notes_2_predicatelogic (1)

Upload: rosemond-fabien

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 NOTES_2_predicateLogic (1)

    1/61

    Discrete Mathematicsand Applications

    COT3100

    Prof: A. Ungor

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    2/61

    COT31002

    Foundations of

    Logic: Overview • Propositional logic: (Sections 1.1-1.3)

    • Basic definitions.

    • Equivalence rules & derivations.

    • Predicate logic (Section 1.4, 1.5)

    • Predicates.

    • Quantified predicate expressions.

    • Equivalences & derivations.

    • Nested Quantifiers

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    3/61

    COT31003

    Predicate Logic

    •  Predicate logic is an extension of propositional logic

    that permits concisely reasoning about whole classes 

    of entities.

      E.g., “x>1”, “ x+y=10”

    • Such statements are neither true or false whenthe values of the variables  are not specified. 

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    4/61

    COT31004

     Applications of

    Predicate Logic• It is the formal notation for writing perfectly

    clear, concise, and unambiguous

    mathematical definitions, axioms, and theoremsfor any branch of mathematics.

    • Supported by some of the more sophisticateddatabase query engines.

    • Basis for automatic theorem provers and manyother Artificial Intelligence systems.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    5/61

    COT31005

    Subjects and

    Predicates• The proposition

    “The dog is sleeping”has two parts:

    • “the dog” denotes the subject  - the object  or entity

    that the sentence is about.

    • “is sleeping” denotes the predicate-

    .

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    6/61

    COT31006

    Propositional

    Functions• A predicate is modeled as a function  P (·) from

    objects to propositions.

    ° P ( x) = “ x is sleeping” (where x is any object).

    • The result of  applying  a predicate P  to an object x=a is the proposition P (a).

    °e.g. if P (

     x) = “ x > 1”,  then P (3) is the proposition “3 is greater than 1.”

    •  

    The predicate P  itself  (e.g. P =“is sleeping”)is not a proposition (not a complete sentence).

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    7/61

    COT31007

    Propositional

    Functions

    • Predicate logic includes propositional

    functions of any number of arguments.

      e.g. let P ( x, y,z ) = “ x gave y the grade z ”,

     x=“Mike”, y=“Mary”, z =“A”,

     P ( x, y, z ) = “Mike gave Mary the grade A.”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    8/61

    COT31008

    Universe of

    Discourse

    •The collection of values that a variable x can takeis called x"s universe of discourse.

      e.g., let P ( x)=“ x+1> x”.

    we could define the course of universe as the.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    9/61

    COT31009

    Quantifier

    Expressions• Quantifiers allow us to quantify (count) how many 

    objects in the universe of discourse satisfy a given

    predicate:

      - “!” is the FOR!LL or universal  quantifier.

      ! x  P ( x) means ., P  holds.

      - “"” is the "XISTS or existential  quantifier.

      " x P ( x) means (that

    is, one or more) such that P ( x) is true.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    10/61

    COT310010

    Universal Quantifier

    !: Example

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    11/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    12/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    13/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The universal quantification of P ( x),

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    14/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The universal quantification of P ( x),

    ! x  P ( x), is the proposition:

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    15/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The universal quantification of P ( x),

    ! x  P ( x), is the proposition:

    • “All parking spaces at UF are full.” or

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    16/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The universal quantification of P ( x),

    ! x  P ( x), is the proposition:

    • “All parking spaces at UF are full.” or

    • “Every parking space at UF is full.” or

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    17/61

    COT310010

    Universal Quantifier

    !: Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The universal quantification of P ( x),

    ! x  P ( x), is the proposition:

    • “All parking spaces at UF are full.” or

    • “Every parking space at UF is full.” or

    • “For each parking space at UF, that space is full.”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    18/61

    COT310011

    The Universal

    uantifier !

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    19/61

    COT310011

    The Universal

    uantifier !• To prove that a statement of the form

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    20/61

    COT310011

    The Universal

    uantifier !• To prove that a statement of the form

    ! x  P ( x) is false, it suffices to find acounterexample (i.e., one value of x in the

    universe of discourse such that P ( x) is false)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    21/61

    COT310011

    The Universal

    uantifier !• To prove that a statement of the form

    ! x  P ( x) is false, it suffices to find acounterexample (i.e., one value of x in the

    universe of discourse such that P ( x) is false)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    22/61

    COT310011

    The Universal

    uantifier !• To prove that a statement of the form

    ! x  P ( x) is false, it suffices to find acounterexample (i.e., one value of x in the

    universe of discourse such that P ( x) is false)

    • e.g., P ( x) is the predicate “x>0”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    23/61

    COT310012

    Existential Quantifier

    " Example

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    24/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    25/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    26/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The existential quantification of P ( x),

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    27/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The existential quantification of P ( x),

    " x  P ( x), is the proposition:

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    28/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The existential quantification of P ( x),

    " x  P ( x), is the proposition:

    •“Some parking space at UF is full.” or

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    29/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The existential quantification of P ( x),

    " x  P ( x), is the proposition:

    •“Some parking space at UF is full.” or

    • “There is a parking space at UF that is full.” or

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    30/61

    COT310012

    Existential Quantifier

    " Example• Let P ( x) be the predicate “ x is full.”

    • Let the u.d. of x be .

    • The existential quantification of P ( x),

    " x  P ( x), is the proposition:

    •“Some parking space at UF is full.” or

    • “There is a parking space at UF that is full.” or

    • “At least one parking space at UF is full.”

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    31/61

    COT310013

    Quantifier

    Equivalence Laws• Definitions of quantifiers: If u.d.=a,b,c,…

    ! x P ( x) #  P (a) $  P (b) $  P (c) $ …

    " x P ( x) #  P (a) %  P (b) %  P (c) % …

    • We can prove the following laws:

    ! x P ( x) # ¬" x ¬ P ( x)

    " x P ( x)

    # ¬!

     x¬

     P ( x)

    • Which propositional  equivalence laws can be

    used to prove this?

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    32/61

    COT310013

    Quantifier

    Equivalence Laws• Definitions of quantifiers: If u.d.=a,b,c,…

    ! x P ( x) #  P (a) $  P (b) $  P (c) $ …

    " x P ( x) #  P (a) %  P (b) %  P (c) % …

    • We can prove the following laws:

    ! x P ( x) # ¬" x ¬ P ( x)

    " x P ( x)

    # ¬!

     x¬

     P ( x)

    • Which propositional  equivalence laws can be

    used to prove this?

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    33/61

    COT310014

    More Equivalence

    Laws•   ¬" x P ( x) # ! x ¬ P ( x)

    ¬! x P ( x) # " x ¬ P ( x)

    •   ! x ! y P ( x, y) # ! y ! x P ( x, y)

    " x " y P ( x, y) # " y " x P ( x, y)

    •   ! x ( P ( x) $ Q( x)) # (! x P ( x)) $ (! x Q( x))

    " x ( P ( x) % Q( x)) # (" x P ( x)) % (" x Q( x))

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    34/61

    COT310015

    Scope of Quantifiers

    • The part of a logical expression to which a

    quantifier is applied is called the scope of thisquantifier.

      e.g., (! x  P ( x)) $ (" y Q( y))

      e.g., (! x  P ( x)) $ (" x Q( x))

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    35/61

    COT310016

    Free and Bound

     Variables• An expression like P ( x) is said to have a free

    variable  x (meaning x is undefined).

    • A quantifier (either ! or ") operates on an

    expression having one or more free variables,and binds one or more of those variables, to

    produce an expression having one or morebound  variables.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    36/61

    COT310017

    Examples of

    Binding • P ( x,y) has 2 free variables, x and y.

    •   ! x  P ( x, y) has 1 free variable, and one bound

    variable. [which is which?]

    • “ P ( x), where x=3” is another way to bind x.

    • An expression with free variables is an

    actual proposition.

    • An expression with one or more free variables is

    still only a predicate: ! x  P ( x, y)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    37/61

    COT310017

    Examples of

    Binding • P ( x,y) has 2 free variables, x and y.

    •   ! x  P ( x, y) has 1 free variable, and one bound

    variable. [which is which?]

    • “ P ( x), where x=3” is another way to bind x.

    • An expression with free variables is an

    actual proposition.

    • An expression with one or more free variables is

    still only a predicate: ! x  P ( x, y)

     y

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    38/61

    COT310017

    Examples of

    Binding • P ( x,y) has 2 free variables, x and y.

    •   ! x  P ( x, y) has 1 free variable, and one bound

    variable. [which is which?]

    • “ P ( x), where x=3” is another way to bind x.

    • An expression with free variables is an

    actual proposition.

    • An expression with one or more free variables is

    still only a predicate: ! x  P ( x, y)

     y

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    39/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    40/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    41/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    42/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    43/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    44/61

    COT3100 18

    More to Know

     About Binding •   ! x " x P ( x) - x is not a free variable in" x P ( x), therefore the ! x binding isn"t used.

    • (! x  P ( x)) $ Q( x) - The variable x is outside of

    the scope of the ! x quantifier, and istherefore free. Not a proposition.

    • (! x  P ( x)) $ (" x Q( x)) - Legal because there

    are 2  x"s!

    • Quantifiers bind as loosely as needed:parenthesize ! x P ( x) $ Q( x)( )

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    45/61

    COT3100 19

    Nested Quantifiers

    Exist within the scope of other quantifiers

    • Let the u.d. of x & y be people.

    • Let P ( x, y)=“ x likes y” (a predicate with 2 f.v."s)

    • Then " y P ( x,y) = “There is someone whom x 

    likes.” (a predicate with 1 free variable, x)

    • Then ! x (" y P ( x,y)) = “Everyone has someone

    whom they like.”

    (A __________ with ___ free variables.)

    (Section 1.5)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    46/61

    COT3100 19

    Nested Quantifiers

    Exist within the scope of other quantifiers

    • Let the u.d. of x & y be people.

    • Let P ( x, y)=“ x likes y” (a predicate with 2 f.v."s)

    • Then " y P ( x,y) = “There is someone whom x 

    likes.” (a predicate with 1 free variable, x)

    • Then ! x (" y P ( x,y)) = “Everyone has someone

    whom they like.”

    (A __________ with ___ free variables.)

    (Section 1.5)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    47/61

    COT3100 19

    Nested Quantifiers

    Exist within the scope of other quantifiers

    • Let the u.d. of x & y be people.

    • Let P ( x, y)=“ x likes y” (a predicate with 2 f.v."s)

    • Then " y P ( x,y) = “There is someone whom x 

    likes.” (a predicate with 1 free variable, x)

    • Then ! x (" y P ( x,y)) = “Everyone has someone

    whom they like.”

    (A __________ with ___ free variables.)

    (Section 1.5)

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    48/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    49/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Everyone has someone to rely on.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    50/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Everyone has someone to rely on.

    There’s a poor overworked soulwhom everyone relies upon

    (including himself)!

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    51/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Everyone has someone to rely on.

    There’s a poor overworked soulwhom everyone relies upon

    (including himself)!There’s some needy person who

    relies upon everybody (including

    himself).

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    52/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Everyone has someone to rely on.

    There’s a poor overworked soulwhom everyone relies upon

    (including himself)!There’s some needy person who

    relies upon everybody (including

    himself).Everyone has someone who reliesupon them.

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    53/61

    COT3100 20

    Order of Quantifiers Is

    Important!!

    If P ( x, y)=“ x relies upon y,” express the following in

    unambiguous English:

    ! x(" y P ( x,y))=

    " y(! x  P ( x,y))=

    " x(! y P ( x,y))=

    ! y(" x P ( x,y))=

    ! x(! y P ( x,y))=

    Everyone has someone to rely on.

    There’s a poor overworked soulwhom everyone relies upon

    (including himself)!There’s some needy person who

    relies upon everybody (including

    himself).Everyone has someone who reliesupon them.

     Everyone relies upon everybody,

    (including themselves)!

    Sunday, January 12, 2014

    N t l l g g i

  • 8/17/2019 NOTES_2_predicateLogic (1)

    54/61

    COT3100 21

    Natural language is

    ambiguous!• “Everybody likes somebody.”

    • For everybody, there is somebody they like,

    •   ! x " y  Likes( x, y)

    • or, there is somebody (a popular person) whomeveryone likes?

    •   " y ! x  Likes( x, y)

    Sunday, January 12, 2014

    N t l l g g i

  • 8/17/2019 NOTES_2_predicateLogic (1)

    55/61

    COT3100 21

    Natural language is

    ambiguous!• “Everybody likes somebody.”

    • For everybody, there is somebody they like,

    •   ! x " y  Likes( x, y)

    • or, there is somebody (a popular person) whomeveryone likes?

    •   " y ! x  Likes( x, y)

    Sunday, January 12, 2014

    N t l l g g i

  • 8/17/2019 NOTES_2_predicateLogic (1)

    56/61

    COT3100 21

    Natural language is

    ambiguous!• “Everybody likes somebody.”

    • For everybody, there is somebody they like,

    •   ! x " y  Likes( x, y)

    • or, there is somebody (a popular person) whomeveryone likes?

    •   " y ! x  Likes( x, y)

    [Probably more likely.]

    Sunday, January 12, 2014

    N t ti l

  • 8/17/2019 NOTES_2_predicateLogic (1)

    57/61

    COT3100 22

    Notational

    Conventions• Consecutive quantifiers of the same type

    can be combined: ! x ! y ! z P ( x, y, z ) #! x,y,z P ( x, y, z ) or even ! xyz P ( x, y, z )

    • Sometimes the universe of discourse isrestricted within the quantification, e.g.,

    •   ! x>0 P ( x) is shorthand for

    “For all x that are greater than zero, P ( x).”

    •   " x>0 P ( x) is shorthand for“There is an x greater than zero such that P ( x).”

    Sunday, January 12, 2014

    D fi i g N

  • 8/17/2019 NOTES_2_predicateLogic (1)

    58/61

    COT3100 23

    Defining New

    uantifiersAs per their name, quantifiers can be used to express

    that a predicate is true of any given quantity 

    (number) of objects.

    Define "! x  P ( x) to mean “ P ( x) is true of exactly one  x in

    the universe of discourse.”

    "! x  P ( x) # " x ( P ( x) $ ¬" y ( P ( y) $ y& x))“There is an x such that P ( x), where there is no y 

    such that P( y) and y is other than x.”

    Sunday, January 12, 2014

    S N b

  • 8/17/2019 NOTES_2_predicateLogic (1)

    59/61

    COT3100 24

    Some Number

    Theor Examples• Let u.d. = the natural numbers 0, 1, 2, …

    • “A number x is even, E ( x), if and only if it is

    equal to 2 times some other number.”

    ! x ( E ( x) ' (" y x=2 y))

    • “A number is prime, P ( x), iff it isn"t the product

    of two non-unity numbers.”

    ! x ( P ( x) ' (¬" y,z x= yz  $  y&1 $  z &1))

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    60/61

    COT3100 25

    Calculus Example

    • Precisely defining the concept of a limit using

    quantifiers:

    (limx→a f (x) = L) ⇔

    (∀ > 0 : ∃δ  > 0 : (|x− a| <  δ ) → (�f (x) − L| <  ))

    Sunday, January 12, 2014

  • 8/17/2019 NOTES_2_predicateLogic (1)

    61/61

    Reading 

    • Sections 1.6-1.8