notes lecture 1 conformational analysis

Upload: dianing-wismarani-putri

Post on 01-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    1/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    2/18

    Chem 531D. A. Evans, F. Michael   Acyclic Conformational Analysis-1

    The following discussion is intended to provide a generaloverview of acyclic conformational analysis

    Carey & Sundberg, Advanced Organic Chemistry, Part A. Chapter 3Conformational, Steric and Stereoelectronic Effects

    R. W. Hoffmann, Chem. Rev . 1989, 89, 1841-1860 Allylic 1-3-Strain as a Controlling Element in Stereoselective Transformations

    Ethane & Propane

    ∆ E = +3.4 kcal mol-1 (R = Me)

    staggeredconformation

    eclipsedconformation

    ∆ E = +3.0 kcal mol-1 (R = H)

    1 x 1.4

    2 x 1.0

    Incremental contributions to the barrier:

    3 x 1.0

    1 (H↔Me)

    2 (H↔H)

    3 (H↔H)

    propane

    ethane

    ∆E (kcal/mol)Eclipsed atomsStructure

    For purposes of analysis, each eclipsed conformer may be broken up into its

    component destabilizing interactions.

    Ethane Rotational Barrier: The FMO View 

    One can see from space-filling models that the van der Waals radii of thehydrogens do not overlap in the eclipsed ethane conformation. This makes thesteric argument for the barrier untenable.

     An alternative explanation for the rotational barrier in ethane is that betterhyperconjugative overlap is possible in the staggered conformation than in theeclipsed conformation as shown below.

    σ* C–H

    LUMO

    σ C–H

    HOMO

    In the staggered conformation there are 3 anti-periplanar C–H Bonds

    σ C–H

    HOMO

    σ* C–H

    LUMO

    σ C–H

    σ∗ C–H

    In the eclipsed conformation there are 3 syn-periplanar C–H Bonds

    σ∗ C–H

    σ C–H

    Following this argument one might conclude that: 

     The staggered conformer has a better orbital match between bonding andantibonding states.

     The staggered conformer can form more delocalized molecular orbitals.

    R

    C

    H

    HC

    H

    HHH

    RH

    H

    H

    H

    C C

    C CC

    H

    C

    H

    C C

    HH

    Eliel & Wilen, Stereochemistry of Organic Compounds, Wiley, 1994

    Me

    Me

    Me Calculate the the rotational barrier about the C1-C2bond in isobutane

    H   H

    H

    H

    3.4

    3.0

    Conventional Explanation: Steric interaction between eclipsed groups.

    Big debate: See:Pophristic, V. Nature, 2001, 411, 565. (It's not sterics)Bickelhaupt, F. M. Angew. Chem., Int. Ed. 2003, 42 , 4183. (Yes, it is)Weinhold, F. Angew. Chem., Int. Ed. 2003, 42 , 4188. (No, it's not)

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    3/18

    Chem 531D. A. Evans, F. Michael   Acyclic Conformational Analysis: Butane

    The 1,2-Dihaloethanes

    X = Cl; ∆H° = + 0.9–1.3 kcal/molX = Br; ∆H° = + 1.4–1.8 kcal/mol

    X = F; ∆H° = – 0.6-0.9 kcal/mol

    Eliel. page 609

    Observation: While the anti conformers are favored for X = Cl, Br, the gaucheconformation is prefered for 1,2-difluroethane. Explain.

    X

    C

    X

    H

    HH

    H

    H

    C

    X

    H

    HH

    X

    Discuss with class the origin of the gauche stabiliation of the difluoro anaolg.

    pKeq

    0

    -1

    -2

    0

     –1.4

    1.0

    10

    100

    ∆GºKeq

    ∆ Gº298 = 1.4 x pKeq

    which is = 1.4 x ∆pKa

    pK = – log [H+]

    ∆ Gº298 = –1.4 log10Keq

    ∆ Gº = –2.3RTlog10K

     At 298 K: 2.3RT = 1.4 (∆G in kcal/mol)

    ∆ G° = –RT Ln K

    Relationship between ∆G and Keq and pKa

     –2.8 kcal/mol

    Recall that:or 

    Since

    Hence, pK is proportional to the free energy change

    +3.6

    +5.1

    +0.88Ref = 0

    G

    E1

    E2

    n-Butane Torsional Energy Profile

    ∆ E = ?

    Eclipsed atoms   ∆E (kcal/mol)

    +1.0 kcal/mol1 (H↔H)

    +2.8 kcal/mol2 (H↔Me)

    ∆E est = 3.8 kcal/mol

    The estimated value of +3.8 agrees quite well with the value of +3.6 reportedby Allinger (J. Comp. Chem. 1980, 1, 181-184)

    eclipsedconformation

    staggeredconformation

    Using the eclipsing interactions extracted from propane & ethane we should beable to estimate all but one of the eclipsed butane conformations

    Butane

    H

    C

    Me

    HHH

    Me

    C

    Me

    H H

    H

    Me

    H

    Me

    C

    Me

    C

    H

    HHH H H

    HH

    Me

    Me

    Me

    C

    Me

    H

    C

    H

    H

    HH

    HH

    H

    Me

    Me

         e      n     e 

         r     g       y  

    A

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    4/18

    From the energy profiles of ethane, propane, and n-butane, one may extractthe useful eclipsing interactions summarized below:

    Hierarchy of Eclipsing Interactions

    +1.0

    +1.4

    +3.1

    eclipsedconformation

    staggeredconformation

    +3.1

    Incremental contributions to the energy.

    +2.0

    1 (Me↔Me)

    2 (H↔H)

    ∆E (kcal/mol)Eclipsed atoms

    From the torsional energy profile established by Allinger, we should be able to

    extract the contribution of the Me↔

    Me eclipsing interaction to the barrier:

    Butane continued 

     Acyclic Conformational Analysis: ButaneD. A. Evans, F. Michael  Chem 531

    Me

    C

    H

    C

    H

    H  MeH   Me H

    H

    Me

    H

    H

    C C

    X   Y

    H

    H

    H

    H

    X Y

    H H

    H Me

    Me Me

    General nomenclature for diastereomers resulting from rotation about a

    single bond R

    C

    R

    R

    C

    R

    R

    CR

    sp

    sc

    (Klyne, Prelog, Experientia 1960

    , 16 , 521.)

    sc

    acac

    ap

    C

    R

    R

    C

    R

    R

    C

    R

    R

    +60°

    +120°

    180°

    -60°

    -120°

    Torsion angle Designation Symbol

    0 ± 30°

    +60 ± 30°

    +120 ± 30°

    180 ± 30°

    -120 ± 30°

    -60 ± 30°

    ± syn periplanar 

    + syn-clinal

    + anti-clinal

    antiperiplanar 

    - anti-clinal

    - syn-clinal

    ± sp

    + sc (g+)

    + ac

    ap (anti or t)

    - ac

    - sc (g-)

    Energy Maxima

    Energy Minima

    E2

    G

    E1

     A

    E1

    G

    n-ButaneConformer 

    Nomenclature forstaggered conformers:

    C

    H

    H H

    H

    Me

    Me

    C

    H

    H   Me

    H

    H

    Me

    C

    H

    Me H

    H

    H

    Me

    trans or tor (anti)

    gauche(+)

    or g+gauche(-)

    or g-

    Conformer populationat 298 K: 70% 15% 15%

    Let's extract out the magnitude of the Me–Me interaction:

    ∆E (kcal/mol)

    +5.1 kcal/mol

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    5/18

    ~ 3.1

    It may be concluded that in-plane 1,3(Me↔Me) interactions are Ca +4

    kcal/mol while 1,2(Me↔Me) interactions are destabliizing by Ca 3.1 kcal/mol.

    ~ 3.7 ~3.9 ~ 7.6

    Estimates of In-Plane 1,2 &1,3-Dimethyl Eclipsing Interactions

    1,3(Me↔Me) = + 3.7 kcal mol -1

    ∆ G° = +5.5 kcal/mol

    ∆ G° = X + 2Y where:

    X = 1,3(Me↔Me)

    Y = 1,3(Me↔H) = gauche butane

    Estimate of 1,3-Dimethyl Eclipsing Interaction

    1,3(Me↔Me) = ∆ G° – 2Y = 5.5  –1.8 = +3.7 kcal/mol

    1,3(Me↔H) = gauche butane = 0.9 kcal/mol

    The double-gauche pentane

    conformation

    n-Pentane

     Acyclic Conformational Analysis: PentaneD. A. Evans, F. Michael  Chem 531

    Me Me MeMe Me MeMeMe

    Me Me

    H H

    H H

    Me H

    H H

    H Me Me H

    H Me

    H H

    Me Me

    Me Me

    Me MeMe Me

    Me

    Me Me

    Me

    Rotation about both the C2-C3 and C3-C4 bonds in either direction (+ or -):

    tg+g-g+

    g-t

    g-g-

    tg-

    g+g-

    g+t

    g+g+t,t

    From prior discussion, you should be able to estimate energies of 2 & 3 (relative to 1).On the other hand, the least stable conformer  4 requires additional data before isrelative energy can be evaluated.

     Anti(2,3)-Anti(3,4)

    1

    1

    1

    1

    3 3

    3

    3

    5 5

    5

    5

    Gauche(2,3)-Anti(3,4)

    Gauche(2,3)-Gauche(3,4)Gauche(2,3)-Gauche'(3,4)double gauche pentane

    syn-pentane

    1 (t,t)

    4 (g+g –) 3 (g+g+)

    2 (g+t)

    The new high-energy conformation: (g+g –)

    H H

    Me Me

    g+g-

    Me Me

    t,t

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    6/18

    Conformational Analysis: Cyclic Systems-1Evans, Kim, Breit, Michael  Chem 531

    Three Types of Strain:

    Prelog Strain:  van der Waals interactions

    Baeyer Strain: bond angle distortion away from the ideal

     

    Pitzer Strain: torsional rotation about a σ bond

    Baeyer Strain for selected ring sizes

    size of ring Heat of Combustion(kcal/mol)

    Total Strain(kcal/mol)

    Strain per CH2(kcal/mol)

    "angle strain"deviation from 109°28'

    3456789

    101112131415

    499.8656.1793.5944.8

    1108.31269.21429.61586.81743.11893.42051.92206.12363.5

    27.526.36.20.16.29.7

    12.612.411.34.15.21.91.9

    9.176.581.240.020.891.211.401.241.020.340.400.140.13

    24°44'9°44'0°44'

    -5°16'

    Eliel, E. L., Wilen, S. H. Stereochemistry of Organic Compounds Chapter 11, John Wiley & Sons, 1994.

     Baeyer "angle strain" is calculated from the deviation of the

     planar  bond angles from the ideal tetrahedral bond angle.

     Discrepancies between calculated strain/CH2  and the "angle

    strain" results from puckering to minimize van der Waals or

    eclipsing torsional strain between vicinal hydrogens.

     Why is there an increase in strain for medium sized rings even

    though they also can access puckered conformations free of

    angle strain? The answer is transannular strain- van der Waals

    interactions between hydrogens across the ring.

    Introductory Concepts

    H

    H

    Nonbonding

    Cyclopropane

    Necessarily planar . Substituents are therefore eclipsed.

    Disubstitution prefers to be trans.

    υ = 3080 cm-1

    ϕ = 120 °

     Almost sp2, not sp3

    Walsh Model for Strained Rings:

    Rather than σ and σ* c-c bonds, cyclopropane has sp2 and p-type

    orbitals instead.

    H

    H

    side view

    σ –1 (bonding)

    σ (antibonding) σ (antibonding)

    π (antibonding)

    π (bonding) π (bonding)

    3

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    7/18

    Evans, Kim, Breit, Michael  Chem 531

    eq

    ax ax

    eq

    ax

    eq

    eqax

    Cyclobutane

    ϕ = 28 °

    Eclipsing torsional strain overridesincreased bond angle strain by puckering.

    Ring barrier to inversion is 1.45 kcal/mol.

    ∆G = 1 kcal/mol favoring R = Me equatorial

    1,3 Disubstitution prefers cis diequatorial totrans by 0.58 kcal/mol for di-bromo cmpd.

    1,2 Disubstitution prefers trans diequatorial tocis by 1.3 kcal/mol for diacid (roughly equivalent tothe cyclohexyl analogue.)

    145-155°

     A single substituent prefers the equatorial position of the flap of the envelope

    (barrier ca. 3.4 kcal/mol, R = CH3).

    X

    X

    Cyclopentane

    C2 Half-Chair Cs Envelope

     Two lowest energy conformations (10 envelope and 10 half chair conformations

    Cs favored by only 0.5 kcal/mol) in rapid conformational flux (pseudorotation)

    which causes the molecule to appear to have a single out-of-plane atom "bulge"

    which rotates about the ring.

     Since there is no "natural" conformation of cyclopentane, the ring conforms to

    minimize interactions of any substituents present.

     1,2 Disubstitution preferstrans for steric/torsionalreasons (alkyl groups) and

    dipole reasons (polar groups).

    Cs Envelope

    Conformational Analysis: Cyclic Systems-2

    Cs Envelope

    X

     A carbonyl or methylene prefers the planar position ofthe half-chair (barrier 1.15 kcal/mol for cyclopentanone).

    Me

    Me  1,3 Disubstitution: Cis-1,3-dimethyl cyclopentane0.5 kcal/mol more stable than trans.

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    8/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    9/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    10/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    11/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    12/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    13/18

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    14/18

    D. A. Evans, F. Michael  Chem 531Conformational Preferences About sp3 –sp2 Bonds

    How does one account for this observation?

    Torsional Strain: the resistance to rotation about a bond

    Torsional energy: the energy required to obtain rotation about a bond

     also known as dihedral angle

    Torsional steering: Stereoselectivity originating from transition state torsionalenergy considerations

    Torsional Angle:

    ∆G = +3 kcal mol-1

    Torsional Strain (Pitzer Strain): Ethane

    staggeredeclipsed

    Relevant Orbital Interactions:

    Dorigo, A. E.; Pratt, D. W.; Houk, K. N. JACS 1987, 109, 6591-6600.

    Propene Eliel, pg 615+

    HC H

    H

    H

    C HH

    H

    H

    C C

    Confomation A is more stable than B and represents the most stable

    conformation of propene

    Wiberg K. B.; Martin, E. J. Amer. Chem. Soc. 1985, 107 , 5035-5041.

    H

    H

    H

    H

    HC H

    H

    H

    C HH

    H

    H

    CC

    H

    H

    H

    H

    C H

    H

    H

    C

    H

    H

    σ C–H's properly aligned for π∗ overlap

    hence better delocalization

    C HH

    H

    H

    C

    H

    H

    σ C–H & π electrons are

    destabilizing

    H

    H

    H

    H

    H

    H

    H

    H

    O O

    Conformational Preferences: Acetaldehyde

    The eclipsed conformation (conformation A) is preferred.Polarization of the carbonyl decreases the 4 electron destabilizing

    Rotational barrier: 1.14 kcal/mol

    Houk, JACS 1983, 105 , 5980-5988.

    MeH

    H

    H

    HMe

    H

    H

    X X

    Conformational Preferences

    1-Butene (X = CH2); Propanal (X = O)

    Conformation A is preferred. There is little steric repulsion between themethyl and the X-group in conformation A.

    B

    A B

    AB

    A B

    A

    H

    H

    H

    H H

    H

    H

    H H

    H

    H

    H

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    15/18

    Φ = 180Φ = 0

    Φ = 0

    Φ = 60

    Φ = 120

    Φ = 180

    +1.18 kcal

    +0.37 kcal

    +2.00kcal

    +1.33kcal

    +1.32 kcal

    +0.49 kcal

    Φ = 180

    Φ = 120

    Φ = 50

    Φ = 0

    Φ = 180Φ = 0

                                                       E                                                   (                                                                  k

                                         c                                     a

                                                       l                                                   /                                     m                                     o

                                                       l                                                    )              

    The Torsional Energy ProfileThe Torsional Energy Profile

    Chem 531Evans, Duffy, Ripin, Michael  Conformational Barriers to Rotation: Olefin A1,2 Interactions

    Φ  (Deg)

    2-propen-1-ol 1-butene

    Conforms to ab initio (3-21G) values:Wiberg, K. B.; Martin, E. J. Am. Chem. Soc. 1985, 107, 5035.

    Φ  (Deg)

    Me

    H H

    C HCH

    H

    HC

    HC H

    HH

    OH

    HC

    HC H

    H

    HH

    CH

    C H

    H

    H

    HC

    HC H

    H

    H

    Me Me

    H

    HC HC

    OH

    HO

    HC

    HC H

    H

    H

    OH

    HO

    H

    H

    C HCH

    H

    H

    H

    C HCH

    H

    H

    H

    H

    H

    MeMe

    C HCH

    H

    ΦΦ

    Me OH

    1,2 Eclipsing is worse than 1,3 eclipsing because thehydrogens are closer in 1,3 eclipsing (2.4 vs. 2.5 A)

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    16/18

    Chem 531Evans, Duffy, Ripin, Michael  Conformational Barriers to Rotation: Olefin A1,2 Interactions-2

    Φ  (Deg)

    2-methyl-1-butene

                                                                                                                                                         E                                                                                                                                                       (                                           

                                                                                                                                                          k                                                                                                              c                                                                                                              a                                                                                                                                                      l                                                                                                                                                      /                                                                                                             m                                                                                                             o

                                                                                                                                                          l                                                                                                                                                        )                                         

    +2.68kcal

    +1.39 kcal

    +0.06 kcal

    Φ = 180

    Φ = 110

    Φ = 50

    Φ = 0

    Φ = 180Φ = 0

    The Torsional Energy Profile

    Φ  (Deg)

    2-methyl-2-propen-1-ol 

                                                                                                                                                         E                                                                                                                                                       (                                           

                                                                                                                                                          k                                                                                                              c                                                                                                              a                                                                                                                                                      l                                                                                                                                                      /

                                                                                                                 m                                                                                                             o

                                                                                                                                                          l                                                                                                                                                        )                                         

    The Torsional Energy Profile

    Φ = 0   Φ = 180

    Φ = 0

    Φ = 60

    Φ = 120

    Φ = 180

    +0.21 kcal

    +1.16 kcal

    +2.01kcal

    HC

    HC Me

    H

    H

    H C

    H

    C Me

    H

    H

    HC

    H

    Me

    H H

    C MeCH

    H

    C Me

    H

    H

    Me

    Me

    H

    HC MeC

    H

    H

    Me

    Me

    HC

    HC Me

    HH

    OH

    OH

    HO

    HC

    H

    H

    C MeH

    OH

    HO

    H

    H

    C MeCH

    H

    H

    H

    C MeCH

    H

    H

    H

    C MeCH

    H

    Φ   Φ

    Me

    Me OH

    Me

    1,2 Me-Me eclipsing is strongly disfavored (2.7 kcal/mol)

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    17/18

    Values calculated using MM2 (molecular mechanics) force fieldsvia the Macromodel multiconformation search. Review: Hoffman, R. W. Chem. Rev. 1989, 89, 1841.

    (Z)-2-buten-1-ol (Z)-2-pentene

    Φ  (Deg)   Φ  (Deg)

    Chem 531Evans, Duffy, Ripin, Michael  Conformational Barriers to Rotation: Olefin A1,3 Interactions

    +0.86kcal

    +1.44 kcal

    Φ = 180

    Φ = 120

    Φ = 0

    Φ = 180Φ = 0

    The Torsional Energy ProfileThe Torsional Energy Profile

    Φ = 0   Φ = 180

    Φ = 0

    Φ = 90

    Φ = 180+3.88 kcal

    +0.52kcal

    H C

    Me

    C H

    H

    H

    HC

    Me

    Me

    H H

    C HCMe

    HH

    CMe

    C H

    HH

    OH

    C H

    H

    H

    HO

    OH

    H

    HC HC

    Me

    H

    OH

    Me

    HC

    MeC H

    H H

    Me

    Me

    H

    H

    C HCMe

    H

    H

    H

    C HCMe

    H

    Φ  Φ

    Me

    Me

    Me

    OH

    Now, 1,3 Me-Me eclipsing interaction is most disfavored (3.9 kcal/mol)

  • 8/9/2019 Notes Lecture 1 Conformational Analysis

    18/18

    +0.66

    +4.68

    +0.40 kcal+0.34

    Φ = -80

    Φ = 0

    Φ = 80

    +2.72

    Φ = 150

    Φ = 110

    Φ = -140

    Φ = 180Φ = 0

    The Torsional Energy Profile

    Chem 531Evans, Duffy, Ripin, Michael  Conformational Barriers to Rotation: Olefin A1,3 Interactions-2

    (Z)-2-hydroxy-3-penteneRotate clockwise

    Φ  (Deg)

    HC

    MeC H

    HOH

    Me

    HC

    MeC H

    H

    HO

    H

    CMe

    H

    CMe

    C H

    HHO

    Me

    C H

    H

    HO Me

    Me

    OH

    HC HC

    Me

    H

    Me

    HMe

    OH

    C HCMe

    H

    HC

    MeC H

    HHO

    Me

    Φ

    H

    H

    R RL

    RS

    C HCH

    R

    H

    RL

    RS

    C HCH

    R

    RL

    RS

    H

    C HCR

    H

    H

    RL

    RS

    R

    H

    H RL

    RS

    H

    R

    H RL

    RS

    H

    MeCH

    C

    RS

    RL

    H

    put largest group hereto avoid botheclipsing interactions

    put H here to havesmallest eclipsinginteraction

    no real preference

     A1,2 strain

    Neither 

     A1,3 strain

    C RCR

    H

    H

    RL

    RS

    R

    R

    H RL

    RS

     A1,2 strain and A1,3 strain

     A1,3 strain is more important than A1,2 strain

    (4.0 vs. 2.7 kcal/mol)

    put H here to havesmallest eclipsinginteraction

    Summary of A1,2 and A1,3 strain

    Me

    Me

    OH

    Best conformations place the smallest substituent (H) next to the (Z )-methyl group to minimize eclipsing interactions