingsalsostandinwayof

adoption of this system. Land consolidation and suitablemodification /down scaling of

technologiesforsmallholdingsareneededinthesesituations.Timelyavailabilityofrequired

inputsforthissystem,likeseedandplantingmaterialsofdifferentcrops,fishandprawnseed,

andoffspringofbirdsandanimals,aretobeensuredinthelocality.Marketingofvarious

produces fromthesystem isvery important.Rice–fish farmdevelopment inclusterand

linkageswith themarket chainwill facilitatepropermarketing.Rice–fish–horticulture-

livestock farming is a specialized system, which requires necessary skill development.

Awarenessdevelopmentandcapacitybuildingofthefarmersarenecessaryforsuccessful

adoptionofthissystem.

Challenges and policy issuesRice-fishbasedintegratedfarmingsystemcouldbeaviableoptionforcropdiversification

andreducingtheriskoverricemonocropping.Thisshouldbeencouragedinthelargescaleto

fullyexploitthepotentialareas.Necessaryinitiativesandpublicandprivatesectorinvestments

areneededtorealizethepotentialgrowthofthissystem.Amuchgreaterbenefitcouldbe

obtainedifgovernmentpoliciesencouragethepromotionofintegratedrice-fishfarming,as

wellastheimplementationofaworkablestrategyforlargescaleadoptionindifferentagro-

climatic regions of the eastern India. It is also necessary to provide institutional and

organizationalsupport,especiallysoftbankloanforsuccessofthisfarmingsystem.

Page 34: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1730 April, 2019 31

Future perspectiveTheneedfordiversificationoffarmingpracticeisneededastheincomeoffarmerswho

dependsolelyontheproduceoftheirtraditionalmonocropofricepatternisdecreasing

due to limited profitmargin and changed food habits. Tomeet the continuous rise in

demandforfood,stabilityofincomeanddiverserequirementsoffoodgrains,vegetables,

milk,eggandmeat, integratedfarmingsystems(IFS)seemstobethefeasiblesolution,

therebyimprovingthenutritionofthesmallandmarginalfarmerswithlimitedavailable

resources. Integration of different related enterprises with agriculture crops provides

waystorecycleproductsandby-productsofonecomponentasinputofanotherlinked

componentwhichlessenthecostofproductionandthusraisesthetotalincomeofthefarm.

The expenditure on inorganic fertilizersmay alsodeclinedue to availability of a good

amountofmanure,whichresultedintoasavingupto50%ascomparedtoarablefarming.

Multiplelandusethroughintegrationofcrops,minorlivestockwithaquaculturecanresult

in thebestandoptimumproduction fromunit landarea.Theruralyouthscantakeup

'Integrated farming system' asmicro business through entrepreneurship for achieving

income at regular interval and self-employment. This model should be validated in

differentagro-climaticzonesof thecountry for locationspecific refinementand finally

wide-scaleadoptionwithlowinvestcapitalforsmallandmarginalfarmersaswellasagro-

entrepreneurs.

ConclusionThereisastrongneedtomonitortheentirerice-basedproductionsystemintermsofcrop

varieties,nutrientdynamics,watertableandqualityofirrigationwater,insect,diseaseand

weed problems to evolve site specific appropriatemanagement techniques. Economic

feasibility isanother importantcriterion foracceptanceofanycroppingsystemby the

farming community. The large scale adoption of any improved cropping and farming

system by the farming community dependsmostly on socio-economic factors such as

labouravailability,creditrequirement,costofinputs,processing,marketabilityandpriceof

produce,riskinvolvedandsocialacceptabilityofthenewsystem.Thusbeforedesigninga

particular farming systemmodel, care should be given on its technical and economic

feasibility.

ReferencesBhattacharyyaP,SinhababuDP,RoyKS,DashPK,SahuPK,DandapatR,NogiS,Mohanty

Sangita(2013)Effectoffishspeciesonmethaneandnitrousoxideemissioninrelation

tosoilC,Npoolsandenzymaticactivitiesinrainfedshallowlowlandrice-fishfarming

system.Agriculture,EcosystemsandEnvironment176:53-62.

DasPCandSinhababuDP(1999)Seasonalchangesinthezooplanktonpopulationinrainfed

rice-fishsystem.JournalofAquaculture.7:55-58.

DasPC,JenaMandSinhababuDP(2005)Acutetoxicityofbotanicalpesticides,viz.,neemoil

(Azadirachtaindica) and Polygonumhydropiper leaf extracts, in fingerlings of

Catlacatla(Ham.).JournalofAquaculture.13:17-21

DattaA,NayakDR,SinhababuDPandAdhyaTK(2009)Methaneandnitrousoxideemission

from an integrated rainfed rice-fish farming system of Eastern India agriculture

EcosystemandEnvironment129:228–237

FAO(2012b)FAOSTAT,http://faostat.fao.org/site/339/default.aspx

FurunoT(2001)ThePowerofDuck(IntegratedRiceandDuckFarming)Australia:Tagari

Publications.

Gill MS, Singh JP and Gangwar KS (2010) Integrated farming system and agriculture

sustainability.IndianJournalofAgronomy54(2):128-39.

GovernmentofIndia(2009)EconomicSurveyofIndia,pp.199-200.http://Indiabudget.nic.in

JayanthiC(2002)SustainableFarmingSystemandlowlandfarmingofTamilNadu.IFSAdhoc

SchemeCompletionReport.

NedunchezhiyanM,SinhababuDP,SahuPKandPandeyV(2013)Growthandyieldofsweet

potato(IpomoeabatatasL.)inricefallows:Effectoftillageandvarieties.JournalofRoot

Crops39(2):110-116.

NayakPK,SinhababuDP, RaoKSandSahuPK(2008)OrnamentalFishes:Breedingand

CultureinRiceEcologies.CRRITechnologyBulletin33.CentralRiceResearchInstitute,

Cuttack,Orissa,India.

PandaMM,GhoshBCandSinhababuP(1987)Uptakeofnutrientsbyriceunderrice-cum-fish

cultureinintermediatedeepwatersituation(upto50cmwaterdepth).Plant&Soil

102:131-132.

PathakH,SamalPandShahidM(2018)RevitalizingRiceSystemsforEnhancingProductivity,

ProfitabilityandClimateResiliencepp1-17editedbyPathakH,NayakAK, JenaM,

SinghON,SamalPandSharmaSG(2018)RiceResearchforEnhancingprductivity,

ProfitabilityandClimateResilience, ICAR-NationalRiceResearch Institute,Cuttack

OdishaIndiapp275-289

Page 35: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1730 April, 2019 31

Future perspectiveTheneedfordiversificationoffarmingpracticeisneededastheincomeoffarmerswho

dependsolelyontheproduceoftheirtraditionalmonocropofricepatternisdecreasing

due to limited profitmargin and changed food habits. Tomeet the continuous rise in

demandforfood,stabilityofincomeanddiverserequirementsoffoodgrains,vegetables,

milk,eggandmeat, integratedfarmingsystems(IFS)seemstobethefeasiblesolution,

therebyimprovingthenutritionofthesmallandmarginalfarmerswithlimitedavailable

resources. Integration of different related enterprises with agriculture crops provides

waystorecycleproductsandby-productsofonecomponentasinputofanotherlinked

componentwhichlessenthecostofproductionandthusraisesthetotalincomeofthefarm.

The expenditure on inorganic fertilizersmay alsodeclinedue to availability of a good

amountofmanure,whichresultedintoasavingupto50%ascomparedtoarablefarming.

Multiplelandusethroughintegrationofcrops,minorlivestockwithaquaculturecanresult

in thebestandoptimumproduction fromunit landarea.Theruralyouthscantakeup

'Integrated farming system' asmicro business through entrepreneurship for achieving

income at regular interval and self-employment. This model should be validated in

differentagro-climaticzonesof thecountry for locationspecific refinementand finally

wide-scaleadoptionwithlowinvestcapitalforsmallandmarginalfarmersaswellasagro-

entrepreneurs.

ConclusionThereisastrongneedtomonitortheentirerice-basedproductionsystemintermsofcrop

varieties,nutrientdynamics,watertableandqualityofirrigationwater,insect,diseaseand

weed problems to evolve site specific appropriatemanagement techniques. Economic

feasibility isanother importantcriterion foracceptanceofanycroppingsystemby the

farming community. The large scale adoption of any improved cropping and farming

system by the farming community dependsmostly on socio-economic factors such as

labouravailability,creditrequirement,costofinputs,processing,marketabilityandpriceof

produce,riskinvolvedandsocialacceptabilityofthenewsystem.Thusbeforedesigninga

particular farming systemmodel, care should be given on its technical and economic

feasibility.

ReferencesBhattacharyyaP,SinhababuDP,RoyKS,DashPK,SahuPK,DandapatR,NogiS,Mohanty

Sangita(2013)Effectoffishspeciesonmethaneandnitrousoxideemissioninrelation

tosoilC,Npoolsandenzymaticactivitiesinrainfedshallowlowlandrice-fishfarming

system.Agriculture,EcosystemsandEnvironment176:53-62.

DasPCandSinhababuDP(1999)Seasonalchangesinthezooplanktonpopulationinrainfed

rice-fishsystem.JournalofAquaculture.7:55-58.

DasPC,JenaMandSinhababuDP(2005)Acutetoxicityofbotanicalpesticides,viz.,neemoil

(Azadirachtaindica) and Polygonumhydropiper leaf extracts, in fingerlings of

Catlacatla(Ham.).JournalofAquaculture.13:17-21

DattaA,NayakDR,SinhababuDPandAdhyaTK(2009)Methaneandnitrousoxideemission

from an integrated rainfed rice-fish farming system of Eastern India agriculture

EcosystemandEnvironment129:228–237

FAO(2012b)FAOSTAT,http://faostat.fao.org/site/339/default.aspx

FurunoT(2001)ThePowerofDuck(IntegratedRiceandDuckFarming)Australia:Tagari

Publications.

Gill MS, Singh JP and Gangwar KS (2010) Integrated farming system and agriculture

sustainability.IndianJournalofAgronomy54(2):128-39.

GovernmentofIndia(2009)EconomicSurveyofIndia,pp.199-200.http://Indiabudget.nic.in

JayanthiC(2002)SustainableFarmingSystemandlowlandfarmingofTamilNadu.IFSAdhoc

SchemeCompletionReport.

NedunchezhiyanM,SinhababuDP,SahuPKandPandeyV(2013)Growthandyieldofsweet

potato(IpomoeabatatasL.)inricefallows:Effectoftillageandvarieties.JournalofRoot

Crops39(2):110-116.

NayakPK,SinhababuDP, RaoKSandSahuPK(2008)OrnamentalFishes:Breedingand

CultureinRiceEcologies.CRRITechnologyBulletin33.CentralRiceResearchInstitute,

Cuttack,Orissa,India.

PandaMM,GhoshBCandSinhababuP(1987)Uptakeofnutrientsbyriceunderrice-cum-fish

cultureinintermediatedeepwatersituation(upto50cmwaterdepth).Plant&Soil

102:131-132.

PathakH,SamalPandShahidM(2018)RevitalizingRiceSystemsforEnhancingProductivity,

ProfitabilityandClimateResiliencepp1-17editedbyPathakH,NayakAK, JenaM,

SinghON,SamalPandSharmaSG(2018)RiceResearchforEnhancingprductivity,

ProfitabilityandClimateResilience, ICAR-NationalRiceResearch Institute,Cuttack

OdishaIndiapp275-289

Page 36: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1732 April, 2019 33

Patra,BCandSinhababuDP(1995)Weedfloraunderrainfedlowlandriceecosystemwith

referencetorice-fishsystem.Oryza32(2):121-124.

PoonamAnnie,SahaSanjoy,NayakPK,ShahidMd.(2016)Optimizationofriceplantdensity

forenhancinggrainyieldandgrowthoffishunderrice–fishsystemincoastallowlands

OralPresentationandabstractpp109at11thNationalSymposiumISCAR'Innovationsin

CoastalAgriculture-CurrentStatusandPotentialunderChangingEnvironmentatICAR-

IIWM,Bhubaneswarduring14-17January,2016.'

Ruaysoongnern S and Suphanchaimant N (2001) land-use patterns and agricultural

productionsystemswithemphasisonchangesdrivenbyeconomicforcesandmarket

integration.In:Kam,S.P.,Hoanh,C.T.,Trebuil,G.andHardy,B.(Eds.).Naturalresource

management issues in the Korat basin of northeast Thailand: An Overview.

Proceedings of the Planning Workshop on Ecoregional Approaches to Natural

Resource Management in the Korat Basin, Northeast Thailand: Towards Further

ResearchCollaboration,heldon26-29October1999,KhonKaen,Thailand.LosBanos

(Philippines):InternationalRiceResearchInstitute,pp67-77.

SanjeevKumar,SinghSS,ShivaniandDeyA(2011)IntegratedFarmingSystemsforEastern

India.IndianJournalofAgronomy56(4):297-304

SahaSanjoyandMoorthyBTS(2001)Performanceofsunflowerhybridsinrice-sunflower

croppingsequence.AgronomyDigest1:91-92.

Saha Sanjoy and Biswal GC (2004) Rainfall distribution pattern and its implication for

suitablecropplanningunderrainfedrice-basedcropproductionsysteminBalasore

districtofOrissa.PaperpresentedinNationalSymposiumon'Recentadvancesinrice-

basedfarmingsystems'heldatCRRI,Cuttackduring17–19Nov.p80–81.

SahaSanjoy,BeheraKSandDasLipi(2006)PanipagoODhanaChaso(Oriya).CRRITechnical

Bulletin,February,2006

SahaSanjoy,SinghDP,SinhababuDP,MahataKR,BeheraKSandPandeyMP(2007)Rice-based

productionsystemforfoodandlivelihoodsecurityineasterncoastalplain(leadpaper).

In International symp. on 'Management of coastal ecosystem : Technological

advancementandlivelihoodsecurity'byISCAR,Oct27-30,2007,Sciencecity,Kolkata,

WestBengal,p3-4.

SatapathyBS,SinghT,PunKBandRautraySK(2014)Assessmentofhighyieldingvarietiesof

rice(Oryzasativa)forintegratedrice-fish-horticulturefarmingsystemunderlowland

ecosystemofnortheasternIndia.Annalsof AgricultureResearchNewSeries.Vol.35

(2):188-192.

ShamimAlMamun,FouziaNusratandMomotaRaniDebi(2011)IntegratedFarmingSystem:Prospects

inBangladesh.JournalofEnvironmentalScience&NaturalResources4(2):127-136.

SinghK,BohraJS,SinghYandSinghJP(2006)Developmentoffarmingsystemmodelsforthe

north-easternplainzoneofUttarPradesh.IndianFarming56(2):5-11

Sinhababu DP and Majumdar N (1981) Evidence of feeding on brown plant hopper,

NilaparvatalugensStal.bycommoncarp,CyprinuscarpioL. JournalofInlandFishery

SocietyofIndia13(2):16-21.

SinhababuDP,GhoshBC,PandaMMandReddyBB(1983)Effectoffishongrowthandyieldof

riceunderrice-cum-fishculture.Oryza20(2):144-150.

SinhababuDP, PandaMMandGhoshBC (1992) Performance of rice and fish under the

application of FYM and fish feed in rainfed intermediate lowland (0-50 cm).

Oryza29:221-224.

Sinhababu DP (1996) Rice-fish system–an excellent choice for higher productivity and

sustainability inrainfedlowlands. Journalof the IndianSocietyCoastalAgricultural

Research.14(1&2):225-228.

Sinhababu DP and.Sarkar RK (1998) Protein content in rice and fish with the use of

organics under rice-fish seed system in rainfed shallow lowland situation.

Oryza35(2):181-183

SinhababuDP,JhaKP,MathurKCandAyyappanS(1998)Integratedfarmingsystem:rice-fish

for lowlandecologies.pp203-222.Ed.byMohanty, S.K. et.al. InProceedingsof the

International Symposium on Rainfed Rice for Sustainable Food Security. 23-25

September,1996.CentralRiceResearchInstitute,Cuttack,Orissa,India.516p.

SinhababuDPandRajamaniS(2000)Efficacyofinsecticidesandfeasibilityoftheirusein

rainfedlowlandrice-fishseedsystem.Oryza37(2):129-132.

SinhababuDP,SinghBN,MaityBK,SarangiN,VermaHN,PandeyH,PandaBK,NaikG,Naskar

SKandSatishKumarG(2006)CropRehabilitationandManagementforSupercyclone

HitCoastalAreasofOrissa.JournaloftheIndianSocietyCoastalAgriculturalResearch.

24(2),351-355.

Sinhababu DP andMahata KR (2007) Rice-fish diversified farming-a rainwater recyling

basedhighlyprofitablesysteminrainfedlowlandsineasternIndia.pp.,83-89.InWater

managementinFisheriesandAquaculture.VassK.K.,Sarangi.N,MitraKrishna,Jena

J.K.,SureshV.R.,Shrivastava,N.PandKatihaP.K(Eds).ProceedingsoftheNational

ConsultationsonwatermanagementinFisheriesandAquaculture,NewDelhi,India.

23-24June2006,200p.

SinhababuDP, SahaSanjoyand.SahuPK(2013)Performanceofdifferentfishspeciesfor

controllingweedsinrainfedlowlandricefield.BiocontrolScienceandTechnology,Vol.

23,No.12,1362–1372.

Page 37: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

NRRI Research Bulletin No. 1732 April, 2019 33

Patra,BCandSinhababuDP(1995)Weedfloraunderrainfedlowlandriceecosystemwith

referencetorice-fishsystem.Oryza32(2):121-124.

PoonamAnnie,SahaSanjoy,NayakPK,ShahidMd.(2016)Optimizationofriceplantdensity

forenhancinggrainyieldandgrowthoffishunderrice–fishsystemincoastallowlands

OralPresentationandabstractpp109at11thNationalSymposiumISCAR'Innovationsin

CoastalAgriculture-CurrentStatusandPotentialunderChangingEnvironmentatICAR-

IIWM,Bhubaneswarduring14-17January,2016.'

Ruaysoongnern S and Suphanchaimant N (2001) land-use patterns and agricultural

productionsystemswithemphasisonchangesdrivenbyeconomicforcesandmarket

integration.In:Kam,S.P.,Hoanh,C.T.,Trebuil,G.andHardy,B.(Eds.).Naturalresource

management issues in the Korat basin of northeast Thailand: An Overview.

Proceedings of the Planning Workshop on Ecoregional Approaches to Natural

Resource Management in the Korat Basin, Northeast Thailand: Towards Further

ResearchCollaboration,heldon26-29October1999,KhonKaen,Thailand.LosBanos

(Philippines):InternationalRiceResearchInstitute,pp67-77.

SanjeevKumar,SinghSS,ShivaniandDeyA(2011)IntegratedFarmingSystemsforEastern

India.IndianJournalofAgronomy56(4):297-304

SahaSanjoyandMoorthyBTS(2001)Performanceofsunflowerhybridsinrice-sunflower

croppingsequence.AgronomyDigest1:91-92.

Saha Sanjoy and Biswal GC (2004) Rainfall distribution pattern and its implication for

suitablecropplanningunderrainfedrice-basedcropproductionsysteminBalasore

districtofOrissa.PaperpresentedinNationalSymposiumon'Recentadvancesinrice-

basedfarmingsystems'heldatCRRI,Cuttackduring17–19Nov.p80–81.

SahaSanjoy,BeheraKSandDasLipi(2006)PanipagoODhanaChaso(Oriya).CRRITechnical

Bulletin,February,2006

SahaSanjoy,SinghDP,SinhababuDP,MahataKR,BeheraKSandPandeyMP(2007)Rice-based

productionsystemforfoodandlivelihoodsecurityineasterncoastalplain(leadpaper).

In International symp. on 'Management of coastal ecosystem : Technological

advancementandlivelihoodsecurity'byISCAR,Oct27-30,2007,Sciencecity,Kolkata,

WestBengal,p3-4.

SatapathyBS,SinghT,PunKBandRautraySK(2014)Assessmentofhighyieldingvarietiesof

rice(Oryzasativa)forintegratedrice-fish-horticulturefarmingsystemunderlowland

ecosystemofnortheasternIndia.Annalsof AgricultureResearchNewSeries.Vol.35

(2):188-192.

ShamimAlMamun,FouziaNusratandMomotaRaniDebi(2011)IntegratedFarmingSystem:Prospects

inBangladesh.JournalofEnvironmentalScience&NaturalResources4(2):127-136.

SinghK,BohraJS,SinghYandSinghJP(2006)Developmentoffarmingsystemmodelsforthe

north-easternplainzoneofUttarPradesh.IndianFarming56(2):5-11

Sinhababu DP and Majumdar N (1981) Evidence of feeding on brown plant hopper,

NilaparvatalugensStal.bycommoncarp,CyprinuscarpioL. JournalofInlandFishery

SocietyofIndia13(2):16-21.

SinhababuDP,GhoshBC,PandaMMandReddyBB(1983)Effectoffishongrowthandyieldof

riceunderrice-cum-fishculture.Oryza20(2):144-150.

SinhababuDP, PandaMMandGhoshBC (1992) Performance of rice and fish under the

application of FYM and fish feed in rainfed intermediate lowland (0-50 cm).

Oryza29:221-224.

Sinhababu DP (1996) Rice-fish system–an excellent choice for higher productivity and

sustainability inrainfedlowlands. Journalof the IndianSocietyCoastalAgricultural

Research.14(1&2):225-228.

Sinhababu DP and.Sarkar RK (1998) Protein content in rice and fish with the use of

organics under rice-fish seed system in rainfed shallow lowland situation.

Oryza35(2):181-183

SinhababuDP,JhaKP,MathurKCandAyyappanS(1998)Integratedfarmingsystem:rice-fish

for lowlandecologies.pp203-222.Ed.byMohanty, S.K. et.al. InProceedingsof the

International Symposium on Rainfed Rice for Sustainable Food Security. 23-25

September,1996.CentralRiceResearchInstitute,Cuttack,Orissa,India.516p.

SinhababuDPandRajamaniS(2000)Efficacyofinsecticidesandfeasibilityoftheirusein

rainfedlowlandrice-fishseedsystem.Oryza37(2):129-132.

SinhababuDP,SinghBN,MaityBK,SarangiN,VermaHN,PandeyH,PandaBK,NaikG,Naskar

SKandSatishKumarG(2006)CropRehabilitationandManagementforSupercyclone

HitCoastalAreasofOrissa.JournaloftheIndianSocietyCoastalAgriculturalResearch.

24(2),351-355.

Sinhababu DP andMahata KR (2007) Rice-fish diversified farming-a rainwater recyling

basedhighlyprofitablesysteminrainfedlowlandsineasternIndia.pp.,83-89.InWater

managementinFisheriesandAquaculture.VassK.K.,Sarangi.N,MitraKrishna,Jena

J.K.,SureshV.R.,Shrivastava,N.PandKatihaP.K(Eds).ProceedingsoftheNational

ConsultationsonwatermanagementinFisheriesandAquaculture,NewDelhi,India.

23-24June2006,200p.

SinhababuDP, SahaSanjoyand.SahuPK(2013)Performanceofdifferentfishspeciesfor

controllingweedsinrainfedlowlandricefield.BiocontrolScienceandTechnology,Vol.

23,No.12,1362–1372.

Page 38: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity
Page 39: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity
Page 40: NRRI Research Bulletin No. 17 Rice ‒ Fish Integrated ...icar-nrri.in/wp-content/uploads/2019/07/3.-NRRI_Research-Bulletin-No.-17.pdfIntegrated farming system (IFS) provides an opportunity

ICAR-National�Rice�Research�InstituteIndian�Council�of�Agricultural�Research

Cuttack,�Odisha�753006www.icar-nrri.in