notes 3(a) translational mechanical system transfer function (terkini)

Upload: faz-zachary

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    1/14

    Chapter 3 : Translational mechanical system transfer function

    Table 2 Force-velocity, force-displacement, and impedance translational relationships

    for springs, viscous dampers, and mass

    Transfer function one equation of motion

    roblem:Find the transfer function, )(/)( sFsX , for the system of Figure 2.15 (a)

    Figure 2!"#:a) Mass, spring and damper system b) block diagram

    $olution:

    egin the solution by dra!ing the free"body diagram sho!n in Figure 2.1#(a). $lace on the

    mass all forces felt by the mass. %e assume the mass is tra&eling to!ard the right. 'hus,only the applied force points to the right all other forces impede the motion and act to

    oppose it. ence, the spring, &iscous damper and the force due to acceleration point to the

    left.

    Figure 2!"%* a) Free"body diagram of mass, spring and damper system

    b) transformed free"body diagram

    1

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    2/14

    %e no! !rite the differential e+uation of motion using e!ton-s la! to sum to ero all of

    the forces sho!n on the mass in Figure 2.1# (a)*

    )()()()(

    /)()()(

    )(

    2

    2

    2

    2

    tftKx

    dt

    tdxf

    dt

    txdM

    tKxdt

    tdxf

    dt

    txdMtfF

    v

    v

    =++

    =

    +++=

    +

    'aking the 0aplace transform, assuming ero initial conditions,

    )()()()(2

    sFsKXssXfsXMs v =++

    &' )()()(2

    sFsXKsfMsv =++

    ol&ing for the transfer function yields

    KsfMssF

    sXsG

    v ++==

    2

    1

    )(

    )()(

    !hich is represented in Figure 2.15 (b)

    $olution (( :

    %e could also sol&e the problem using the block diagram / signal flo! graph.

    33 egin the

    solution by

    dra!ing the

    free"body

    diagram sho!n

    in Figure 2.Figure 2* Free"body diagram of mass, spring and damper system

    1) %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( ) ( ) ( ) ( )dttdxftkxtf

    dttxdm v=

    +

    2

    2

    2) 'aking the 0aplace transform, assuming ero initial conditions,

    ( ) ( ) ( ) ( )ssXFsKXsFsXMs v=2

    or ( ) ( ) ( ) ( )sXsFKsFsXMs v+=2

    4) eparate the input signal ( combination of other signal), system and output

    signal

    ( ) ( ) ( ) ( )[ ]sXsFKsFMs

    sX v+= 1

    2

    6) 7ra! the block diagram using the abo&e information

    ( ) ( ) ( ) ( )[ sXsFKsFMssX v+= 1 2

    8utput ystem 9nput ummingsignal signal :unction

    )loc* diagram reduction:

    ( )KsFMssF

    sXsT

    v ++==

    2

    1

    )(

    )(

    $ignal flo+ graph ason 'ule.:

    2

    M

    x

    fkx

    xfv

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    3/14

    ( ) [ ]( )[ ] KsFMsMsKsFMs

    sTvv ++

    =+

    =22

    2 1

    /1

    1/1

    Transfer function t+o degrees of freedom / t+o linearly independent motion

    roblem: Find the transfer function, )(/)(2 sFsX , for the system of Figure 2.1; (a)

    Figure 2!"0:a) '!o"degrees of freedom translational

    mechanical system b) block diagram$olution:

    'he system has t!o degrees of freedom, since each mass can be mo&ed in the horiontal

    direction !hile the other is held still. 'hus, t!o simultaneous e+uations of motion !ill be

    re+uired to describe the system. 'he t!o e+uations come form free body diagrams o each

    mass. uperposition is used to dra! the free"body diagrams. For e

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    4/14

    Figure 2!2* a) Forces on 2M due only to motion of 2M b) forces on 2M due only to

    motion of 1M c) all forces on 2M

    'he differential e+uation of motion using e!ton-s la! to sum to ero all of the forces

    sho!n on the mass*

    )()()(

    )()(

    )()(

    /

    )(

    )(

    )()(

    )(

    )(

    )(

    )(/

    2422

    412

    2

    2

    2121

    4

    22

    2

    4121

    1

    412

    1

    2

    11

    txKKdt

    tdxff

    dt

    txdMtxK

    dt

    tdxfF

    txKdt

    tdx

    ftxKKdt

    tdx

    ffdt

    txd

    MtfF

    vvv

    vvvM

    +++++==+

    ++++++==+

    /)()()(

    )()(

    )()(

    )()()(

    )()()(

    )()(

    2422

    412

    22

    2121

    4

    222

    41211

    412

    1

    2

    1

    =+++++

    =++++

    txKKdt

    tdxff

    dt

    txdMtxK

    dt

    tdxf

    tftxKdt

    tdxftxKK

    dt

    tdxff

    dt

    txdM

    vvv

    vvv

    'he 0aplace transform of the e+uations of motion can no! be !ritten from Figures 2.1= (c)

    and 2.2 ( c) as

    [ ][ ]

    )(

    )()()()()(

    )()()()()(

    242422

    2124

    224121412

    1

    ==

    ++++++++++ sF

    sXKKsffsMsXKsf

    sXKsfsXKKsffsM

    vvv

    vvv

    ol&ing for the transfer function using the Cramers rule:

    [ ][ ]

    =

    +++++

    +++++

    /

    )(

    )(

    )(

    )()()(

    )()()(

    2

    1

    4242

    2

    224

    242141

    2

    1 sF

    sX

    sX

    KKsffsMKsf

    KsfKKsffsM

    vvv

    vvv

    [ ][ ])()()(

    )()()(

    /)()()()(

    )(

    4242

    2

    224

    242141

    2

    1

    24

    2141

    2

    1

    2

    KKsffsMKsf

    KsfKKsffsM

    KsfsFKKsffsM

    sX

    vvv

    vvv

    v

    vv

    +++++

    +++++

    +++++

    =

    [ ]

    [ ][ ])()()(

    )()()(

    )()()(

    4242

    2

    224

    242141

    2

    1

    242

    KKsffsMKsf

    KsfKKsffsM

    KsfsFsX

    vvv

    vvv

    v

    ++++++++++

    +=

    [ ][ ] 224424222214121242

    )()()()()(

    )(

    )(

    )(

    KsfKKsffsMKKsffsM

    Ksf

    sF

    sX

    vvvvv

    v

    ++++++++++

    =

    From this, the transfer function, )(/)(2 sFsX is

    +

    ==)(

    )(

    )()( 242

    Ksf

    sF

    sXsG v

    >s sho!n in Figure 2.1; (b) !here

    [ ])()()()()()(

    4242

    2

    224

    242141

    2

    1

    KKsffsMKsfKsfKKsffsM

    vvv

    vvv

    ++++++++++=

    6

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    5/14

    &'2

    244242

    2

    22141

    2

    1)()()()()( KsfKKsffsMKKsffsM vvvvv +++++++++=

    enyelesaian dalam *elas:

    1) egin the solution by dra!ing the free"body diagram

    2) %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( )

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( )( )

    ( )( )

    ( ) ( ) ( )( ) ( )( )txtxk

    dt

    tdx

    dt

    tdxf

    dt

    tdxftxk

    dt

    txdm

    txtxkdt

    tdx

    dt

    tdx

    fdt

    tdx

    ftxktfdt

    txd

    m

    vv

    vv

    21221

    42

    2242

    2

    2

    2

    212

    21

    4

    1

    1112

    1

    2

    1

    +

    +=

    +

    =

    +

    'aking the 0aplace transform, assuming ero initial conditions,

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21221422242

    2

    2

    21221411111

    2

    1

    ++=

    +

    =

    +

    eparate the &ariables,

    ( )( ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) 24224

    2

    2124

    22414121

    2

    1

    =++++++

    =+++++

    sXsFsFKKsMsXKsF

    sFsXKsFsXsFsFKKsM

    vvv

    vvv

    >rrange it in a &ector"matri< form

    ( )( ) ( )( ) ( )( )

    ( )

    ( )

    ( )

    =

    +++++

    +++++

    /2

    1

    4224

    2

    224

    244121

    2

    1 sF

    sX

    sX

    sFsFKKsMKsF

    KsFsFsFKKsM

    vvv

    vvv

    ol&ing for the transfer function, )(/)(2 sFsX yields

    5

    1x2x

    f

    11xK

    11xf

    V

    ( )214

    xxfV

    ( )212 xxK

    22xf

    V

    24xK

    start3

    9nput

    Force

    7isplacement

    8utput 1

    7isplacement

    8utput 2

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    6/14

    ( )

    ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )sFsFKKsMKsF

    KsFsFsFKKsM

    KsF

    sFsFsFKKsM

    sX

    vvv

    vvv

    v

    vv

    4224

    2

    224

    244121

    2

    1

    24

    4121

    2

    1

    2

    ++++++++++

    +++++

    =

    ( )( )

    ( )( )( ) ( )( ) ( ) 2244224

    2

    24121

    2

    1

    242

    KsFsFsFKKsMsFsFKKsM

    KsFsFsX

    vvvvv

    v

    ++++++++++=

    %e could also sol&e the problem using the bloc* diagram / signal flo+ graph

    1) %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( )( ) ( )

    ( ) ( ) ( )( ) ( )( )

    ( )( )

    ( ) ( ) ( )( ) ( )( )txtxk

    dt

    tdx

    dt

    tdxf

    dt

    tdxftxk

    dt

    txdm

    txtxkdt

    tdx

    dt

    tdxf

    dt

    tdxftxktf

    dt

    txdm

    vv

    vv

    21221

    42

    2242

    2

    2

    2

    21221

    41

    1112

    1

    2

    1

    +

    +=

    +

    =

    +

    2) 'aking the 0aplace transform, assuming ero initial conditions,

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21221422242

    2

    2

    21221411111

    2

    1

    ++=

    =

    4) eparate the input signal( combination of other signal), systemand output

    signal

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsFsMsX

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21241112

    1

    1

    21221411111

    2

    1

    1

    ++=

    =

    ystem 9nput umming :unction

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM vv 212214222422

    2 ++=

    ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsM

    sX vv 212422422

    2 1

    +++=

    8utput ystem umming :unction

    6) 7ra! the block diagram using the abo&e information

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsFsMsX vv 21241112111 ++=

    ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsM

    sX vv 212422422

    2 1

    +++=

    #

    umming

    :unction

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    7/14

    )loc* 4iagram 'eduction :

    ( )

    ( )

    ( )( )

    ( )( ) ( ) ( )[ ]sFKsMsFKsMsFKsMsFKsM sFK

    sFKsMsFKsM

    sFK

    sF

    sX

    VV

    VV

    V

    VV

    V

    112

    1242

    2

    24

    2

    211

    2

    1

    42

    24

    2

    211

    2

    1

    42

    2

    2

    1

    +++++++++ ++

    +++++

    =

    ( )

    ( ) ( )( ) ( )( ) ( )[ ]sFKsMsFKsMsFKsFKsMsFKsMsFK

    sF

    sX

    VVVVV

    V

    11

    2

    124

    2

    24224

    2

    211

    2

    1

    42

    2

    2+++++++++++

    +=

    $ignal Flo+ 5raph ason 'ule.:

    ?

    2

    2

    1

    sM

    2X

    F1

    X2

    1

    1

    sM

    2XsFK V11+

    sFK V24+

    sFK V42+

    connect

    connect

    sFKsM v242

    2

    1

    ++

    2X

    F 1X

    sFKsM V112

    1

    1

    ++

    sFK V42+

    sFK V42+

    2X

    F

    sFK V42+

    sFKsM

    sFK

    v

    V

    24

    2

    2

    42

    ++

    +sFK

    sFKsM

    V

    v

    42

    24

    2

    2

    +++

    sFKsM V112

    1

    1

    ++sFKsM V11

    2

    1 ++

    2X

    F sFKsM

    sFK

    v

    V

    24

    2

    2

    42

    +++

    ( ) ( )sFKsMsFKsM Vv 112

    124

    2

    2 +++++

    sFKsM V112

    1

    1

    ++

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    8/14

    33 $lease !rite all the for!ard path

    gains, loop gains, non"touching loop

    gains and

    ( )

    ( )

    ( )( )

    (( )

    ( )( )

    (( )

    ( )( )

    (( )22

    24

    2

    1

    42

    2

    2

    42

    2

    1

    11

    2

    2

    24

    2

    1

    11

    2

    2

    42

    2

    2

    24

    2

    1

    42

    2

    1

    11

    2

    2

    2

    1

    42

    1

    11

    sM

    FK

    sM

    sFK

    sM

    FK

    sM

    sFK

    sM

    FK

    sM

    sFK

    sM

    sFK

    sM

    sFK

    sM

    sFK

    sM

    sFK

    sMsMsFK

    sT

    VV

    VV

    VV

    V

    V

    V

    V

    V

    ++

    ++

    ++

    +

    +

    +

    +

    +

    +

    =

    6ote :

    @heck your ans!ers to make sure that they are correct. 'he ans!er !ill be *

    ( )

    2

    2444

    224241124121

    2

    21142141

    4

    14

    2

    12

    4

    12

    2

    14

    4

    24

    2

    22

    4

    21

    2

    21

    6

    21

    42

    sFFsFK

    sFKKKsFFsFKsFKKKsFFsFKsFKKK

    sMFsMKsMFsMKsMFsMKsMFsMKsMM

    sFKsT V

    ++

    +++++++++++

    +++++++++

    +=

    7uestion*

    8btain the transfer function model of this system*

    ;

    2

    2

    1

    sM

    2X

    F1

    X2

    1

    1

    sM

    sFK V11+

    sFK V24+

    sFK V42+

    connect

    connect

    F

    ( )sFK 11+

    2

    1

    1sM

    1

    ( )sFK 42+2

    2

    1

    sM

    ( )sFK 24+

    1

    F 21

    1sM

    1

    ( )sFK 42+2

    2

    1

    sM

    ( )sFK 24+1( )sFK 11+

    8oopA a path !ithout passingthrough any other node more than

    once BB

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    9/14

    >pplying e!ton-s la! of motion, the force

    e+uation can be !ritten as

    yBKyFyM =

    +

    8rdt

    dyBKyF

    dt

    ydM =

    +

    2

    2

    'aking the 0aplace transform (assuming

    ero initial conditions), !e obtain

    ( ) ( ) ( ) ( ) ( )syBsKsFsyMs +=2

    eparate the &ariables,( ) ( ) ( )sFsyBsKMs =++2

    'herefore,

    ( )

    ( ) BsKMssF

    sy

    ++=

    2

    1

    )loc* diagram :

    (b)

    >pplying e!ton-s la! of motion, the

    force e+uation can be !ritten as

    ( ) ( ) ( )iOiOO xxBxxKxM =+'aking the 0aplace transform (assuming

    ero initial conditions), !e obtain

    ( ) ( ) ( )( )

    ( )( )Oi

    iOO

    xxBsK

    xxBsKsxMs

    +=

    +=

    2

    eparate the &ariables,

    ( ) ( ) ( ) ( )sxBsKsxBsKMsiO

    +=++2

    'herefore,

    ( )( ) BsKMs

    BsK

    sx

    sx

    i

    O

    +++

    =2

    )loc* diagram :

    ( ) ( ) ( ) ( )OiO xxBsKsxMs +=2

    8btain the transfer function model ( ) ( )sFsy1 of this system(@.)

    =

    y

    FM

    Ky

    yB

    9 mass-damper-spring

    system

    F)4

    y

    M

    K

    BFForce,

    (a)

    OxM

    ( )iO xxK ( )iO xxB

    $implified suspension system

    F)4

    output,ntdisplaceme x

    P

    M

    K B

    ixinput,ntdisplaceme

    9 mechanical system

    1K

    1B

    2y

    M2FForce,

    M1

    1y2

    K

    2B

    11yK

    11yB

    2y

    M2

    M1

    1y ( )122 yyK

    F( )122 yyB

    Free )ody 4iagram

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    10/14

    ( )( )

    ( ) ( )( ) ( )( )

    ( )( )

    ( ) ( ) ( )( ) ( )( )tytyk

    dt

    tdy

    dt

    tdyB

    dt

    tdyBtyk

    dt

    tydm

    tytykdt

    tdy

    dt

    tdyBtf

    dt

    tydm

    12212

    21

    1112

    1

    2

    1

    12212

    22

    2

    2

    2

    +

    +=

    +

    =

    +

    ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sysyksysysBtsyBtyksysm

    sysyksysysBsfsysm

    12212211111

    2

    1

    1221222

    2

    2

    ++=

    +

    =

    +

    )loc* diagram reduction from above diagram.:

    ( )( ) ( )( ) ( )( )2

    22211

    2

    122

    2

    2

    22

    sMsBKsBKsMsBKsM

    sBK

    sF

    sy

    +++++++

    =

    $ignal flo+ graph*

    ( ) ( )( )( )

    ( )( )

    (( )22

    11

    2

    1

    22

    2

    2

    11

    2

    2

    22

    2

    1

    22

    2

    2

    2

    122

    1

    /1/1

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sMsMsBKsT

    +++

    +

    +

    +

    +=

    333 $lease !rite all the for!ard path gains, loop gains, non"touching loop gains and

    1

    2

    1

    1

    sM

    1yF2y

    2

    2

    1

    sM

    sBK 11+

    sBK 22+

    sBKsM11

    2

    1

    1

    ++

    1yF

    sBK 22+sBK 22+

    2

    2sM

    2

    2

    1

    sM

    sBKsM

    sBK

    11

    2

    1

    22

    ++

    + 1yF

    22sM

    sBKsM 222

    2

    1

    ++

    F

    2

    1

    1

    sM

    1

    ( )sBK 22+2

    2

    1

    sM

    ( )sBK 11 +

    1y

    1

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    11/14

    @heck your ans!er.*

    ( )

    sBBsKBsBKKK

    sMBsMBsMBsMKsMKsMKsMM

    sBKsT

    21121212

    4

    21

    4

    22

    4

    22

    2

    21

    2

    22

    2

    12

    6

    21

    22

    ++++

    +++++++

    +=

    (d) 8btain the transfer function model ( ) ( )sUsY of this system

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

    ( ) ( ) ( ) ( )( ) ( ) ( )

    +=+

    =+

    dt

    tdy

    dt

    tdxBtytxk

    dt

    tydm

    tutxkdttdy

    dttdxk

    dttdy

    dttdxB

    dttxdm

    22

    2

    2

    122

    2

    1

    ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( )( ) ( ) ( )( )sYsXBssYsXKsYsMsXsUKsXsYKsXsYBssXsM

    sUsXKsYsXKsYsXBssXsM

    +=+

    ++=

    =+

    2

    2

    2

    12

    2

    1

    12

    2

    1

    8C

    )loc* 4iagram 'eduction:

    ( )

    ( )

    ( )

    ( ) ( )( )12

    1221

    2

    1

    2

    2

    21

    KsMBsKBsKKsMsM

    BsKK

    sU

    sY

    +++++++

    = Cefer to D. 8gata-s ook pg "32.

    $ignal flo+ graph:

    11

    9 motorcycle

    suspension

    system

    2K B

    x

    M1

    M2

    y

    1Ku ( )uxK 1Free )ody 4iagram

    ( )yxB

    xM1

    M2

    y

    start3( )xuK 1

    Free )ody 4iagram

    ( )yxK 2 ( )yxB

    xM1

    M2

    y&'

    start3( )uxK 1

    Free )ody 4iagram

    ( )xyK 2 ( )xyB

    xM1

    M2

    y&'start3

    2

    2

    1

    sM

    YU X2

    1

    1

    sM 1K BsK +2

    2

    2

    1

    sM

    YU X

    1

    2

    1

    1

    KsM

    K

    +

    BsK +2 1/1 K

    2

    2

    1

    sM

    YU X

    2

    1

    1

    sM

    K

    BsK +2

    1/1 K

    YU

    1/1 K

    1

    2

    1

    1

    KsM

    K

    +BsK +2 2

    2

    1

    sM

    1

    1

    2

    1

    K

    KsM +

    YU

    ( )( )BsKKsMBsKK

    ++++

    21

    2

    1

    21

    2

    2

    1

    sM

    1

    1

    2

    1

    K

    KsM +

    ( )yxK 2

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    12/14

    ( ) ( )( )

    ( )

    ( )

    ( )2

    2

    2

    2

    1

    1

    2

    22

    2

    12

    2

    11

    2

    22

    2

    11

    /

    /

    /

    1

    //

    sM

    BsK

    sM

    K

    sMBsK

    sMBsK

    sMK

    sMBsKsMKsT

    ++++

    +=

    (e) 8btain the transfer function model ( ) ( )sXsX iO of this system

    'he differential e+uation of motion for the system*

    ( ( ) ( ) ( )( ) ( ) yKyxB

    yxBxxKxxB

    O

    OioiO

    22

    211

    /

    /

    +=+

    ++=+

    'aking the 0aplace 'ransform (assuming ero initial condition), !e obtain( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( )( ) ( )sYKsYsXsB

    sYsXsBsXsXKsXsXsB iOi

    2/2

    /2/11

    =

    =+

    )loc* 4iagram 'eduction:

    12

    1

    1K ( )sBK 22+

    2

    2/1 sM 1y

    1

    U2

    1/1 sM

    1

    9 mechanical system

    1K 1B

    outputntdisplaceme,Ox

    inputntdisplaceme,i

    x

    2K

    2B

    outputntdisplaceme,y

    Free )ody 4iagram

    ( )iO xxK

    1 ( )iO xxB

    1

    Ox

    yK2

    ( )yxB o 2

    y

    start3

    OX

    iX ( )YXsB O2

    +sBK 11 +

    Y

    sB2

    1 ( )YXO

    2

    1

    K

    OXiX

    sBK 11 +

    22

    11

    KsB+

    OXiX

    ( ) ( )sBK

    sBKsBK

    22

    2211 ++

    OXiX ( ) ( )( ) ( )sBKsBKsBK

    sBKsBK

    221122

    2211

    +++++

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    13/14

    ( )( )

    sK

    Bs

    K

    Bs

    K

    B

    sK

    Bs

    K

    B

    sX

    sX

    i

    O

    1

    2

    2

    2

    1

    1

    2

    2

    1

    1

    11

    11

    +

    +

    +

    +

    +

    = 'efer to ! &gatas )oo* page "33.

    $ignal flo+ graph:

    Couth table *2s 21BB 21KK1

    s 22122 KBKBK ++ //

    s 21KK /

    ( ) ( )[ ] ( )[ ]( )

    ( ) 211

    211

    211211

    /

    /1

    //

    KsBK

    sBsBK

    KsBKsBsBKsT

    ++

    +++=

    ( ) ( )( ) ( ) sBsBKKsBKsBK

    sBKsBsBKK

    21121122

    112112+++++++=

    ( ) ( )( ) ( )sBKsBKsBK

    sBKsBK

    221122

    2211+++

    ++=

    2

    2112212122

    2

    21122121

    sBBsBKsBKKKsBK

    sBBsBKsBKKK

    +++++++

    =

    ;quation of motion by inspection :

    roblem: %rite but do not sol&e, the e+uations of motion for the mechanical net!ork ofFigure 2.21

    Figure 2!2" :'hree" degrees of freedom translational mechanical system

    $olution* 'he system has 4 degrees of freedom, since each of the three masses can be

    mo&ed independently !hile the others are held still. 'he form of the e+uations !ill be

    similar to electrical mesh e+uations.

    + E um of impedances connected to the motion at 1x ( )sX1 E um of impedancesbet!een 1x and 2x ( )sX2 E um of impedances bet!een 1x and 4x ( )sX4 = E sum of applied forces at 1x

    14

    sBK 11+ sB2/1 /X

    2/1 K1

    iX

  • 8/12/2019 Notes 3(a) Translational Mechanical System Transfer Function (Terkini)

    14/14

    E um of impedances bet!een 1x and 2x ( )sX1 + Eum of impedancesconnected to the motion at 2x ( )sX2 E um of impedances bet!een 2x and 4x

    ( )sX4 = E sum of applied forces at 2x

    E um of impedances bet!een 1x and 4x ( )sX1 Eum of impedances bet!een2x and 4x ( )sX2 + E um of impedances connected to the motion at

    4x ( )sX4 = E sum of applied forces at 4x

    1M has t!o springs, t!o &iscous dampers and mass associated !ith its motion. 'here is

    one spring bet!een 1M and 2M and one &iscous damper bet!een 1M and 4M . 'hus,

    /)()()()()( 4422121412

    1 =++++ ssXfsXKsXKKsffsM vvv

    imilarly, for 2M

    )()()()()( 4622622

    212 sFssXfsXKsffsMsXK vvv =++++

    >nd for 4M

    /)()()()( 4642

    42614 =+++ sXsffsMssXfssXf vvvv

    16