non$radioisotope-power-systems-for-sunless-solar- system … · 2015. 9. 17. · can...

1
Can metal‐combus/on power systems enable mid‐dura/on explora/on missions to: Venus? The Aitken Basin? Titan? A 2011 NASA Ins/tute for Advanced Concepts Proposal PI: Michael Paul (Penn State); with John Dankanich (Gray Research), James Kas/ng (Penn State), Geoffrey Landis (NASA GRC), Tim Miller (Penn State), and Steve Oleson (NASA GRC) Non‐Radioisotope Power Systems For Sunless Solar System Explora/on Missions NonRadioisotope Power Systems for Sunless Solar System Explora9on Missions A fiveday (120hour) mission on the surface of Venus Powered by a LithiumCO2 combus9on system A S9rling Engine provides electricity to the lander DirecttoEarth Communica9ons from surface Science goals aligned to Decadal Survey and VEXAG goals Instrument suite derived from recent public mission concepts* Atmpospheric sampling during descent Panoramic Surface imaging RAMAN LIBS spectrometer for surface composi9on Cost Es9mate is within New Fron9ers cap (FY15$) 5Day baUery powered mission would require addi9onal 850 kg of baUeries, with addi9onal systemlevel growth! Previous Venus landers have lasted less than 2 hours. Recent mission concepts last ~10 hours and cost as much as a Flagship mission. 23 0 10 20 30 40 50 60 70 80 90 2 3.0 20 30 63 90 Time (min) Altitude (km) ASI Measuremen ts Begin Deploy Parachute & Heat Shield Separation Deploy Landing Legs Release Parachute & Backshell NMS & TLS Measurements Begin Descent Imager Landing and HG Antenna Deployment ALIVE Entry Descent and Landing Launch and Cruise Phase and Arrival at Venus Launch on an Atlas V 411 with lunar/earth flybys 2070 kg launch mass at C3 = 6.2 km 2 /s 2 4m aeroshell fiUed with deck for cruise phase solar power and propulsion Shallow entry angle 3.92 km/s V at arrival minimize risk Landing at Ovda Terra provides long view period to Earth * Venus Intrepid Tessera Lander, GSFC 2010,Venus Mobile Explorer, GSFC 2009 Genesis Derived Heat Shield and Backshell Li Burner (500kg/m^3) MgAl (1700kg/m^3) Burner Battery NaS (500°C) Specific Energy 1.3 kWehr/kg(Li) 0.75 kWehr/kg(MgAl) 0.300 kWehr/kg Energy Density 650 kWehr/m^3 1200 kWehr/m^3 350 kWehr/m^3 Mass of Reactants (Power Rq 1800W for 5 days) 215 kWeHr 200 kg (Li) + 10 kg tank/ burner+ 25 kg Duplex Stirling 289 kg (Mg/Al) + 60 kg tanks+ 25 kg Duplex Stirling 817 kg +10kg Stirling cooler Volume of Reactants 0.3 m^3 (Li) 0.17 m^3 (MgAl) ~1 m^3 (w packing factor) Products Li2CO3 (2100 kg/m^3) (melt 618°C) Various (solids) NA Heat of latency 0.117 kWthHr/kg/ latent 0.178 kWHr/kg Sensible (180°C melt pt) (Can absorb 48 kWthHr phase change, Li starts at 0°C ) .086 kWthHr/kg latent, 0.182 kWthHr/kg sensible (437°C melt pt) Lithium fueled combus9on systems have a 40+ year heritage at ARL LiC02 is a new spin on an old technology that would need tes9ng Other metals (MgAl – see below) offer alterna9ves that change the mass/ volume/energy trade and should be explored to maximize opera9onal 9me on the surface of Venus

Upload: others

Post on 19-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Can
metal‐combus/on
power
systems
enable


    mid‐dura/on
explora/on
missions
to:


    Venus?


    The
Aitken
Basin?


    Titan?


    A
2011
NASA
Ins/tute
for
Advanced
Concepts
Proposal


    PI:
Michael
Paul
(Penn
State);
with
John
Dankanich
(Gray
Research),
James
Kas/ng
(Penn
State),
Geoffrey



    Landis
(NASA
GRC),
Tim
Miller
(Penn
State),
and
Steve
Oleson
(NASA
GRC)


    Non‐Radioisotope
Power
Systems
For



    Sunless
Solar
System
Explora/on
Missions


    Non-‐Radioisotope  Power  Systems  for  Sunless  Solar  System  Explora9on  Missions  

    •  A  five-‐day  (120-‐hour)  mission  on  the  surface  of  Venus  •  Powered  by  a  Lithium-‐CO2  combus9on  system  •  A  S9rling  Engine  provides  electricity  to  the  lander  •  Direct-‐to-‐Earth  Communica9ons  from  surface  •  Science  goals  aligned  to  Decadal  Survey  and  VEXAG  goals  •  Instrument  suite  derived  from  recent  public  mission  concepts*  •  Atmpospheric  sampling  during  descent  •  Panoramic  Surface  imaging  •  RAMAN  LIBS  spectrometer  for  surface  composi9on  •  Cost  Es9mate  is  within  New  Fron9ers  cap  (FY15$)  •  5-‐Day  baUery  powered  mission  would  require  addi9onal  850  kg  of  baUeries,  with  addi9onal  system-‐level  growth!  

    Previous  Venus  landers  have  lasted  less  than  2  hours.  Recent  mission  concepts  last  ~10  hours  and  cost  as  much  as  a  Flagship  mission.  

    23

    0!

    10!

    20!

    30!

    40!

    50!

    60!

    70!

    80!

    90!

    2! 3.0! 20! 30! 63! 90!Time (min)!

    Altit

    ude

    (km

    )!

    ASI Measurements Begin!

    Deploy Parachute!& Heat Shield Separation! Deploy Landing Legs!

    Release Parachute!& Backshell!

    NMS & TLS Measurements Begin!

    Descent Imager!

    Landing and HG Antenna Deployment!

    ALIVE Entry Descent and Landing

    Launch  and  Cruise  Phase  and  Arrival  at  Venus  •  Launch  on  an  Atlas  V  411  with  lunar/earth  flybys  •  2070  kg  launch  mass  at  C3  =  6.2  km2/s2  •  4-‐m  aeroshell  fiUed  with  deck  for  cruise  phase  solar  power  

    and  propulsion  •  Shallow  entry  angle  3.92  km/s  V∞  at  arrival  minimize  risk  •  Landing  at  Ovda  Terra  provides  long  view  period  to  Earth  

    *  Venus  Intrepid  Tessera  Lander,  GSFC  2010,Venus  Mobile  Explorer,  GSFC  2009    

    Genesis Derived Heat Shield and Backshell

    Li Burner !(500kg/m^3)!

    MgAl (1700kg/m^3)!Burner!

    Battery NaS (500°C)!

    Specific Energy! 1.3 kWehr/kg(Li)! 0.75 kWehr/kg(MgAl)!!

    0.300 kWehr/kg!

    Energy Density! 650 kWehr/m^3! 1200 kWehr/m^3! 350 kWehr/m^3!!

    Mass of Reactants!(Power Rq 1800W for 5 days) 215 kWeHr!

    200 kg (Li) + 10 kg tank/burner+ 25 kg Duplex Stirling!

    289 kg (Mg/Al) + 60 kg tanks+ 25 kg Duplex Stirling!!

    817 kg +10kg Stirling cooler !

    Volume of Reactants! 0.3 m^3 (Li) !!

    0.17 m^3 (MgAl)! ~1 m^3 (w packing factor)!

    Products! Li2CO3 (2100 kg/m^3) (melt 618°C)!

    Various (solids)! NA!

    Heat of latency! 0.117 kWthHr/kg/ latent 0.178 kWHr/kg Sensible!(180°C melt pt)!(Can absorb 48 kWthHr phase change, Li starts at 0°C )!

    .086 kWthHr/kg latent, 0.182 kWthHr/kg sensible!(437°C melt pt)!

    •  Lithium  fueled  combus9on  systems  have  a  40+  year  heritage  at  ARL  •  Li-‐C02  is  a  new  spin  on  an  old  technology  that  would  need  tes9ng  •  Other  metals  (MgAl  –  see  below)  offer  alterna9ves  that  change  the  mass/

    volume/energy  trade  and  should  be  explored  to  maximize  opera9onal  9me  on  the  surface  of  Venus