notes on bipolar thermal conductivity - nanohub.org

8
1 Notes on Bipolar Thermal Conductivity Mark Lundstrom Purdue University October 26, 2017 1. Electronic thermal conductivity………………………………..1 2. Lorenz number…………………………………………………………..3 3. Physical picture of bipolar thermal conduction………..4 4. References………………………………………………………………….8 1. Electronic thermal conductivity Basic equations: σ = σ E ( ) dE −∞ += σ n + σ p (1a) S = 1 qT E E F ( ) σ E ( ) dE −∞ +σ E ( ) dE −∞ +(1b) S T = 1 qT E E F ( ) σ E ( ) dE −∞ += S Tn + S Tp (1c) κ 0 = 1 q 2 T E E F ( ) 2 σ E ( ) dE −∞ += κ 0 n + κ 0 p (1d) κ e = κ 0 Tσ S 2 . (1e) The quantities, σ , S T , and κ 0 add; if we have two bands, we just add the contribution from each band. The quantities, S and κ e do not add. It is easy to show that S = σ n S n + σ p S p σ n + σ p . (2)

Upload: others

Post on 23-Apr-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Notes on Bipolar Thermal Conductivity - nanoHUB.org

1

NotesonBipolarThermalConductivity

MarkLundstromPurdueUniversityOctober26,2017

1. Electronicthermalconductivity………………………………..12. Lorenznumber…………………………………………………………..33. Physicalpictureofbipolarthermalconduction………..44. References………………………………………………………………….8

1.ElectronicthermalconductivityBasicequations:

σ = ′σ E( )dE

−∞

+∞

∫ =σ n +σ p (1a)

S = − 1qT

E − EF( ) ′σ E( )dE−∞

+∞

′σ E( )dE−∞

+∞

∫ (1b)

ST = − 1

qTE − EF( ) ′σ E( )dE

−∞

+∞

∫ = STn + STp (1c)

κ 0 =

1q2T

E − EF( )2′σ E( )dE

−∞

+∞

∫ =κ 0n +κ 0 p (1d)

κ e =κ 0 −Tσ S 2 . (1e)Thequantities,σ , ST ,and κ 0 add;ifwehavetwobands,wejustaddthecontributionfromeachband.Thequantities, S and κ e donotadd.Itiseasytoshowthat

S =

σ nSn +σ pSp

σ n +σ p

. (2)

Page 2: Notes on Bipolar Thermal Conductivity - nanoHUB.org

2

From(1e)wefind:

κ e =κ 0n +κ 0 p −T σ n +σ p( ) σ nSn +σ pSp

σ n +σ p

⎣⎢⎢

⎦⎥⎥

2

. (3)

Nowwritethisas

κ e = κ 0n −Tσ nSn( ) + κ 0 p −Tσ pSp( )+ T

σ n +σ p( ) − σ nSn +σ pSp( )2

+ σ n +σ p( )σ nSn + σ n +σ p( )σ pSp⎡⎣⎢

⎤⎦⎥. (4)

Theelectronicthermalconductivityfortheconductionbandaloneis

κ e =κ 0n −Tσ nSn , (5a)andforthevalencebandalone,

κ p =κ 0 p −Tσ pSp , (5b)

Using(5a)and(5b)in(4):

κ e =κ en +κ ep +T

σ n +σ p( ) ×

− σ nSn +σ pSp( )2

+ σ n +σ p( )σ nSn2 + σ n +σ p( )σ pSp

2⎡⎣⎢

⎤⎦⎥

(6)

κ e =κ en +κ ep +T

σ n +σ p( ) ×−σ n

2Sn2 −σ p

2Sp2 − 2σ nσ pSnSp +σ n

2Sn2 +σ pσ nSn

2 +σ p2Sp

2 +σ nσ pSp2⎡⎣ ⎤⎦

κ e =κ en +κ ep +

Tσ n +σ p( ) × −2σ nσ pSnSp +σ pσ nSn

2 +σ nσ pSp2⎡⎣ ⎤⎦

Page 3: Notes on Bipolar Thermal Conductivity - nanoHUB.org

3

κ e =κ en +κ ep +T

σ nσ p

σ n +σ p( ) × −2SnSp + Sn2 + Sp

2⎡⎣ ⎤⎦

κ e =κ en +κ ep +Tσ nσ p

σ n +σ p( ) Sp − Sn( )2. (7)

Thisisouranswer.Theelectronicthermalconductivityconsistsofacontributionduetotheconductionbandalone,anothercontributionduetothevalencebandalone,andabipolarcontribution.Itiseasytoseethatthebipolarcontributionisimportantonlywhen

σ n ≈σ p .2.LorenzNumberTheLorenznumberwegetincludingbipolarconductionis:

L = κ e

σT (8)

L = κ en

σ nTσ n

σ n +σ p( ) +κ ep

σ pTσ p

σ n +σ p( ) +σ nσ p

Sp − Snσ n +σ p

⎝⎜⎞

⎠⎟

2

Thefirsttwotermsin(8)areeasytounderstand–theyrepresenttheweightedcontributionsfromeachofthetwobands.Thethirdtermrequiressomediscussion.Toestimatethemagnitudeofthebipolarcontributions,assumethat

σ n ≈σ p ,then

L = κ en

2σ nT+

κ ep

2σ pT+Sp − Sn( )24

Wealsoknowthatatmid-gap:

Sp ≈ −Sn = S ≈EG

2qT.

ThenormalizedLorenznumberis

′L = L

kB q( )2= κ en

2σ nT kB q( )2+

κ ep

2σ pT kB q( )2+ EG

2kBT⎛⎝⎜

⎞⎠⎟

2

Page 4: Notes on Bipolar Thermal Conductivity - nanoHUB.org

4

SothebipolarcontributiontothenormalizedLorenznumberis

′Lbipolar =

EG

2kBT⎛⎝⎜

⎞⎠⎟

2

. (9)

3.Physicalpictureofbipolarthermalconduction

J =σ

dEF

dx−σ S

dTdx (10)

JQ = Tσ S

dEF

dx−κ 0

dTdx (11)

Case1:Holesonly.Underopen-circuitconditions:

J p =σ p

dEF

dx−σ pSp

dTdx

= 0 (12)

dEF

dx= Sp

dTdx (13)

Insert(13)in(11)

JQ = Tσ pSp

2 dTdx

−κ 0

dTdx

= Tσ pSp2 −κ 0

⎡⎣ ⎤⎦dTdx

JQ = − κ 0 −Tσ pSp

2⎡⎣ ⎤⎦dTdx

= −κ e

dTdx

. (14)

ThephysicalpictureisshowninFig.1below.Theelectricalcurrentiszero,buttheheatcurrentisnotzero.Hotterholesmovetotheleft,andcoolerholesmovetotheright.

Page 5: Notes on Bipolar Thermal Conductivity - nanoHUB.org

5

Fig.1. Illustrationofholecurrentflowunderelectricallyopencircuitconditions

withatemperaturegradientapplied.HolediffusiondownthetemperaturegradientanduptheQFLgradientpreciselybalanceelectricallybutnotthermally.

Nowconsiderwhathappenswhentherearebothelectronsandholes.From(10):

J p + Jn = σ p +σ n( ) dEF

dx− σ pSp +σ nSn( ) dT

dx= 0 (15)

dEF

dx=

σ pSp +σ nSn

σ p +σ n

⎝⎜

⎠⎟

dTdx

(16)

ThisgradientoftheQFLdrivesboththeholeandelectroncurrents,anditdependsonboththeholeandelectronconductivities.Compare(16)to(13).Since Sn isnegative,thenumeratorof(6)isreduced,andthedenominatorisalsolarger,sothegradientoftheQFLisreduced.Accordingly,thefirsttermontheRHSof(12)isreduced,sonow

J p ≠ 0 ; J p < 0. Thereisanetholecurrenttotheleft.

Whatdirectionistheelectroncurrent?Fortheelectroncurrent,webeginwith(10)fortheconductionband:

Jn =σ n

dEF

dx−σ nSn

dTdx

(17)

Nowuse(16)in(17):

Jn =σ n

σ pSp +σ nSn

σ p +σ n

⎝⎜

⎠⎟

dTdx

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪−σ nSn

dTdx

(18)

TheelectroncurrentdependsontheholeconductivityandholeSoretcoefficient,becausetheydeterminethegradientoftheQFL.From(18)

Page 6: Notes on Bipolar Thermal Conductivity - nanoHUB.org

6

Jn =

σ nσ pSp

σ p +σ n

⎝⎜

⎠⎟

dTdx

+σ n

2Sn

σ p +σ n

⎝⎜

⎠⎟

dTdx

−σ pσ nSn

σ p +σ n

⎝⎜

⎠⎟

dTdx

−σ n

2Sn

σ p +σ n

⎝⎜

⎠⎟

dTdx

Jn =

σ nσ p

σ p +σ n

Sp − Sn( ) > 0 (19)

Theelectroncurrentispositive;electronsflowtotheleft.Nowuse(16)in(12)toexaminetheholecurrent.

J p =σ p

σ pSp +σ nSn

σ p +σ n

⎝⎜

⎠⎟

dTdx

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪−σ pSp

dTdx

J p = −

σ nσ p

σ p +σ n

Sp − Sn( ) dTdx

= −Jn (20)

Theholecurrentisnegative;holesalsoflowtotheleft.Thephysicalpictureisshownbelow–bothelectronsandholesflowtotheleftandrecombineatthecontact,butthecurrentsareinoppositedirections,sotheycancel.

Fig.2 Illustrationofholeandelectroncurrentflowunderelectricallyopencircuitconditionswithatemperaturegradientapplied.MinoritycarriershaveloweredtheQFLgradientssothatholediffusiondownthetemperaturegradientanduptheQFLgradientnolongerpreciselybalanceelectrically.Holesflowtotheleftcontactatpreciselythesamerateatwhichelectronsflowtotheleftcontact.Inthecontact,electronsandholesrecombine,givingupanenergyalittlelargerthanthebandgap.Thisprocessconstitutesthebipolarheatconduction.

Page 7: Notes on Bipolar Thermal Conductivity - nanoHUB.org

7

Discussion:WearemostinterestedinextrinsicsamplesdopedtooperateatmaximumzT.Consideranextrinsic,p-typesample:

σ p >>σ n .Equation(20)becomes

J p = −σ n Sp − Sn( ) dT

dx= −Jn . (21)

Theminoritycarrierconductivitycontrolsbothcurrents.When σ n → 0 , J p → 0 ,as

consideredinCase1.ThephysicsofbipolarheatconductionwasillustratedinFig.2.Howcanweunderstandthisbetter?Recalltheelectronicthermalconductivityfrom(7):

κ e =κ en +κ ep +T

σ nσ p

σ n +σ p( ) Sp − Sn( )2. (22)

Theheatcarriedbythebipolarcomponentis

JQ

bip = −κ bip

dTdx

= −Tσ nσ p

σ n +σ p( ) Sp − Sn( )2 dTdx

. (23)

Howdoesthisrelatetotheelectricalcurrent?From(20),wefind

J p = −

σ nσ p

σ p +σ n

Sp − Sn( ) dTdx

, (24)

whichcanbeusedin(13)towrite

JQbip

J p

= T Sp − Sn( ) , (25)

whichhasanicephysicalinterpretationasdiscussedbelow.RecallthattheSeebeckcoefficientisrelatedtotheaverageenergyatwhichcurrentflows, EJ ,withrespecttotheFermilevel:

S = −

EJ − EF

qT. (26)

Fortheconductionband,

Sn = −

EC + Δn − EF

qT. (27a)

andforthevalenceband,

Sp = −

EV − Δ p − EF

qT. (27b)

Page 8: Notes on Bipolar Thermal Conductivity - nanoHUB.org

8

Here, Δn ishowfarabovethebottomoftheconductionbandcurrentflows( Δn = 2kBT foranon-degeneratesemiconductor,and

Δ p ishowfarbelowthetopofthevalencebandcurrentflows.)Using(27a)and(27b)in(25),wefind

JQbip

J p

=EG + Δn + Δ p( )

q (28)

or

JQ

bip = EG + Δn + Δ p( ) J p q( ) (29)

Thephysicalinterpretationisthatthefluxofelectronsandholestothecontact(

Jn q = − J p q )timestheenergygivenupwhentheyrecombine(slightlylargerthanthebandgap)representsbipolarheatflow.

References

G.BuschandM.Schneider,“HeatConductioninSemiconductors,”PhysicaXX.No.11,p.1084,1954AmsterdamConferenceonSemiconductors,1954.H.FrohlichandC.Kittel.“RemarkonthePaperbyProf.G.Busch,”PhysicaXX.No.11,p.1086,1954AmsterdamConferenceonSemiconductors,1954.H.J.Goldsmid,“TheThermalConductivityofBismuthTelluride,”Proc.Phys.Soc.,LXIX,2-B,1955.AndrewF.May,EricS.Toberer,AliSaramat,andG.JeffreySnyder,“Characterizationandanalysisofthermoelectrictransportinn-typeBa8Ga16−xGe30+x,”PhysicalReviewB80,125205,2009.ShanyuWang1,JiongYang1,TrevorToll,JihuiYang,WenqingZhang,andXinfengTang,“Conductivity-limitingbipolarthermalconductivityinsemiconductors,”ScientificReports,5,10136,DOI:10.1038/srep10136,2015.LibinZhang,PenghaoXiao,LiShi,GraemeHenkelman,JohnB.Goodenough,andJianshiZhou,“SuppressingthebipolarcontributiontothethermoelectricpropertiesofMg2Si0.4Sn0.6byGesubstitution,”JournalofAppliedPhysics,117,155103,2015.MischaThesbergandHansKosina,“OntheLorenznumberofmultibandmaterials,”PhysicalReview,B,95,125206,2017.