nonparametric estimation: part i - stanford universityyjhan/nonparametric regression... ·...

65
Nonparametric Estimation: Part I Regression in Function Space Yanjun Han Department of Electrical Engineering Stanford University [email protected] November 13, 2015 (Pray for Paris)

Upload: others

Post on 03-Aug-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Nonparametric Estimation: Part IRegression in Function Space

Yanjun Han

Department of Electrical EngineeringStanford University

[email protected]

November 13, 2015 (Pray for Paris)

Page 2: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Outline

1 Nonparametric regression problem

2 Regression in function spacesRegression in Holder ballsRegression in Sobolev balls

3 Adaptive estimationAdapt to unknown smoothnessAdapt to unknown differential inequalities

2 / 65

Page 3: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

The statistical model

Given a family of distributions Pf (·)f ∈F and an observationY ∼ Pf , we aim to:

1 estimate f ;2 estimate a functional F (f ) of f ;3 do hypothesis testing: given a partition F = ∪Nj=1Fj , decide which Fj

the true function f belongs to.

3 / 65

Page 4: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

The risk

The risk of using f to estimate θ(f ) is

R(f , f ) = Ψ−1(Ef Ψ(d(f (Y ), θ(f ))

)where Ψ is a nondecreasing function on [0,∞) with Ψ(0) = 0, andd(·, ·) is some metric

The minimax approach

R(f ,F) = supf ∈F

R(f , f )

R∗(F) = inffR(f ,F)

4 / 65

Page 5: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Nonparametric regression

Problem: recover a function f : [0, 1]d → R in a given set F ⊂ L2([0, 1]d)via noisy observations

yi = f (xi ) + σξi , i = 1, 2, · · · , n

Some options:

Grid xini=1: deterministic design (equidistant grid, general case),random design

Noise ξini=1: iid N (0, 1), general iid case, with dependence

Noise level σ: known, unknown

Function space: Holder ball, Sobolev space, Besov space

Risk function: pointwise risk (confidence interval), integrated risk (Lqrisk, 1 ≤ q ≤ ∞, with normalization)

Rq(f , f ) =

(Ef

∫[0,1]d |f (x)− f (x)|qdx

) 1q, 1 ≤ q <∞

Ef

(ess supx∈[0,1]d |f (x)− f (x)|

), q =∞

.

5 / 65

Page 6: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Equivalence between models

Under mild smoothness conditions, Brown et al. proved the asymptoticequivalence between the following models:

Regression model: for iid N (0, 1) noise ξini=1,

yi = f (i/n) + σξi , i = 1, 2, · · · , n

Gaussian white noise model:

dYt = f (t)dt +σ√ndBt , t ∈ [0, 1]

Poisson process: generate N = Poi(n) iid samples from commondensity g (g = f 2, σ = 1/2)

Density estimation model: generate n iid samples from commondensity g (g = f 2, σ = 1/2)

6 / 65

Page 7: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Bias-variance decomposition

Deterministic error (bias) and stochastic error of an estimator f (·):

b(x) = Ef f (x)− f (x)

s(x) = f (x)− Ef f (x)

Analysis of the Lq risk:

For 1 ≤ q <∞:

Rq(f , f ) =(Ef ‖f − f ‖qq

) 1q

=(Ef ‖b + s‖qq

) 1q

. ‖b‖q +(E‖s‖qq

) 1q

For q =∞:

R∞(f , f ) ≤ ‖b‖∞ + E‖s‖∞

7 / 65

Page 8: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

1 Nonparametric regression problem

2 Regression in function spacesRegression in Holder ballsRegression in Sobolev balls

3 Adaptive estimationAdapt to unknown smoothnessAdapt to unknown differential inequalities

8 / 65

Page 9: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

The first example

Consider the following regression model:

yi = f (i/n) + σξi , i = 1, 2, · · · , n

where ξini=1 iid N (0, 1), and f ∈ Hs1(L) for some known s ∈ (0, 1] and

L > 0, and the Holder ball is defined as

Hs1(L) = f ∈ C [0, 1] : |f (x)− f (y)| ≤ L|x − y |s ,∀x , y ∈ [0, 1] .

9 / 65

Page 10: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

A window estimate

To estimate the value of f at x , consider the windowBx = [x − h/2, x + h/2], then a natural estimator takes the form

f (x) =1

n(Bx)

∑i :xi∈Bx

yi ,

where n(Bx) denotes the number of point xi in Bx .

Deterministic error:

|b(x)| = |Ef f (x)− f (x)| =

∣∣∣∣∣∣ 1

n(Bx)

∑i :xi∈Bx

f (xi )− f (x)

∣∣∣∣∣∣≤ 1

n(Bx)

∑i :xi∈Bx

|f (xi )− f (x)| ≤ 1

n(Bx)

∑i :xi∈Bx

L|xi − x |s ≤ Lhs

Stochastic error:

s(x) = f (x)− Ef f (x) =σ

n(Bx)

∑i :xi∈Bx

ξi

10 / 65

Page 11: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Optimal window size: 1 ≤ q <∞

|b(x)| ≤ Lhs , s(x) =σ

n(Bx)

∑i :xi∈Bx

ξi

Bounding the integrated risk:

Rq(f , f ) . ‖b‖q + (E‖s‖qq)1q

. Lhs +σ√nh

Optimal window size and risk (1 ≤ q <∞)

h∗ n−1

2s+1 , Rq(f ∗,Hs1(L)) . n−

s2s+1

11 / 65

Page 12: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Optimal window size: q =∞

|b(x)| ≤ Lhs , s(x) =σ

n(Bx)

∑i :xi∈Bx

ξi

Fact: for N (0, 1) rv ξiMi=1 (possibly correlated), there exists a constantC such that for any w ≥ 1,

P(

max1≤i≤M

|ξi | ≥ Cw√

lnM

)≤ exp

(−w2 lnM

2

)Proof: apply the union bound and P(|N (0, 1)| > x) ≤ 2 exp(−x2/2).

Corollary: E‖s‖∞ . σ√

ln nnh (M = O(n2)).

Optimal window size and risk (q =∞)

h∗ (

ln n

n

) 12s+1

, R∞(f ∗,Hs1(L)) .

(ln n

n

) s2s+1

12 / 65

Page 13: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Bias-variance tradeoff

Figure 1: Bias-variance tradeoff13 / 65

Page 14: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

General Holder ball

Consider the following regression problem:

yι = f (xι) + σξι, f ∈ Hsd(L), ι = (i1, i2, · · · , id) ∈ 1, 2, · · · ,md

where

x(i1,i2,··· ,id ) = (i1/m, i2/m, · · · , id/m), n = md

ξι are iid N (0, 1) noises

The general Holder ball Hsd(L) is defined as

Hsd(L) =

f : [0, 1]d → R, |Dk(f )(x)− Dk(f )(x ′)| ≤ L|x − x ′|α, ∀x , x ′

where s = k + α, k ∈ N, α ∈ (0, 1], and Dk(f )(·) is the vectorfunction comprised of all partial derivatives of f with full order k .

s > 0: modulus of smoothnessd : dimensionality

14 / 65

Page 15: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Local polynomial approximation

As before, consider the cube Bx centered at x with edge size h, whereh→ 0, nhd →∞.

Simple average no longer works!

Local polynomial approximation: for xι ∈ Bx , design weights wι(x)such that if the true f ∈ Pk

d , i.e., polynomial of full degree k and of dvariables, we have

f (x) =∑

ι:xι∈Bx

wι(x)f (xι)

Lemma

There exists weights wι(x)ι:xι∈Bx which depends continuously on x and

‖wι(x)‖1 ≤ C1, ‖wι(x)‖2 ≤C2√n(Bx)

=C2√nhd

where C1,C2 are two universal constants depending only on k and d .

15 / 65

Page 16: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

The estimator

Based on the weights wι(x), construct a linear estimator

f (x) =∑

ι:xι∈Bx

wι(x)yι

Deterministic error:

|b(x)| = |∑

ι:xι∈Bx

wι(x)f (xι)− f (x)|

= infp∈Pk

d

∣∣∣∣∣∣∑

ι:xι∈Bx

wι(x)(f (xι)− p(xι))− (f (x)− p(x))

∣∣∣∣∣∣≤ (1 + ‖wι(x)‖1) inf

p∈Pdk

‖f − p‖∞,Bx

Stochastic error:

|s(x)| = σ|∑

ι:xι∈Bx

wι(x)ξι| .σ√nhd· | 1

‖wι(x)‖2

∑ι:xι∈Bx

wι(x)ξι|

16 / 65

Page 17: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Rate of convergence

Bounding the deterministic error: by Taylor expansion,

infp∈Pd

k

‖f − p‖∞,Bx ≤ maxz∈Bx

∣∣∣∣Dk f (ηz)− Dk f (x)

k!(z − x)k

∣∣∣∣ . Lhs

Hence, ‖b‖q . Lhs for 1 ≤ q ≤ ∞Bounding the stochastic error: as before,(

E‖s‖qq) 1

q .σ√nhd

(1 ≤ q <∞), E‖s‖∞ . σ

√ln n

nhd

Theorem

The optimal window size h∗ and the corresponding risk is given by

h∗

n−

12s+d

( ln nn )

12s+d

, Rq(f ∗,Hsd(L))

n−

s2s+d , 1 ≤ q <∞

( ln nn )

s2s+d , q =∞

and the resulting estimator is minimax rate-optimal (see later).

17 / 65

Page 18: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Why approximation?

The general linear estimator takes the form

flin(x) =∑

ι∈1,2,··· ,mdwι(x)yι

Observations:

The estimator flin is unbiased for f if and only if

f (x) =∑ι

wι(x)f (xι), ∀x ∈ [0, 1]d

Plugging in x = xι yields that z = f (xι) is a solution to(wι(xκ)− δικ)ι,κz = 0

Denote by z(k)ι Mk=1 all linearly independent solutions to the previous

equation, then

fk(x) =∑ι

wι(x)z(k)ι , k = 1, · · · ,M

constitutes an approximation basis for Hsd(L).

18 / 65

Page 19: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Why polynomial?

Definition (Kolmogorov n-width)

For a linear normed space (X , ‖ · ‖) and subset K ⊂ X , the Kolmogorovn-width of K is defined as

dn(K ) ≡ dn(K ,X ) = infVn

supx∈K

infy∈Vn

‖x − y‖

where Vn ⊂ X has dimension ≤ n.

Theorem (Kolmogorov n-width for Hsd(L))

dn(Hsd(L),C [0, 1]d) n−

sd .

The piecewise polynomial basis in each cube with edge size h achieves theoptimal rate (so other basis does not help):

dΘ(1)h−d (Hsd(L),C [0, 1]d) (h−d)−

sd = hs

19 / 65

Page 20: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Methods in nonparametric regression

Function space (this lecture):

Kernel estimates: f (x) =∑

ι Kh(x , xι)yι (Nadaraya, Watson, ...)

Local polynomial kernel estimates: f (x) =∑M

k=1 φk(x)ck(x), where

(c1(x), · · · , ck(x)) = arg minc∑

ι(yι −∑M

k=1 ck(x)φk(xι))2Kh(x − xι)(Stone, ...)

Penalized spline estimates: f = arg ming ‖yι − g‖22 + λ‖g (s)‖2

2

(Speckman, Ibragimov, Khas’minski, ...)

Nonlinear estimates (Lepski, Nemirovski, ...)

Transformed space (next lecture):

Fourier transform: projection estimates (Pinsker, Efromovich, ...)

Wavelet transform: shrinkage estimates (Donoho, Johnstone, ...)

20 / 65

Page 21: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

1 Nonparametric regression problem

2 Regression in function spacesRegression in Holder ballsRegression in Sobolev balls

3 Adaptive estimationAdapt to unknown smoothnessAdapt to unknown differential inequalities

21 / 65

Page 22: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Regression in Sobolev space

Consider the following regression problem:

yι = f (xι) + σξι, f ∈ Sk,pd (L), ι = (i1, i2, · · · , id) ∈ 1, 2, · · · ,md

where

x(i1,i2,··· ,id ) = (i1/m, i2/m, · · · , id/m), n = md

ξι are iid N (0, 1) noises

The Sobolev ball Sk,pd (L) is defined as

Sk,pd (L) =f : [0, 1]d → R, ‖Dk(f )‖p ≤ L

where Dk(f )(·) is the vector function comprised of all partialderivatives (in terms of distributions) of f with order k .

Parameters:

d : dimensionality

k : order of differentiation

p: p ≥ d to ensure continuous embedding Sk,pd (L) ⊂ C [0, 1]d

q: norm of the risk22 / 65

Page 23: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Minimax lower bound

Theorem (Minimax lower bound)

The minimax risk in Sobolev ball regression problem over all estimators is

Rq(Sk,pd (L), n) &

n−k

2k+d , q < (1 + 2kd )p

( ln nn )

k−d/p+d/q2(k−d/p)+d , q ≥ (1 + 2k

d )p

Theorem (Linear minimax lower bound)

The minimax risk in Sobolev ball regression problem over all linearestimators is

R linq (Sk,pd (L), n) &

n−

k2k+d , q ≤ p

n− k−d/p+d/q

2(k−d/p+d/q)+d , p < q <∞

( ln nn )

k−d/p+d/q2(k−d/p+d/q)+d , q =∞

23 / 65

Page 24: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Start from linear estimates

Consider the linear estimator given by local polynomial approximation withwindow size h as before:

Stochastic error:(E‖s‖qq

) 1q .

σ√nhd

(1 ≤ q <∞), E‖s‖∞ . σ

√ln n

nhd

Deterministic error: corresponds to polynomial approximation error

Fact

For f ∈ Sk,pd (L), there exists constant C > 0 such that

|Dk−1f (x)− Dk−1f (y)| ≤ C |x − y |1−d/p(∫

B|Dk f (z)|pdz

) 1p

, x , y ∈ B

Taylor polynomial yields:

|b(x)| . hk−d/p(∫

Bx

|Dk f (z)|pdz) 1

p

24 / 65

Page 25: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Linear estimator: integrated bias

Integrated bias:

‖b‖qq . h(k−d/p)q

∫[0,1]d

(∫Bx

|Dk f (z)|pdz) q

p

dx

Note that∫[0,1]d

∫Bx

|Dk f (z)|pdzdx = hd∫

[0,1]d|Dk f (x)|pdx ≤ hdLp

Fact

ar1 + ar2 + · · ·+ arn ≤

(a1 + a2 + · · ·+ an)r/nr−1, 0 < r ≤ 1

(a1 + a2 + · · ·+ an)r , r > 1

Case q/p ≤ 1: ‖b‖qq . h(k−d/p)q · Lqhd ·qp = Lqhkq (regular case)

Case q/p > 1: ‖b‖qq . h(k−d/p)q · Lqhd = Lqh(k−d/p+d/q)q (sparsecase)

25 / 65

Page 26: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Linear estimator: optimal risk

In summary, we have

‖b‖q .

Lhk , q ≤ p

Lhk−d/p+d/q, p < q ≤ ∞, ‖s‖q .

σ√nhd

, q <∞

σ√

ln nn , q =∞

Theorem (Optimal linear risk)

Rq(f ∗lin,Sk,pd (L)) .

n−

k2k+d , q ≤ p

n− k−d/p+d/q

2(k−d/p+d/q)+d , p < q <∞(ln nn

) k−d/p2(k−d/p)+d , q =∞

Alternative proof:

Theorem (Sobolev embedding)

For d ≤ p < q, we have Sk,pd (L) ⊂ Sk−d/p+d/q,qd (L′).

26 / 65

Page 27: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Minimax lower bound: tool

Theorem (Fano’s inequality)

Suppose H1, · · · ,HN are probability distributions (hypotheses) on samplespace (Ω,F), and there exists decision rule D : Ω→ 1, 2, · · · ,N suchthat Hi (ω : D(ω) = i) ≥ δi , 1 ≤ i ≤ N. Then

max1≤i ,j≤N

DKL(Fi‖Fj) ≥

(1

N

N∑i=1

δi

)ln(N − 1)− ln 2

Apply to nonparametric regression:

Suppose convergence rate rn is attainable, construct N functions(hypotheses) f1, · · · , fN ∈ F such that ‖fi − fj‖q > 4rn for any i 6= j

Decision rule: after obtaining f , choose j such that ‖f − fj‖q ≤ 2rnAs a result, δi ≥ 1/2, and Fano’s inequality gives

1

2σ2max

1≤i ,j≤N

∑ι

|fi (xι)− fj(xι)|2 ≥1

2ln(N − 1)− ln 2

27 / 65

Page 28: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Minimax lower bound: sparse case

Suppose q ≥ (1 + 2kd )p.

Fix a smooth function g supported on [0, 1]d

Divide [0, 1]d into h−d disjoint cubes with size h, and constructN = h−d hypotheses: fj supported on j-th cube, and equals hsg(x/h)on that cube (with translation)

To ensure f ∈ Sk,pd (L), set s = k − d/p

For i 6= j , rn ‖fi − fj‖q hk−d/p+d/q, and∑ι

|fi (xι)− fj(xι)|2 h2(k−d/p) · nhd = nh2(k−d/p)+d

Fano’s inequality gives

nh2(k−d/p)+d & lnN ln h−1 =⇒ rn &

(ln n

n

) k−d/p+d/q2(k−d/p)+d

28 / 65

Page 29: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Minimax lower bound: regular case

Suppose q < (1 + 2kd )p.

Fix smooth function g supported on [0, 1]d , and set gh(x) = hsg(x/h)

Divide [0, 1]d into h−d disjoint cubes with size h, and construct

N = 2h−d

hypotheses: fj =∑h−d

i=1 εigh,i , where gh,i is the translationof gh to i-th cube

Can choose M = 2Θ(h−d ) hypotheses such that for i 6= j , fi differs fjon at least Θ(h−d) cubes

To ensure f ∈ Sk,pd (L), set s = k

For i 6= j , rn ‖fi − fj‖q hk , and∑ι

|fi (xι)− fj(xι)|2 h2k · n = nh2k

Fano’s inequality gives

nh2k & lnM h−d =⇒ rn &

(1

n

) k2k+d

29 / 65

Page 30: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Construct minimax estimator

Why linear estimator fails in the sparse case?

Too much variance in the flat region!Suppose we know that the true function f is supported at a cube withsize h, we have

‖b‖q . hk−d/p+d/q,(E‖s‖qq

)1/q.

1√nhd· hd/q

then h n− 1

2(k−d/p)+d yields the optimal risk Θ(n− k−d/p+d/q

2(k−d/p)+d )

Nemirovski’s construction

In both cases, construct f as the solution to the following optimizationproblem

f = arg ming∈Sk,pd (L)

‖g − y‖B = arg ming∈Sk,pd (L)

maxB∈B

1√n(B)

|∑ι:xι∈B

(g(xι)− yι)|

where B is the set of all cubes in [0, 1]d with nodes belonging to xι.30 / 65

Page 31: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Estimator analysis

Question 1: given a linear estimator f at x of window size h, which size h′

of B ∈ B achieves the maximum of |∑

ι:xι∈B f (xι)− yι|/√

n(B)?

If h′ h, the value max√n(B)|bh(x)|, |N (0, 1)| increases with

h′

If h′ h, the value is close to zero

Hence, h′ h achieves the maximum

Question 2: what window size h∗ at x achieves min ‖fh − y‖B?

Answer: h∗ achieves the bias-variance balance locally at x

The 1/√

n(B) term helps to achieve the spatial homogeneity

Theorem (Optimality of the estimator)

Rq(f ,Sk,pd (L)) .

(ln n

n

)min k2k+d

,k−d/p+d/q2(k−d/p)+d

Hence f is minimax rate-optimal (with a logarithmic gap in regular case).

31 / 65

Page 32: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Proof of the optimality

First observation:

‖f − f ‖B ≤ ‖f − y‖B + ‖f − y‖B ≤ 2‖ξ‖B √

ln n

and e , f − f ∈ Sk,pd (2L).

Definition (Regular cube)

A cube B ⊂ [0, 1]d is called a regular cube if

e(B) ≥ C [h(B)]k−d/pΩ(e,B)

where C > 0 is a suitably chosen constant, e(B) = maxx∈B |e(x)|, h(B) isthe edge size of B, and

Ω(e,B) =

(∫B|Dk f (x)|pdx

) 1p

.

One can show that [0, 1]d can be (roughly) partitioned into maximalregular cubes with ≥ replaced by = (i.e., balanced bias and variance).

32 / 65

Page 33: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Property of regular cubes

Lemma

If cube B is regular, we have

supB′∈B,B′⊂B

1√n(B ′)

|∑

ι:xι∈B′e(xι)| .

√ln n =⇒ e(B) .

√ln n

n(B)

Proof:

Since B is regular, there exists a polynomial ek(x) in B of d variablesand degree no more than k such that e(B) ≥ 4‖e − ek‖∞,BOn one hand, |ek(x)| ≤ 5e(B)/4, and Markov’s inequality forpolynomial implies that ‖Dek‖∞ . e(B)/h(B)

On the other hand, |ek(x0)| ≥ 3e(B)/4 for some x0 ∈ B, thederivative bound implies that there exists B ′ ⊂ B, h(B ′) h(B) suchthat |ek(x)| ≥ e(B)/2 on B ′

Choosing this B ′ in the assumption completes the proof33 / 65

Page 34: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Upper bound for the Lq risk

Since [0, 1]d can be (roughly) partitioned into regular cubes Bi∞i=1 suchthat e(Bi ) [h(Bi )]k−p/dΩ(e,Bi ), we have

‖e‖qq =∞∑i=1

∫Bi

|e(x)|qdx ≤∞∑i=1

[h(Bi )]deq(Bi )

The previous lemma asserts that e(Bi ) ≤√

ln nn[h(Bi )]d

, and we cancel out

h(Bi ), e(Bi ) and get

‖e‖qq .

(ln n

n

) q(k−d/p+d/q)2(k−d/p)+d

∞∑i=1

Ω(e,Bi )d(q−2)

2(k−d/p)+d

≤(

ln n

n

) q(k−d/p+d/q)2(k−d/p)+d

( ∞∑i=1

Ω(e,Bi )p

) d(q−2)p(2(k−d/p)+d)

if q ≥ q∗ = (1 + 2kd )p. For 1 ≤ q < q∗ we use ‖e‖q ≤ ‖e‖q∗ . Q.E.D.

34 / 65

Page 35: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

1 Nonparametric regression problem

2 Regression in function spacesRegression in Holder ballsRegression in Sobolev balls

3 Adaptive estimationAdapt to unknown smoothnessAdapt to unknown differential inequalities

35 / 65

Page 36: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Adaptive estimation

Drawbacks of the previous estimator:

Computationally intractable

Require perfect knowledge of parameters

Adaptive estimation

Given a family of function classes Fn, find an estimator which (nearly)attains the optimal risk simultaneously without knowing which Fn the truefunction belongs to.

In the sequel we will consider

Fn =⋃

k≤S ,p>d ,L>0

Sk,pd (L)

36 / 65

Page 37: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Data-driven window size

Consider again a linear estimate with window size h locally at x , recall that

|f (x)− f (x)| . infp∈Pk

d

‖f − p‖∞,Bh(x) +σN (0, 1)√

nhd

The optimal window size h(x) should balance these two terms

The stochastic term can be upper bounded (with overwhelming

probability) by sn(h) = wσ√

ln nnhd

depending only on known

parameters and h, where the constant w > 0 is large enough

But the bias term depends on the unknown local property of f onBh(x)!

37 / 65

Page 38: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Bias-variance tradeoff: revisit

Figure 2: Bias-variance tradeoff38 / 65

Page 39: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Lepski’s trick

Lepski’s adaptive scheme

Construct a family of local polynomial approximation estimators fh withall window size h ∈ I . Then use fh(x)(x) as the estimate of f (x), where

h(x) , suph ∈ I : |fh(x)− fh′(x)| ≤ 4sn(h′),∀h′ ∈ (0, h), h′ ∈ I.

Denote by h∗(x) the optimal window size bn(h∗) = sn(h∗)

Existence of h(x): clearly h∗(x) satisfies the condition, for h′ ∈ (0, h∗)

|fh∗(x)− fh′(x)| ≤ |fh∗(x)− f |+ |f − fh′(x)|≤ bn(h∗) + sn(h∗) + bn(h′) + sn(h′) ≤ 4sn(h′),

Performance of h(x):

|fh(x)(x)− f | ≤ |fh∗(x)(x)− f |+ |fh(x)(x)− fh∗(x)(x)|

≤ bn(h∗) + sn(h∗) + 4sn(h∗) = 6sn(h∗)

39 / 65

Page 40: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Lepski’s estimator is adaptive!

Properties of Lepski’s scheme:

Adaptive to parameters: agnostic to p, k , L

Spatially adaptive: still work when there is spatial inhomogeneity /only estimate a portion of f

Theorem (Adaptive optimality)

Suppose that the modulus of smoothness k is upper bounded by a knownhyper-parameter S :

Rq(f ,Sk,pd (L)) .

(ln n

n

)min k2k+d

,k−d/p+d/q2(k−d/p)+d

and f is adaptively optimal in the sense that

inff

supk≤S,p>d ,L>0,B⊂[0,1]d

Rq,B(f ,Sk,pd (L))

inf f ∗ Rq,B(f ∗,Sk,pd (L))& (ln n)

S2S+d .

40 / 65

Page 41: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Covering of the ideal window

By the property of the data-driven window size h(x), it suffices to considerthe ideal window size h∗(x) satisfying

sn(h∗(x)) [h∗(x)]k−d/pΩ(f ,Bh∗(x)(x))

Lemma

There exists xiMi=1 and a partition ViMi=1 of [0, 1]d such that

1 Cubes Bh∗(xi )(xi )Mi=1 are pairwise disjoint

2 For every x ∈ Vi , we have

h∗(x) ≥ 1

2maxh∗(xi ), ‖x − xi‖∞

and Bh∗(x)(x) ∩ Bh∗(xi )(xi ) 6= ∅

41 / 65

Page 42: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Analysis of the estimator

Using the covering of the local windows, we have

‖f − f ‖qq .∫

[0,1]d|sn(h∗(x))|qdx =

M∑i=1

∫Vi

|sn(h∗(x))|qdx

Recall: sn(h) √

ln nnhd

and h∗(x) ≥ maxh∗(xi ), ‖x − xi‖∞/2 for x ∈ Vi ,

‖f − f ‖qq .

(ln n

n

)q M∑i=1

∫Vi

[maxh∗(xi ), ‖x − xi‖∞]−dq/2dx

.

(ln n

n

)q M∑i=1

∫ ∞0

rd−1[maxh∗(xi ), r]−dq/2dr

.

(ln n

n

)q M∑i=1

[h∗(xi )]d−dq/2

Plugging in sn(h∗(x)) [h∗(x)]k−d/pΩ(f ,Bh∗(x)(x)) and use the

disjointness of Bh∗(xi )(x)Mi=1 completes the proof. Q.E.D.42 / 65

Page 43: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Experiment: Blocks

Figure 3: Blocks: original, noisy and reconstructed signal43 / 65

Page 44: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Experiment: Bumps

Figure 4: Bumps: original, noisy and reconstructed signal44 / 65

Page 45: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Experiment: Heavysine

Figure 5: Heavysine: original, noisy and reconstructed signal45 / 65

Page 46: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Experiment: Doppler

Figure 6: Doppler: original, noisy and reconstructed signal46 / 65

Page 47: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Generalization: anisotropic case

What if the modulus of smoothness differs in different directions?

Now we should replace the cube with a rectangle (h1, · · · , hd)!

Deterministic and stochastic term:

|bh(x)| ≤ C1

d∑i=1

hsii ≡ b(h), |sh(x)| ≤ C2

√ln n

nV (h)≡ s(h)

where V (h) =∏d

i=1 hi . Suppose b(h∗) = s(h∗).

Naive guess

h(x) = arg maxhV (h) : |fh(x)− fh′(x)| ≤ 4s(h′), ∀h′,V (h′) ≤ V (h)

doesn’t work: h∗ may not satisfy this condition

still doesn’t work if we replace V (h′) ≤ V (h) by h′ ≤ h: fh may notbe close to fh∗

47 / 65

Page 48: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Adaptive regime

Adaptive regime (Kerkyacharian-Lepski-Picard’01)

h(x) = arg maxhV (h) : |fh∨h′(x)− fh′(x)| ≤ 4s(h′), ∀h′,V (h′) ≤ V (h)

where h ∨ h′ = maxh,h′ (coordinate-wise).

h∗ satisfies the condition: for V (h) ≤ V (h∗),

|fh∗(x)− fh(x)| ≤ |b(h∗ ∨ h)− b(h)|+ s(h∗ ∨ h) + s(h)

≤∑

i :hi<h∗i

(hsii + (h∗i )si ) + 2s(h) ≤ 4s(h)

fh is close to fh∗ : since V (h∗) ≤ V (h),

|fh − f | ≤ |fh − fh∨h∗ |+ |fh∨h∗ − fh∗ |+ |fh∗ − f |

≤∑

i :h∗i >hi

(hsii + (h∗i )si ) + 4s(h∗) + 2s(h∗) ≤ 8s(h∗)

48 / 65

Page 49: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

More on Lepski’s trick

General adaptive rule: consider a family of models (X n,F (s))s∈I and

rate-optimal minimax estimators f(s)n for each s with minimax risk rs(n).

For simplicity suppose rs(n) decreases with s.

Definition (Adaptive estimator)

Choose increasing sequence sik(n)i=1 from I with k(n)→∞, select

k = sup1 ≤ k ≤ k(n) : d(fsk , fsi ) ≤ Cri (n), ∀1 ≤ i < k

for some prescribed constant C , and choose f = fsk .

Theorem (Lepski’90)

If rs(n) n−r(s), then under mild conditions,

Rn(f ,F (s)) . n−r(s)(ln n)r(s)

2 , ∀s ∈ I .

As a result, the sub-optimality gap is at most (ln n)sups∈I r(s)/2. 49 / 65

Page 50: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

More on adaptive schemes

Instead of exploiting the monotonicity of bias and variance, we can alsoestimate the risk directly. Given fhh∈I , suppose r(h) is a good estimatorof the risk of fh, then we can write

h = arg minh

r(h)

In Gaussian models, r(h) can be Stein’s Unbiased Risk Estimator(SURE): zero bias and small variance

Lepski’s method: define fh,h′(h,h′)∈I×I from fhh∈I , and

r(h) = suph′:s(h′)≥s(h)

(|fh,h′ − fh′ | − Q(s(h′))

)+

+ 2Q(s(h))

where Q is some function related to variance

fh,h′ is usually the convolution of estimators, and fh,h′ = fh or fh∨h′ inthe previous example

50 / 65

Page 51: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

1 Nonparametric regression problem

2 Regression in function spacesRegression in Holder ballsRegression in Sobolev balls

3 Adaptive estimationAdapt to unknown smoothnessAdapt to unknown differential inequalities

51 / 65

Page 52: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Further generalization

Another point of view of Sobolev ball Sk,p1 (L): there exists a polynomialr(x) = xk with degree k such that

‖r(d

dx)f ‖p ≤ L, ∀f ∈ Sk,p1 (L)

Generalization: what about r(·) is an unknown monic function withdegree no more than k?

For “modulated signal”, e.g., f (x) = g(x) sin(ωx + φ) for g ∈ Sk,pd (L):

Does not belong to any Sobolev balls for large ωHowever, we can write f (x) = f+(x) + f−(x), where

f±(x) =g(x) exp(±i(ωx + φ))

±2i

and by induction we have∥∥∥∥∥(

d

dx∓ iω

)k

f±(x)

∥∥∥∥∥p

=‖g (k)‖p

2≤ L

2

52 / 65

Page 53: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

General regression model

Definition (Signal satisfying differential inequalities)

Function f : [0, 1]→ R belongs to the class W l ,k,p(L), if and only iff =

∑li=1 fi , and there exist monic polynomials r1, · · · , rl of degree k such

that

l∑i=1

∥∥∥∥ri ( d

dx

)fi

∥∥∥∥p

≤ L.

General regression problem: recover f ∈ W l ,k,p(L) from noisy observations

yi = f (i/n) + σξi , i = 1, 2, · · · , n, ξiiid∼ N (0, 1)

where we only know:

Noise level σ

An upper bound S ≥ kl

53 / 65

Page 54: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Recovering approach

The risk function

Note that now we cannot recover the whole function f (e.g., f ≡ 0and f (x) = sin(2πnx) correspond to the same model)

The discrete q-norm: ‖f − f ‖q = ( 1n

∑ni=1 |f (i/n)− f (i/n)|q)

1q

Recovering approach

Discretization: transform differential inequalities to inequalities offinite difference

Sequence estimation: given a window size, recover the discretesequence satisfying an unknown difference inequality

Adaptive window size: apply Lepski’s trick to choose the optimalwindow size adaptively

54 / 65

Page 55: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Discretization: from derivative to difference

Lemma

For any f ∈ C k−1[0, 1] and any monic polynomial r(z) of degree k, therecorresponds another monic polynomial η(z) of degree k such that

‖η(∆)fn‖p . n−k+1/p‖r(d

dx)f ‖p

where fn = f (i/n)ni=1, and (∆φ)t = φt−1 is the backward shift operator.

Applying to our regression problem:

The sequence fn can be written as fn =∑l

i=1 fn,i

There correspond monic polynomials ηi of degree k such that

l∑i=1

‖ηi (∆)fn,i‖p . Ln−k+1/p

55 / 65

Page 56: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Sequence estimation: window estimate

Given a sequence of observations yt, consider using yt|t|≤T toestimate fn[0], where T is the window size

The estimator: fn[0] =∑T

t=−T w−tyt

On one hand, the filter wt|t|≤T should have a small L2 norm tosuppress the noise

On the other hand, if η(∆)fn ≡ 0 with a known η, the filter should bedesigned such that the error term only consists of iid noises

The approach (Goldenshluger-Nemirovski’97)

The filter wt|t|≤T is the solution to the following optimization problem:

min

∥∥∥∥∥∥F T∑

t=−Tw−tyt+s − ys

|s|≤T

∥∥∥∥∥∥∞

s.t. ‖F(wT )‖1 ≤C√T

where F(φt|t|≤T ) denotes the discrete Fourier transform of φt|t|≤T .

56 / 65

Page 57: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Frequency domain

Figure 7: The observations (upper panel) and the noises (lower panel)57 / 65

Page 58: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Performance analysis

Theorem

If fn =∑l

i=1 fn,i and there exist monic polynomials ηi of degree k such

that∑l

i=1 ‖ηi (∆)fn,i‖p,T ≤ ε, we have

|fn[0]− fn[0]| . T k−1/pε+ΘT (ξ)√

T

where ΘT (ξ) is the supremum of O(T 2) N (0, 1) random variables and isthus of order

√lnT .

This result is a uniform result (ηi is unknown), and the√

lnT gap isavoidable to achieve the uniformity.Plugging in ε n−k+1/p‖f ‖p,B from the discretization step yields

|fn[m]− fn[m]| . (T

n)k−1/p‖f ‖p,B +

ΘT (ξ)√T

where B is a segment with center m/n and length T .58 / 65

Page 59: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Polynomial multiplication

Begin with the Holder ball case, where we know that ‖(1−∆)k fn‖∞ ≤ εWrite convolution as polynomial multiplication, we have1− wT (z) = 1−

∑|t|≤T wtz

t can be divided by (1− z)k

(1− wT (∆))p =1− wT (∆)

(1−∆)k· (1−∆)kp = 0, ∀p ∈ Pk−1

1

Moreover, ‖wT‖1 . 1, ‖wT‖2 . 1/√T , and ‖F(wT )‖1 . 1/

√T

Lemma

There exists ηt|t|≤T such that ηT (z) =∑|t|≤T ηtz

t ≡ 1− w∗T (z) such

that ‖F(w∗T )‖1 . 1/√T , and for each i = 1, 2, · · · , l , we have

ηT (z) = ηi (z)ρi (z) with ‖ρi‖∞ . T k−1

If we knew ηT (z), we could just use f ∗n [0] = [w∗T (∆)y ]0 to estimate fn[0]

59 / 65

Page 60: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Optimization solution

Performance of f ∗n :

|f − f ∗n | = |(1− w∗T (∆))f + w∗T (∆)ξ| ≤ |ηT (∆)f |+ |w∗T (∆)ξ|

≤l∑

i=1

|ηT (∆)fi |+ |w∗T (∆)ξ| =l∑

i=1

|ρi (∆)(ηi (∆)fi )|+ |w∗T (∆)ξ|

Fact

‖F(f − f ∗n )‖∞ .√T

(T k−1/pε+

ΘT (ξ)√T

), ‖ηT (∆)f ‖∞ . T k−1/pε

Observation: by definition ‖F(f − fn)‖∞ ≤ ‖F(f − f ∗n )‖∞, thus

‖F((1− wT (∆))f )‖∞ ≤ ‖F(f − fn)‖∞ + ‖F(wT (∆)ξ)‖∞

.√T

(T k−1/pε+

ΘT (ξ)√T

)60 / 65

Page 61: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Performance analysis

Stochastic error:

|s| = |[wT (∆)ξ]0| ≤ ‖F(wT )‖1‖F(ξ)‖∞ .ΘT (ξ)√

T

Deterministic error:

|b| = |[(1− wT (∆))f ]0|≤ |[(1− wT (∆))ηT (∆)f ]0|+ |[(1− wT (∆))w∗T (∆)f ]0|≤ ‖ηT (∆)f ‖∞ + ‖F(ηT (∆)f )‖∞‖‖F(wT )‖1

+ ‖F((1− wT (∆))f )‖∞‖F(w∗T )‖1

. T k−1/pε+ΘT (ξ)√

T

and we’re done. Q.E.D.

61 / 65

Page 62: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Adaptive window size

Apply Lepski’s trick to select T [m] = nh[m]:

h[m] = suph ∈ (0, 1) : |fn,nh[m]− fn,nh′ [m]| ≤ C

√ln n

nh′, ∀h′ ∈ (0, h)

Theorem

Suppose S ≥ kl , we have

Rq(f ,W l ,k,p(L)) .

(ln n

n

)min

k2k+1

,k−1/p+1/q2(k−1/p)+1

and f is adaptively optimal in the sense that

inff

supkl≤S,p>0,L>0,B⊂[0,1]d

Rq,B(f ,W l ,k,p(L))

inf f ∗ Rq,B(f ∗,W l ,k,p(L))& (ln n)

S2S+1 .

62 / 65

Page 63: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Summary

Key points in nonparametric regression:

Bias-variance tradeoff, bandwidth selection

Choice of approximation basis

Nonlinear estimators

Adaptive methods

Lepski’s trick to adapt to unknown smoothness and spatialinhomogeneity

Estimation of sequence satisfying an unknown differential equation

63 / 65

Page 64: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

Duality to functional estimation

Shrinkage vs. Approximation:

Shrinkage: increase bias to reduce variance

Approximation: increase variance to reduce bias

Some more dualities:

Nonparametric regression: known approximation order & variance,unknown function, bandwidth & bias

Functional estimation: known function, bandwidth & bias, unknownapproximation order & variance

Similarity: kernel estimation, unbiasedness of polynomials

Related questions:

Necessity of nonlinear estimators?

Applications of Lepski’s trick?

Logarithmic phase transition?

...

64 / 65

Page 65: Nonparametric Estimation: Part I - Stanford Universityyjhan/nonparametric regression... · 2015-11-14 · November 13, 2015 (Pray for Paris) Outline 1 Nonparametric regression problem

References

Nonparametric regression:

A. Nemirovski, Topics in Non-Parametric Statistics. Lectures onprobability theory and statistics, Saint Flour 1998, 1738. 2000.

A. B. Tsybakov, Introduction to nonparametric estimation. SpringerScience & Business Media, 2008.

L. Gyorfi, et al. A distribution-free theory of nonparametricregression. Springer Science & Business Media, 2006.

Approximation theory:

R. A. DeVore and G. G. Lorentz, Constructive approximation.Springer Science & Business Media, 1993.

G. G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructiveapproximation: advanced problems. Berlin: Springer, 1996.

Function space:

O. V. Besov, V. P. Il’in, and S. M. Nikol’ski, Integral representationsof functions and embedding theorems. V. H. Winston, 1978.

65 / 65