nonlinear stability and d-convergence of additive runge

23
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 854517, 22 pages doi:10.1155/2012/854517 Research Article Nonlinear Stability and D-Convergence of Additive Runge-Kutta Methods for Multidelay-Integro-Differential Equations Haiyan Yuan, 1, 2 Jingjun Zhao, 1 and Yang Xu 1 1 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China 2 Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China Correspondence should be addressed to Jingjun Zhao, hit [email protected] Received 30 December 2011; Accepted 19 February 2012 Academic Editor: Muhammad Aslam Noor Copyright q 2012 Haiyan Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is devoted to the stability and convergence analysis of the Additive Runge-Kutta methods with the Lagrangian interpolation ARKLMs for the numerical solution of multidelay- integro-dierential equations MDIDEs. GDN-stability and D-convergence are introduced and proved. It is shown that strongly algebraically stability gives D-convergence, DA- DAS- and ASI- stability give GDN-stability. A numerical example is given to illustrate the theoretical results. 1. Introduction Delay dierential equations arise in a variety of fields as biology, economy, control theory, electrodynamics see, e.g., 15. When considering the applicability of numerical methods for the solution of DDEs, it is necessary to analyze the stability of the numerical methods. In the last three decades, many works had dealt with these problems see, e.g., 6. For the case of nonlinear delay dierential equations, this kind of methodology had been first introduced by Torelli 7 and then developed by 812. In this paper, we consider the following nonlinear multidelay-integro-dierential equations MDIDEs with m delays: y t f 1 t, yt,yt τ 1 , t tτ 1 g 1 ( t, s, ys ) ds f 2 t, yt,yt τ 2 , t tτ 2 g 2 ( t, s, ys ) ds

Upload: others

Post on 03-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear Stability and D-Convergence of Additive Runge

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2012, Article ID 854517, 22 pagesdoi:10.1155/2012/854517

Research ArticleNonlinear Stability and D-Convergence ofAdditive Runge-Kutta Methods forMultidelay-Integro-Differential Equations

Haiyan Yuan,1, 2 Jingjun Zhao,1 and Yang Xu1

1 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China2 Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China

Correspondence should be addressed to Jingjun Zhao, hit [email protected]

Received 30 December 2011; Accepted 19 February 2012

Academic Editor: Muhammad Aslam Noor

Copyright q 2012 Haiyan Yuan et al. This is an open access article distributed under the CreativeCommons Attribution License, which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

This paper is devoted to the stability and convergence analysis of the Additive Runge-Kuttamethods with the Lagrangian interpolation (ARKLMs) for the numerical solution of multidelay-integro-differential equations (MDIDEs). GDN-stability and D-convergence are introduced andproved. It is shown that strongly algebraically stability gives D-convergence, DA- DAS- and ASI-stability give GDN-stability. A numerical example is given to illustrate the theoretical results.

1. Introduction

Delay differential equations arise in a variety of fields as biology, economy, control theory,electrodynamics (see, e.g., [1–5]). When considering the applicability of numerical methodsfor the solution of DDEs, it is necessary to analyze the stability of the numerical methods. Inthe last three decades, many works had dealt with these problems (see, e.g., [6]). For the caseof nonlinear delay differential equations, this kind of methodology had been first introducedby Torelli [7] and then developed by [8–12].In this paper, we consider the following nonlinear multidelay-integro-differential equations(MDIDEs) withm delays:

y′(t) = f [1]

(t, y(t), y(t − τ1),

∫ tt−τ1

g[1](t, s, y(s))ds)

+ f [2]

(t, y(t), y(t − τ2),

∫ tt−τ2

g[2](t, s, y(s))ds)

Page 2: Nonlinear Stability and D-Convergence of Additive Runge

2 Abstract and Applied Analysis

+ · · · + f [m]

(t, y(t), y(t − τm),

∫ tt−τ2

g[m](t, s, y(s))ds), t ∈ [t0, T],

y(t) = ϕ(t), t ∈ [t0 − τ, t0],(1.1)

where τ1 ≤ τ2 ≤ · · · ≤ τm = τ , f [v] : [t0, T] × CN × CN × CN → CN , g[v] : [t0, T] × CN × CN →CN v = 1, 2, . . . , m, and ϕ : [t0 − τ, t0] → CN are continuous functions such that (1.1) hasa unique solution. Moreover, we assume that there exist some inner product 〈·, ·〉 and theinduced norm || · || such that

Re⟨f [v](t, y1, u1, w1

) − f [v](t, y2, u2, w2), y1 − y2

⟩≤ αv

∥∥y1 − y2∥∥2 + βv‖u1 − u2‖2 + σv‖w1 −w2‖2, v = 1, 2, . . . , m, t ≥ t0,(1.2)

∥∥∥f [v](t, y, u1, w) − f [v](t, y, u2, w)∥∥∥ ≤ rv‖u1 − u2‖, (1.3)∥∥∥g[v](t, s,w1) − g[v](t, s,w2)

∥∥∥ ≤ rv‖w1 −w2‖, (t, s) ∈ D (1.4)

for all t ∈ [t0, T], for all y, y1, y2, u, u1, u2, w,w1, w2 ∈ CN , (−αv), βv, σv, rv, rv are allnonnegative constants. Throughout this paper, we assume that the problem (1.1) has uniqueexact solution y(t). Space discretization of some time-dependent delay partial differentialequations give rises to such delay differential equations containing additive terms withdifferent stiffness properties. In these situations, additive Runge-Kutta (ARK) methods areused. Some recent works about ARK can refer to [13, 14]. For the additive MDIDEs (1.1),similar to the proof of Theorem2.1 in [7], it is straightforward to prove that under theconditions (1.2)∼(1.4), the analytic solutions satisfy

∥∥y(t) − z(t)∥∥ ≤ maxt0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥, (1.5)

where z(t) is the solution of the perturbed problem to (1.1).To demand the discrete numerical solutions to preserve the convergence properties of

the analytic solutions, Torelli [7] introduced a concept of RN-, GRN-stability for numericalmethods applied to dissipative nonlinear systems of DDEs such as (1.1)when g[v](t, s, y(s)) =0, v = 1, 2, . . . , m, which is the straightforward generalization of the well-known concept ofBN-stability of numerical methods with respect to dissipative systems of ODEs (see also [9]).More recently, one has noticed a growing interesting the analysis of delay integro-differentialequations (DIDEs). This type of equations have been investigated in various fields, such asmathematical biology and control theory (see [15–17]). The theory of computational methodsfor delay integro-differential equations (DIDEs) has been studied by many authors, and agreat deal of interesting results have been obtained (see [18–22]). Koto [23] dealt with thelinear stability of Runge-Kutta (RK) methods for systems of DIDEs; Huang and Vandewalle[24] gave sufficient and necessary stability conditions for exact and discrete solutions oflinear Scalar DIDEs. However, little attention has been paid to nonlinear multidelay-integro-differential equations (MDIDEs).

Page 3: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 3

So, the aim of this paper is the study of stability and convergence properties forARK methods when they are applied to nonlinear multidelay-integro-differential equations(MDIDEs) withm delays.

2. The GDN-Stability of the Additive Runge-Kutta Methods

An additive Runge-Kutta method with the Lagrangian interpolation (ARKLM) of s stagesandm levels can be organized in the Butcher tableau:

C A[1] A[2] · · · A[m]

b[1]T

b[2]T · · · b[m]T =

c1 a[1]11 a

[1]12 · · · a[1]1s a

[m]11 a

[m1]12 · · · a

[m]1s

c2 a[1]21 a

[1]22 · · · a[1]2s a

[m]21 a

[m]22 · · · a

[m]2s

......

.... . .

... · · · ......

. . ....

cs a[1]s1 a

[1]s2 · · · a[1]ss a

[m]s1 a

[m]s2 · · · a

[m]ss

b[1]1 b

[1]2 · · · b[1]s · · · b

[m]1 b

[m]2 · · · b[m]

s ,

(2.1)

where C = [c1, c2, . . . , cs]T , b[v] = [b[v]1 , b

[v]2 , . . . , b

[v]s ], and A[v] = (a[v]ij )si,j=1.

The adoption of the method (2.1) for solving the problem (1.1) leads to

yn+1 = yn + hm∑v=1

s∑j=1

b[v]j f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

),

y(n)i = yn + h

m∑v=1

s∑j=1

a[v]ij f

[v](t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

),

(2.2)

where tn = t0 + nh, t(n)j = tn + cjh, yn, and y

(n)j , y[v](n)

j are approximations to the analytic

solution y(tn), y(tn + cjh), y(tn + cjh − τv) of (1.1), respectively, and the argument y[v](n)j is

determined by

y[v](n)j =

⎧⎪⎨⎪⎩ϕ(tn + cjh − τv

)tn + cjh − τv ≤ 0

r∑Pv=−d

LPv(δv)y(n−mv+Pv)j tn + cjh − τv > 0,

(2.3)

with τv = (mv − δv)h, δv ∈ [0, 1), integermv ≥ r + 1, r, d ≥ 0, and

LPv(δv) =r∏

k=−dk /=Pv

(δv − kPv − k

), Pv = −d,−d + 1, . . . , r. (2.4)

Page 4: Nonlinear Stability and D-Convergence of Additive Runge

4 Abstract and Applied Analysis

We assume mv ≥ r + 1 is to guarantee that no (unknown) values y(i)j with i ≥ n are used in

the interpolation procedure

w[v](n)j is an approximation to w

(t(n)j

):=∫ t(n)j

t(n−mv )j

g[v](t(n)j , s, y(s)

)ds, (2.5)

which can be computed by a appropriate compound quadrature rule:

w[v](n)j = h

mv∑q=0

dqg[v](t(n)j , t

(n−q)j , y

(n−q)j

), v = 1, 2, . . . , m, j = 1, 2, . . . , s. (2.6)

As for the quadrature rule (2.6), we usually adopt the compound trapezoidal rule, thecompound Simpsons rule or the compound Newton-Cotes rule, and so forth according tothe requirement of the convergence of the method (see [19]) and denoteM = max1≤v≤m{mv}and η = max1≤v≤m{ηv} with ηv satisfing

∑mv

q=0 |dq| < ηv, v = 1, 2, . . . , m.

In addition, we always put y(n)j = ϕ(tn + cjh), yn = ϕ(tn) whenever n ≤ 0.

In order to write (2.2), (2.3), (2.5), and (2.6) in a more compact way, we introduce somenotations. TheN×N identity matrix will be denoted by IN , e = (1, 1, . . . , 1)T ∈ RS, G = G⊗INis the Kronecker product of matrix G and IN . For u = (u1, u2, . . . , us)

T , v = (v1, v2, . . . , vs)T ∈

CNS, we define the inner product and the induced norm in CNS as follows:

〈u, v〉 =s∑i=1

〈ui, vi〉, ‖u‖ =

√√√√ s∑i=1

‖ui‖2. (2.7)

Moreover, we also adopt that

y(n) =

⎡⎢⎢⎢⎢⎢⎢⎣

y(n)1

y(n)2...

y(n)s

⎤⎥⎥⎥⎥⎥⎥⎦, y[v](n) =

⎡⎢⎢⎢⎢⎢⎢⎣

y[v](n)1

y[v](n)2...

y[v](n)s

⎤⎥⎥⎥⎥⎥⎥⎦, w[v](n) =

⎡⎢⎢⎢⎢⎢⎢⎣

w[v](n)1

w[v](n)2...

w[v](n)s

⎤⎥⎥⎥⎥⎥⎥⎦, T (n) =

⎡⎢⎢⎢⎢⎢⎢⎣

t(n)1

t(n)2...

t(n)s

⎤⎥⎥⎥⎥⎥⎥⎦,

f [v](T (n), y(n), y[v](n), w[v](n)

)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f [v](t(n)1 , y

(n)1 , y

[v](n)1 , w

[v](n)1

)f [v]

(t(n)2 , y

(n)2 , y

[v](n)2 , w

[v](n)2

)...

f [v](t(n)s , y

(n)s , y

[v](n)s ,w

[v](n)s

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(2.8)

Page 5: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 5

With the above notation, method (2.2),(2.3), (2.5), and (2.6) can be written as

yn+1 = yn + hm∑v=1

b[v]Tf [v]

(T(n), y(n), y[v](n), w[v](n)

),

y(n) = eyn + hm∑v=1

A[v]f [v](T(n), y(n), y[v](n), w[v](n)

),

y[v](n)j =

⎧⎪⎨⎪⎩eϕ(tn + cjh − τv

), tn + cjh − τv ≤ t0,

r∑Pv=−d

LPv(δv)y(n−mv+Pv)j , tn + cjh − τv > t0,

w[v](n)j = h

mv∑q=0

dqg[v](tn + cjh, tn−q + cjh, y

(n−q)j

).

(2.9)

In 1997, Zhang and Zhou [25] introduced the extension of RN-stability to GDN-stability asfollows.

Definition 2.1. An ARKLM (2.1) for DDEs is called GDN-stable if, numerical approximationsyn and z n to the solution of (1.1) and its perturbed problem, respectively, satisfy

∥∥yn − zn∥∥ ≤ C maxt0−τ≤t≺t0

∥∥ϕ(t) − ψ(t)∥∥, n ≥ 0, (2.10)

where constant C > 0 depends only on the method, the parameter αv, βv, σv, rv, rv, and theinterval length T − t0, ψ(t) is the initial function to the perturbed problem of (1.1).

Definition 2.2. An ARKLM (2.1) is called strongly algebraically stable if matrices Mγμ arenonnegative definite, where

Mγμ = B[γ]A[μ] +A[γ]TB[μ] − b[γ]b[μ]T, B[γ] = diag(b[γ]1 , b

[γ]2 , . . . , b

[γ]s

), (2.11)

for μ, γ = 1, 2, . . . , m.Let

{yn, y

(n)j , y

[1](n)j , y

[2](n)j , . . . , y

[m](n)j , w

[1](n)j , w

[2](n)j , . . . , w

[m](n)j

}sj=1,{

zn, z(n)j , z

[1](n)j , z

[2](n)j , . . . , z

[m](n)j , w

[1](n)j , w

[2](n)j , . . . , w

[m](n)j

}sj=1

(2.12)

be two sequences of approximations to problems (1.1) and its perturbed problem, respective-ly. From method (2.1) with the same step size h, and write

U(n)i = y(n)

i − z(n)i , U[v](n)i = y[v](n)

i − z[v](n)i , U(n)0 = yn − zn,

Q[v](n)i = h

[f [v]

(t(n)i , y

(n)i , y

[v](n)i , w

[v](n)i

)− f [v]

(t(n)i , z

(n)i , z

[v](n)i , w

[v](n)i

)],

i = 1, 2, . . . , s, v = 1, 2, . . . , m.

(2.13)

Page 6: Nonlinear Stability and D-Convergence of Additive Runge

6 Abstract and Applied Analysis

Then (2.2) and (2.3) read

U(n+1)0 = U(n)

0 +m∑v=1

s∑j=1

b[v]j Q

[v](n)j , (2.14)

U(n)i = U(n)

0 +m∑v=1

s∑j=1

a[v]ij Q

[v](n)j . (2.15)

Our main results about GDN-stability are contained in the following theorem.

Theorem 2.3. Assume ARKmethod (2.2) is strongly algebraically stable, and then the correspondingARKLM (2.1) is GDN-stable, and satisfies

∥∥yn − zn∥∥ ≤ C maxt0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, n ≥ 0, (2.16)

where

C = exp

[6(T − t0)ms

m∑v=1

βvL2v(mv + d + 1)

]max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, Lv = max

−d≤pv≤r{Lpν

},

(2.17)

Proof. From (2.14) and (2.15)we get

∥∥∥U(n+1)0

∥∥∥2=

⟨U

(n)0 +

m∑v=1

s∑i=1

b[v]i Q

[v](n)i , U

(n)0 +

m∑v=1

s∑i=1

b[v]i Q

[v](n)i

=∥∥∥U(n)

0

∥∥∥2+ 2

m∑v=1

s∑i=1

b[v]i Re

⟨Q

[v](n)i , U

(n)0

+m∑

u,v=1

s∑i,j=1

b[u]i b

[v]j

⟨Q

[u](n)i , Q

[v](n)j

=∥∥∥U(n)

0

∥∥∥2+ 2

m∑v=1

s∑i=1

b[v]i Re

⟨Q

[v](n)i , U

(n)i −

m∑v=1

s∑j=1

a[v]ij Q

[v](n)j

+m∑

u,v=1

s∑i,j=1

b[u]i b

[v]j

⟨Q

[v](n)i , Q

[u](n)j

=∥∥∥U(n)

0

∥∥∥2+ 2

m∑v=1

s∑i=1

b[v]i Re

⟨Q

[v](n)i , U

(n)i

−m∑

u,v=1

s∑i,j=1

(b[u]i a

[v]ij + b[v]j a

[u]ij − b[u]i b

[v]j

)⟨Q

[v](n)i , Q

[u](n)j

⟩.

(2.18)

If the matricesMγμ are nonnegative definite, then

∥∥∥U(n+1)0

∥∥∥2 ≤∥∥∥U(n)

0

∥∥∥2+ 2

m∑v=1

s∑j=1

b[v]j Re

⟨Q

[v](n)j , U

(n)j

⟩. (2.19)

Page 7: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 7

Furthermore, by conditions (1.2)∼(1.4) and Schwartz inequality we have

Re⟨Q

[v](n)j , U

(n)j

⟩= hRe

⟨f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)

−f [v](t(n)j , z

(n)j , z

[v](n)j , w

[v](n)j

), U

(n)j

≤ hαv∥∥∥U(n)

j

∥∥∥2+ hβv

∥∥∥U[v](n)j

∥∥∥ + hσv∥∥∥w[v](n)

j − w[v](n)j

∥∥∥2

≤ hαv∥∥∥U(n)

j

∥∥∥2+ hβv

∥∥∥U[v](n)j

∥∥∥ + 2h3r2vη2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2

(2.20)

= hαv∥∥∥U(n)

j

∥∥∥2+ 2h3r2vη

2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2, tn + cjh − τv ≤ t0

= hαv∥∥∥U(n)

j

∥∥∥2+ hβv

∥∥∥∥∥∥r∑

pv=−dLpv(δv)U

(n−mv+pv)j

∥∥∥∥∥∥2

+ 2h3r2vη2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2, tn + cjh − τv > t0

(2.21)

≤ hαv∥∥∥U(n)

j

∥∥∥2+ 2h3r2vη

2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2, tn + cjh − τv ≤ t0 (2.22)

≤ hαv∥∥∥U(n)

j

∥∥∥2+ 2hβvL2

v

∥∥∥∥∥∥r∑

pv=−dU

(n−mv+pv)j

∥∥∥∥∥∥2

+ 2h3r2vη2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2, tn + cjh − τv > t0.

(2.23)

For (2.23), we have

(2.23) ≤ 2hβvL2v

∥∥∥∥∥∥r∑

pv=−dU

(n−mv+pv)j

∥∥∥∥∥∥2

+ 2h3r2vη2vσv

mv∑q=0

∥∥∥U(n−q)j

∥∥∥2

≤ 3hβvL2v

∥∥∥∥∥∥mv∑

pv=−dU

(n−mv+pv)j

∥∥∥∥∥∥2

.

(2.24)

By the same way, we can also get

(2.22) ≤ 3hβvL2v

∥∥∥∥∥mv∑

Pv=−dU

(n−mv+pv)j

∥∥∥∥∥2

. (2.25)

Page 8: Nonlinear Stability and D-Convergence of Additive Runge

8 Abstract and Applied Analysis

Substituting (2.25) and (2.24) into (2.19), yields

∥∥∥U(n+1)0

∥∥∥2 ≤∥∥∥U(n)

0

∥∥∥2+ 2h

m∑v=1

s∑j=1

3βvL2vb

[v]j

∥∥∥∥∥∥mv∑

pv=−dU

(n−mv+pv)j

∥∥∥∥∥∥2

(2.26)

≤∥∥∥U(n)

0

∥∥∥2+ 6h

m∑v=1

s∑j=1

βvL2vb

[v]j (mv + d + 1) max

−d≤pv≤mv

∥∥∥U(n−mv+pv)j

∥∥∥2

≤∥∥∥U(n)

0

∥∥∥2+ 6hms

m∑v=1

βvL2v(mv + d + 1) max

(j,pv)∈Ev

∥∥∥U(n−mv+pv)j

∥∥∥2

≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

]max

{∥∥∥U(n)0

∥∥∥2, max(j,pv)∈Ev

∥∥∥U(n−mv+pv)j

∥∥∥2},

(2.27)

where Ev = {(j, Pv) 1 ≤ j ≤ s, −d ≤ Pv ≤ r}.Similar to (2.27), the inequalities:

∥∥∥U(n)i

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

]max

{∥∥∥U(n)0

∥∥∥2, max(j,Pv)∈E

∥∥∥U(n−mv+Pv)j

∥∥∥2}

(2.28)

follows for i = 1, 2, . . . , s.In the following, with the help of inequalities (2.27), (2.28), and induction we shall

prove the inequalities:

∥∥∥U(n)i

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

](n+1)max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, (2.29)

for n ≥ 0, i = 1, 2, . . . , s.In fact, it is clear from (2.27), (2.28), andmv ≥ r + 1 such that

∥∥∥U(0)i

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

]max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, i = 0, 1, 2, . . . , s. (2.30)

Suppose for n ≤ k (k ≥ 0) that

∥∥∥U(n)i

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

](n+1)max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, i = 0, 1, 2, . . . , s.

(2.31)

Page 9: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 9

Then from (2.27) and (2.28),mv ≥ r + 1 and 1 + 6hms∑m

v=1 βvL2v(mv + d + 1) > 1, we conclude

that

∥∥∥U(k+1)i

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

](k+2)max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2, i = 0, 1, 2, . . . , s.

(2.32)

This completes the proof of inequalities (2.29). In view of (2.29), we get for n ≥ 0 that

∥∥∥U(n)0

∥∥∥2 ≤[1 + 6hms

m∑v=1

βvL2v(mv + d + 1)

](n+1)max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2

≤ exp

[(n + 1)6hms

m∑v=1

βvL2v(mv + d + 1)

]max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2

≤ exp

[6(T − t0)ms

m∑v=1

βvL2v(mv + d + 1)

]max

t0−τ≤t≤t0

∥∥ϕ(t) − ψ(t)∥∥2.

(2.33)

As a result, we know that method (2.1) is GDN-stable.

3. D-Convergence

In order to study the convergence of numerical methods for MDIDEs, we have to mentionthe concept of the convergence for stiff ODEs.

In 1981, Frank et al. [26] introduced the important concept of B-convergence fornumerical methods applied to nonlinear stiff initial value problems of ordinary differentialequations. Later, there have been rapid developments in the study of B-convergence, and asignificant number of important results have already been found for Runge-Kutta methods.In fact, B-convergence result is nothing but a realistic global error estimate based on one-sided Lipschitz constant [27]. In this section, we start discussing the convergence of ARKLM(2.1) for MDIDEs (1.1) with conditions (1.2)–(1.4). The approach to the derivation of theseestimates is similar to that used in [25]. We assume the analytic solution y(t) of (1.1) is smoothenough, and its derivatives used later are bounded by

∥∥∥D(i)y(t)∥∥∥ ≤ Mi, t ∈ [t0 − τ, T], (3.1)

where

D(i)y(t) =

{y(i)(t), t ∈ (t0 + (j − 1

)h, t0 + jh

),

y(i)(t0 + jh − 0), t = t0 + jh.

(3.2)

Page 10: Nonlinear Stability and D-Convergence of Additive Runge

10 Abstract and Applied Analysis

If we introduce some notations

Y (n) =

⎡⎢⎢⎢⎣y(tn + c1h)y(tn + c2h)

...y(tn + csh)

⎤⎥⎥⎥⎦, Y [v](n) =

⎡⎢⎢⎢⎣y(tn + c1h − τv)y(tn + c2h − τv)

...y(tn + csh − τv)

⎤⎥⎥⎥⎦, w[v](n) =

⎡⎢⎢⎢⎣w(tn + c1h − τv)w(tn + c2h − τv)

...w(tn + csh − τv)

⎤⎥⎥⎥⎦. (3.3)

With the above notations, the local errors in (2.9) can be defined as

y(tn+1) = y(tn) + hm∑v=1

b[v]Tf [v]

(T(n), Y (n), Y [v](n), w[v](n)

)+Qn, (3.4)

Y (n) = ey(tn) + hm∑v=1

A[v]f [v](T (n), Y (n), Y [v](n), w[v](n)

)+ rn, (3.5)

Y [v](n) =(Y

[v](n)1 , Y

[v](n)2 , . . . , Y

[v](n)s

)T, (3.6)

with

Y[v](n)j =

⎧⎪⎨⎪⎩ϕ(tn + cjh − τv

), tn + cjh − τv ≤ t0,

r∑Pv=−d

LPv(δv)y(n−mv+Pv)j + ρ[v](n)j , tn + cjh − τv > t0, (3.7)

w[v](n)j = h

mv∑q=0

dqg[v](tn + cjh, tn−q + cjh, y

(n−q)j

)+ R[v](n)

j . (3.8)

If we take yn = y(tn), y(n) = Y (n), y[v](n) = Y [v](n), and ˘w[v](n)

= w[v](n)

Then we can get the perturbed scheme of (2.9),

yn+1 = yn + hm∑v=1

b[v]T

f [v](T (n), y(n), ˘y

[v](n), ˘w

[v](n))+Qn, (3.9)

y(n) = eyn + hm∑v=1

A[v]f [v](T (n), y(n), ˘y

[v](n), ˘w

[v](n))+ rn, (3.10)

˘y[v](n)j =

⎧⎪⎨⎪⎩eϕ(tn + cjh − τv

), tn + cjh − τv ≤ 0,

r∑Pv=−d

LPv(δv)y(n−mv+Pv)j + ρj [v](n), tn + cjh − τv > 0,

(3.11)

w[v](n)j = h

mv∑q=0

dqg[v](tn + cjh, tn−q + cjh, y

(n−q)j

)+ R[v](n)

j . (3.12)

Page 11: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 11

With perturbations, Qn ∈ CN , rn = (r(n)T

1 , r(n)T

2 , . . . , r(n)Ts )T , R[v](n) = (R[v](n)

1 , R[v](n)2 , . . . ,

R[v](n)s )T , ρ(n) = (ρ(n)

T

1 , ρ(n)T

2 , . . . , ρ(n)Ts ) ∈ CNS, according to Taylor formula and the formula

in [28, pages 205–212], Qn, rn and ρn can be determined respectively, as follows:

Qn =P∑l=1

hl

(l − 1)!

⎛⎝1

l−

m∑v=1

s∑j=1

b[v]j cl−1j

⎞⎠D(l)y(tn) + R

(n)0 , (3.13)

r(n)i =

P∑l=1

hl

(l − 1)!

⎛⎝1

lcli −

m∑v=1

s∑j=1

a[v]ij c

l−1j

⎞⎠D(l)y(tn) + R

(n)i , (3.14)

ρ(n)i =

hq+1(q + 1

)!

m∑v=1

r∏Pv=−d

(δv − Pv)D(q+1)y(ξ(n)i

), ξ

(n)i ∈ (tn−mv−d + cih, tn−mv+r + cih), (3.15)

where q = d + r, R(n)i , and ξ(n)i satisfy ||R(n)

i || ≤ Mihi+1, i = 0, 1, 2, . . . , s, h ∈ (0, h0], h0 depends

only on the method, and Mi (i = 0, 1, 2, . . . , s) depends only on the method and some Mi in(3.2).

Combining (2.2), (2.3), (2.5), and (2.6) with (3.9), (3.10), (3.11), and (3.12) yields thefollowing recursion scheme for the ε(n+1)0 = yn+1 − yn+1:

ε(n+1)0 = ε(n)0 + h

m∑v=1

b[v]T{f [v]

(T (n), y(n), ˘y

[v](n), w[v](n)

)− f [v]

(T (n), y(n), y[v](n), w[v](n)

)

+g[v]n εn +H[v](n)

(˘w[v](n) −w[v](n)

)}+Qn,

εn = eε(n)0 + hm∑v=1

A[v]{f [v]

(T (n), y(n), ˘y

[v](n), w[v](n)

)− f [v]

(T (n), y(n), y[v](n), w[v](n)

)

+g[v]n εn +H[v](n)

(˘w[v](n) −w[v](n)

)}+ rn,

(3.16)

where ε(n+1)0 = yn+1 − yn+1, εn = (ε(n)1

T, ε

(n)2

T, . . . , ε

(n)s

T)T = y(n) − y(n),

g[v](n)i =

∫1

0f2(tn + cih, y

(n)i + θ

(y(n)i − y(n)

i

), ˘y

[v](n)i , ˘w

[v](n)i

)dθ, i = 1, 2, . . . , s,

H[v](n)i =

∫1

0f4(tn + cih, y

(n)i , ˘y

[v](n)i , ˘w

[v](n)i + θ

(˘w[v](n)i −w[v](n)

i

))dθ,

(3.17)

Page 12: Nonlinear Stability and D-Convergence of Additive Runge

12 Abstract and Applied Analysis

here, fi(x1, x2, x3, x4) is the Jacobian matrix (∂f(x1, x2, x3, x4)/∂xi) i = 1, 2, 3, 4.

H[v](n)(˘w[v](n) −w[v](n)

)= hH[v](n)

mv∑q=1

dq[g[v]

(tn, tn−q, y(n−q)

)− g[v]

(tn, tn−q, y(n−q)

)]

+ hH[v](n)R[v](n)

+ hH[v](n)d0[g[v]

(tn, tn, y

(n))− g[v]

(tn, tn, y

(n))]

= hH[v](n)mv∑q=1

dq[g[v]

(tn, tn−q, y(n−q)

)− g[v]

(tn, tn−q, y(n−q)

)]

+ hH[v](n)R[v](n)

+ hH[v](n)d0

∫1

0g[v]3

(tn, tn, y

(n) + θ(y(n) − y(n)

))dθ · εn.

(3.18)

Assume that (Is − h∑m

v=1 A[v](g[v](n) + hH[v](n)d0g

[v](n)3 )) is regular, from (3.16) and (3.17),

(3.18), we can get

ε(n+1)0 =

⎧⎨⎩IN + h

m∑v=1

b[v]T

[Is − h

m∑v=1

A[v](g[v](n) + hH[v](n)d0g

[v](n)3

)]−1

×e(g[v](n) + hH[v](n)d0g

[v](n)3

)⎫⎬⎭ε

(n)0

+ hm∑v=1

b[v]T(g[v](n) + hH[v](n)d0g

[v](n)3

)[Is − h

m∑v=1

A[v](g[v](n) + hH[v](n)d0g

[v](n)3

)]−1

×(rn + h2

m∑v=1

A[v]H[v](n)R[v](n)

)

+ hm∑v=1

b[v]T

[Is − h

m∑v=1

A[v](g[v](n) + hH[v](n)d0g

[v](n)3

)]−1

×[h

m∑v=1

A[v](g[v](n) + hH[v](n)d0g

[v](n)3

)]

·⎧⎨⎩f [v]

(T (n), y(n), ˘y

[v](n), w[v](n)

)− f [v]

(T (n), y(n), y[v](n), w[v](n)

)

+hH[v](n)mv∑q=1

dq[g[v]

(tn, tn−q, y(n−q)

)− g[v]

(tn, tn−q, y(n−q)

)]⎫⎬⎭

+Qn + h2m∑v=1

b[v]T

H[v](n)R[v](n).

(3.19)

Now, we introduce the concept of D-convergence from [25].

Page 13: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 13

Definition 3.1. An ARKLM (2.1) with yn = y(tn) (n ≤ 0), y(n)i = y(tn + cih) (n < 0) and

y[v](n)i = y(tn + cih − τv) (n < 0) is called D-convergence of order p if this method, when

applied to any given DIDEs (1.1) subject to (1.2)–(1.4); produce an approximation sequenceyn and the global error satisfies a bound of the form:

∥∥y(tn) − yn∥∥ ≤ C(tn)hP , h ∈ (0, h0], (3.20)

where the maximum stepsize h0 depends on characteristic parameter αv, βv, σv, rv, rv andthe method, the function C(t) depends only on some Mi in (3.2), delay τv, characteristicparameters αv, βv, σv, rv, rv, v = 1, 2, . . . , m, and the method.

Definition 3.2. The ARKLM (2.2), (2.3), (2.5), and (2.6) is said to be DA-stable if thematrix (Is −

∑mν=1A

[ν]ξ) is regular for ξ ∈ C− := {ξ ∈ C | Re ξ ≤ 0}, and |Ri(ξ)| ≤ 1 for all ξ ∈C−, i = 0, 1, . . . , s.

Where

Ri(ε1) = 1 +m∑v=1

A[v]i ε1

(Is −

m∑ν=1

A[ν]ξ

)−1e,

A[v]0 = b[v], A

[v]i =

(a[v]i1 , a

[v]i2 , . . . , a

[v]is

)T, i = 0, 1, . . . , s.

(3.21)

Definition 3.3. The ARKLM (2.2), (2.3), (2.5), and (2.6) is said to be ASI-stable if the matrix

(Is−∑M

ν=1A[ν]ξ) is regular for ξ ∈ C−, and (Is −

∑Mν=1A

[ν]ξ)−1

is uniformly bounded for ξ ∈ C−.

Definition 3.4. The ARKLM (2.2), (2.3), (2.5), and (2.6) is said to be DAS-stable if the

matrix(Is −∑M

ν=1A[ν]ξ) is regular for ξ ∈ C−, and

∑mν=1A

[ν]T

i ξ(Is −∑M

ν=1A[ν]ξ)

−1(i = 0, 1, . . . , s)

is uniformly bounded for ξ ∈ C−.

Lemma 3.5. Suppose the ARKLM (2.2), (2.3), (2.5), and (2.6) is DA- DAS- and ASI-stable, thenthere exist positive constants h0, γ1, γ2, γ3, which depend only on the method and the parameterαv, βv, σv, rv, rv such that

∥∥∥∥∥Is −M∑ν=1

A[ν]ξ

∥∥∥∥∥ ≤ γ1,∥∥∥∥∥∥IN +

m∑v=1

A[v]T

i ξ

(Is −

m∑v=1

A[v]ξ

)−1e

∥∥∥∥∥∥ ≤ 1 + γ2h,

∥∥∥∥∥∥m∑v=1

A[v]T

i ξ

(Is −

m∑v=1

A[v]ξ

)−1v

∥∥∥∥∥∥ ≤ γ3‖v‖, v ∈ CNS,

h ∈ (0, h0], i = 0, 1, 2 . . . , s.

(3.22)

Proof. This Lemma can be proved in the similar way as that of in [29, Lemmas 3.5–3.7].

Page 14: Nonlinear Stability and D-Convergence of Additive Runge

14 Abstract and Applied Analysis

Theorem 3.6. Suppose the ARKLM (2.2), (2.3), (2.5), and (2.6) is DA- DAS- and ASI-stable,then there exist positive constants h0, γ3, γ4, γ5, which depend only on the method and theparameters αv, βv, σv, rv, rv, such that for h ∈ (o, h0],

∥∥∥ε(n)i

∥∥∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + hγ4

)max

{∥∥∥ε(n+1)0

∥∥∥, max(i,pv)∈E

∥∥∥ε(n−mv+pv)i

∥∥∥, max(i,q)∈Eq

∥∥∥ε(n−q)i

∥∥∥}+ hγ5 max

1≤i≤s

∥∥∥ρ(n−1)i

∥∥∥+∥∥∥Qn−1

∥∥∥ + γ3∥∥γn−1∥∥, i = 0,

(1 + hγ4

)max

{∥∥∥ε(n+1)0

∥∥∥, max(i,pv)∈E

∥∥∥ε(n−mv+pv)i

∥∥∥, max(i,q)∈Eq

∥∥∥ε(n−q)i

∥∥∥}+ hγ5 max

1≤i≤s

∥∥∥ρ(n)i

∥∥∥+∥∥∥Qn

∥∥∥ + γ3∥∥γn∥∥, i = 1, 2, . . . , s,

(3.23)

where ε(n)0 = yn − yn, ε(n)i = y(n)i − y(n)

i , E = {(i, pv) | 1 ≤ i ≤ s, −d ≤ pv ≤ γ}, Eq = {(i, q) | 1 ≤i ≤ s, 1 ≤ q ≤ m}, Qn = Qn + h2

∑mv=1 b

[v]TH[v](n)R[v](n), rn = rn + h2∑m

v=1 A[v]H[v](n)R[v](n).

Proof. Using (3.19) and Lemma 3.5, for h ∈ (0, h0], we obtain that

ε(n+1)0 ≤ (1 + γ2h)∥∥∥ε(n)0

∥∥∥ + γ3‖rn‖ +∥∥∥Qn

∥∥∥+ hγ3

∥∥∥∥∥∥m∑v=1

A[v]

⎧⎨⎩f [v]

(T (n), y(n), ˘y

[v](n), w[v](n)

)− f [v]

(T (n), y(n), y[v](n), w[v](n)

)

+hH[v](n)mv∑q=1

dq[g[v]

(tn, tn−q, y(n−q)

)− g[v]

(tn, tn−q, y(n−q)

)]⎫⎬⎭∥∥∥∥∥∥

+ h

∥∥∥∥∥∥m∑v=1

b[v]T

⎧⎨⎩f [v]

(T (n), y(n), ˘y

[v](n), w[v](n)

)− f [v]

(T (n), y(n), y[v](n), w[v](n)

)

+hH[v](n) ·mv∑q=1

dq[g[v]

(tn, tn−q, y(n−q)

)− g[v]

(tn, tn−q, y(n−q)

)]⎫⎬⎭∥∥∥∥∥∥(3.24)

≤ (1 + γ2h)∥∥∥ε(n)0

∥∥∥ + γ3‖rn‖ +∥∥∥Qn

∥∥∥ (3.25a)

+ hγ3m∑v=1

⎧⎨⎩

s∑i=1

∥∥∥∥∥∥s∑j=1

a[v]ij

[f [v]

(t(n)j , y

(n)j , ˘y

[v](n)j , w

[v](n)j

)− f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)]

+hH[v](n)j

mV∑q=1

dq[g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)]∥∥∥∥∥∥2⎫⎬⎭

1/2

(3.25b)

Page 15: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 15

+ hm∑v=1

∥∥∥∥∥∥s∑j=1

b[v]j

{f [v]

(t(n)j , y

(n)j , ˘y

[v](n)j , w

[v](n)j

)− f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)

+hH[v](n)j

mV∑q=1

dq[g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)]⎫⎬⎭∥∥∥∥∥∥.

(3.25c)

For

hγ3m∑v=1

⎧⎨⎩

s∑i=1

∥∥∥∥∥∥s∑j=1

a[v]ij

[f [v]

(t(n)j , y

(n)j , ˘y

[v](n)j , w

[v](n)j

)− f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)]

+hH[v](n)j

mV∑q=1

dq[g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)]∥∥∥∥∥∥2⎫⎬⎭

1/2

= (3.25b).

(3.26)

Then

(3.25b) ≤ hγ3m∑v=1

⎧⎨⎩

s∑i=1

2s∑j=1

∣∣∣a[v]ij

∣∣∣2⎧⎨⎩∥∥∥f [v]

(t(n)j , y

(n)j , ˘y

[v](n)j , w

[v](n)j

)

−f [v](t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)∥∥∥2

+

∥∥∥∥∥∥hH[v](n)j

mV∑q=1

dq[g[v]

(tn, tn−q, y

(n−q)j

)

−g[v](tn, tn−q, y

(n−q)j

)]∥∥∥∥∥2⎫⎬⎭⎫⎬⎭

1/2

≤ hγ3m∑v=1

⎧⎨⎩

s∑i=1

⎧⎨⎩2

s∑j=1

∣∣∣a[v]ij

∣∣∣2r2v∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥2+ 2

s∑j=1

∣∣∣a[v]ij

∣∣∣2h2H[v](n)j

22mv∑q=1

dq

·∥∥∥g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)∥∥∥2

⎫⎬⎭⎫⎬⎭

1/2

≤ hγ3m∑v=1

√√√√ s∑i=1

2s∑j=1

∣∣∣a[v]ij

∣∣∣2r2v∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥2

+ 2h2γ3m∑v=1

√√√√ s∑i=1

s∑j=1

∣∣∣a[v]ij

∣∣∣2H[v](n)j

2 mv∑q=1

d2q ·∥∥∥g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)∥∥∥2

Page 16: Nonlinear Stability and D-Convergence of Additive Runge

16 Abstract and Applied Analysis

≤ 2hγ3m∑v=1

s∑i=1

s∑j=1

∣∣∣a[v]ij

∣∣∣rv∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥

+ 2h2γ3m∑v=1

s∑i=1

s∑j=1

mv∑q=1

dq∣∣∣a[v]ij

∣∣∣∣∣∣H[v](n)j

∣∣∣ · ∥∥∥g[v](tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)∥∥∥

≤ 2hγ3m∑v=1

s∑i,j=1

∣∣∣a[v]ij

∣∣∣rv∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥

+ 2h2γ3mv∑q=1

dqm∑v=1

s∑i,j=1

∣∣∣a[v]ij

∣∣∣∣∣∣H[v](n)j

∣∣∣rv∥∥∥y(n−q)j − y(n−q)

j

∥∥∥.(3.27)

For

hm∑v=1

∥∥∥∥∥∥s∑j=1

b[v]j

⎧⎨⎩f [v]

(t(n)j , y

(n)j , ˘y

[v](n)j , w

[v](n)j

)− f [v]

(t(n)j , y

(n)j , y

[v](n)j , w

[v](n)j

)

+ hH[v](n)j

mV∑q=1

dq[g[v]

(tn, tn−q, y

(n−q)j

)

−g[v](tn, tn−q, y

(n−q)j

)]}∥∥∥∥∥ = (3.25c),

(3.28)

then

(3.25c) ≤ hm∑v=1

s∑j=1

∣∣∣b(ν)j

∣∣∣γv∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥

+ h2m∑v=1

s∑j=1

∣∣∣b[v]j

∣∣∣∣∣∣H[v](n)j

∣∣∣⎧⎨⎩

mv∑q=1

dq∥∥∥g[v]

(tn, tn−q, y

(n−q)j

)− g[v]

(tn, tn−q, y

(n−q)j

)∥∥∥⎫⎬⎭

≤hm∑v=1

s∑j=1

∣∣∣b(ν)j

∣∣∣γv∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥+h2 m∑v=1

s∑j=1

∣∣∣b[v]j

∣∣∣∣∣∣H[v](n)j

∣∣∣⎧⎨⎩

mv∑q=1

dqrv∥∥∥y(n−q)

j − y(n−q)j

∥∥∥⎫⎬⎭.

(3.29)

Combine (3.27), (3.29), and (3.25a), we have

ε(n+1)0 ≤ (1 + γ2h)∥∥∥ε(n)0

∥∥∥ + γ3‖rn‖ +∥∥∥Qn

∥∥∥+ h

m∑v=1

γv

⎛⎝2γ3

s∑i,j=1

∣∣∣a[v]ij

∣∣∣ + s∑j=1

∣∣∣b[v]j

∣∣∣⎞⎠∥∥∥ ˘y[v](n)

j − y[v](n)j

∥∥∥+ h2

m∑v=1

rv

mv∑q=1

dqs∑j=1

{2γ3

s∑i=1

∣∣∣a[v]ij

∣∣∣ · ∣∣∣H[v](n)j

∣∣∣ + ∣∣∣b[v]j

∣∣∣ · ∣∣∣H[v](n)j

∣∣∣}∥∥∥ε(n−q)j

∥∥∥.(3.30)

Page 17: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 17

Moreover, it follows from (2.5) and (3.11) that

∥∥∥ ˘y[v](n)j − y[v](n)

j

∥∥∥ ≤ supδv∈[0,1)

r∑Pv=−d

∣∣Lpv(δv)∣∣ max−d≤Pr≤r

∥∥∥ε(n−mv+Pv)j

∥∥∥ +∥∥∥ρ[v](n)j

∥∥∥. (3.31)

Substituting (3.31) in (3.30), we get

∥∥∥ε(n+1)0

∥∥∥ ≤(1 + γ (0)4 h + γ (0)6 h2

)max

{∥∥∥ε(n)0

∥∥∥, max(j,pv)∈E

∥∥∥ε(n−mv+Pv)j

∥∥∥, max(j.q)∈Eq

∥∥∥ε(n−q)j

∥∥∥}+∥∥∥Qn

∥∥∥+ γ3‖rn‖ + hγ (0)5 max

(j,v)∈Em

∥∥∥ρ[v](n)j

∥∥∥, h ∈ (0, h0],

(3.32)

where

γ(0)4 = γ2 + γ

(0)5 sup

δv∈[0,1)

r∑Pv=−d

∣∣Lpv(δv)∣∣, γ(0)5 =

m∑v=1

rv

⎛⎝2γ3

s∑i,j=1

∣∣∣a[v]ij

∣∣∣ + s∑j=1

∣∣∣b[v]j

∣∣∣⎞⎠,

γ(0)6 =

m∑v=1

γv

mv∑q=1

s∑j=1

dq

{2γ3

s∑i=1

∣∣∣aij [v] ·H[v](n)j

∣∣∣ + ∣∣∣b[v]j ·H[v](n)j

∣∣∣},

E ={(j, Pv

) | 1 ≤ j ≤ s, −d ≤ Pv ≤ γ}, Eq ={(j, q

) | 1 ≤ j ≤ s, 1 ≤ q ≤ mv

},

Em ={(j, v

) | 1 ≤ j ≤ s, 1 ≤ v ≤ m}.

(3.33)

By Lemma 3.5, similar to (3.32), we can obtain the inequalities:

∥∥∥ε(n)i

∥∥∥ ≤(1 + hγ (i)4 + h2γ (i)6

)max

{∥∥∥ε(n)0

∥∥∥, max(j,Pv∈E)

∥∥∥ε(n−mv+Pv)j

∥∥∥, max(j,q)∈Eq

∥∥∥ε(n−q)j

∥∥∥}

+hγ (i)5 max(j,v)∈Em

∥∥∥ρ[v](n)j

∥∥∥ +∥∥∥Qn

∥∥∥ + γ3‖rn‖, i = 1, 2, . . . , s, h ∈ (0, h0],

(3.34)

where

γ(i)4 = γ2 + γ

(i)5 sup

δv∈[0,1)

r∑Pv=−d

∣∣Lpv(δv)∣∣, γ(i)5 =

m∑v=1

rv

⎛⎝2γ3

s∑i,j=1

∣∣∣a[v]ij

∣∣∣ + s∑j=1

∣∣∣a[v]ij

∣∣∣⎞⎠,

γ(i)6 =

m∑v=1

γv

mv∑q=1

s∑j=1

dq

(2γ3

s∑i=1

∣∣∣aij [v] ·H[v](n)j

∣∣∣ + ∣∣∣a[v]ij ·H[v](n)j

∣∣∣).

(3.35)

Setting γ4 = max0≤i≤sγ(i)4 , γ5 = max0≤i≤sγ

(i)5 , γ6 = max0≤i≤sγ

(i)6 .

Combining (3.32) with (3.34), we immediately obtain the conclusion of this theorem.

Page 18: Nonlinear Stability and D-Convergence of Additive Runge

18 Abstract and Applied Analysis

Now, we turn to study the convergence of ARKLM (2.1) for (1.1). It is always assumedthat the analytic solution y(t) of (1.1) is smooth enough on each internal of the form (t0 + (j −1)h, t0 + jh) (j is a positive integer) as (3.2) defined.

Theorem 3.7. Assume ARKLM (2.1) with stage order p is DA-, DAS- and ASI-stable, then theARKLM (2.1) is D-convergent of ordermin{p, q + 1, s + 1}, where q = d + r.

Proof. By Theorem 3.6, we have for h ∈ (0, h0]

∥∥∥ε(n)i

∥∥∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + hγ4 + h2γ6

)max

{∥∥∥ε(n−1)0

∥∥∥, max(i,pv)∈E

∥∥∥ε(n−1−mv+pv)i

∥∥∥, max(j,q∈Eq)

∥∥∥ε(n−q)j

∥∥∥}

+T1hp+1 + T2h

q+2 + T3hs+2, i = 0(

1 + hγ4 + h2γ6)max

{∥∥∥ε(n)0

∥∥∥, max(i,pv)∈E

∥∥∥ε(n−mv+pv)i

∥∥∥, max(j,q)∈Eq

∥∥∥ε(n−q)j

∥∥∥}

+T1hp+1 + T2h

q+2 + T3hs+2, i = 1, 2, . . . , s,

(3.36)

where

T1 = M0 + γ3

√√√√ s∑i=1

M2i , T2 =

γs(q + 1

)!

r∑pv=−d

|δv − Pv|Mq+1,

T3 =

(m∑v=1

b[v]TH[v]R +

m∑v=1

A[v]H[v]R

)g[v](s)(ξ).

(3.37)

It follows from an induction to (3.36) for n that

∥∥∥ε(n)i

∥∥∥ ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑j=0

(1 + 2hγ4

)j(T1hp+1 + T2h

q+2 + T3hs+2), i = 0,

n+1∑j=0

(1 + 2hγ4

)j(T1hp+1 + T2h

q+2 + T3hs+2), i = 1, 2, . . . , s.

(3.38)

Hence, for h ∈ (0, h0], we arrive at

∥∥y(tn) − yn∥∥ =∥∥∥ε(n)0

∥∥∥ ≤n∑j=0

(1 + 2hγ4

)j(T1hp+1 + T2h

q+2 + T3hs+2)

=

(1 + 2hγ4

)n+1 − 12hγ4

(T1h

p+1 + T2hq+2 + T3h

s+2)

Page 19: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 19

0 5 10 15 20 25 30 35

8

6

4

2

0

−2

−4

−6

−8

−10

Figure 1: Values yn with h = 0.1.

0 5 10 15 20 25 30 35

8

6

4

2

0

−2

−4

−6

Figure 2: Values zn with h = 0.1.

≤ exp[2(n + 1)hγ4

] − 12hγ4

(T1h

p+1 + T2hq+2 + T3h

s+2)

≤ exp[2(T − t0)γ4

]exp

(2h0γ4

) − 12γ4

(T1h

p + T2hq+1 + T3h

s+1).

(3.39)

Therefore, the ARKLM (2.1) is D-Convergent of order min{p, q + 1, s + 1}, (q = r + d).

Page 20: Nonlinear Stability and D-Convergence of Additive Runge

20 Abstract and Applied Analysis

Table 1: Comparison between the numerical solutions for different h and the exact solution.

t Numerical solutionfor h = 0.2

Numerical solutionfor h = 0.1

Numerical solutionfor h = 0.05 Exact solution y(t)

0.2 2.87569414 1.212021722 0.898712327 0.8187307530.4 2.751727517 1.165089633 0.801604459 0.6703200460.6 2.448183694 1.0957815 0.626189996 0.548811636

4. Some Examples

Consider the following initial value problem of multidelay-integro-differential equations:

y′(t) =(−104 + 99i

) [1 + y(t)

]21 +

[1 + y(t)

]2 + 500[y(t − 1) − y(t − 2)

] − 500∫ tt−1y(s)ds

+ 500∫ tt−2y(s)ds − exp(−t) +

(104 − 99i

[1 + exp(−t)]2

1 +[1 + exp(−t)]2 , 0 ≤ t ≤ 3,

y(t) = exp(−t), −2 ≤ t ≤ 0,

(4.1)

and its perturbed problem:

z′(t) =(−104 + 99i

) [1 + z(t)]2

1 + [1 + z(t)]2+ 500[z(t − 1) − z(t − 2)] − 500

∫ tt−1z(s)ds

+ 500∫ tt−2z(s)ds − exp(−t) +

(104 − 99i

[1 + exp(−t)]2

1 +[1 + exp(−t)]2 , 0 ≤ t ≤ 3,

z(t) = exp(−t) + 0.01, −2 ≤ t ≤ 0.

(4.2)

It an be easily verified that a1 = a2 = −9.5 × 103, β1 = β2 = 250, σ1 = σ2 = 250, and r1 = r2 = 1,with analytic solution y(t) = exp(−t), where the inner product is standard inner product. Weapply the two-stages and two-order additive R-K method:

1 1 0 1 0

112

12

0 1

12

12

0 1

(4.3)

Page 21: Nonlinear Stability and D-Convergence of Additive Runge

Abstract and Applied Analysis 21

(1) to the problem (4.1) and its perturbed problem (4.2). Since the order of the methodis 2, we adopt the compound trapezoidal rule for computing the integer part.According to the result of Theorems 2.3 and 3.7, the corresponding method forDIDEs is GDN-stable and D-convergent. We denote the numerical solution ofproblem (4.1) and (4.2) yn and zn, where yn and zn are approximations to y(tn) andz(tn), respectively. The values yn and zn with h = 0.1 are listed in Figure 1, (wherethe abscissa and ordinate denote variable n and yn, resp.) and Figure 2, (where theabscissa and ordinate denote variable n and zn, resp.). It is shown in Table 1 thatthe numerical solutions are toward to the exact solutions as h → 0.

It is obvious that the corresponding method for MDIDEs is GDN-stable and D-convergent.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11101109)and the Natural Science Foundationof Hei-long-jiang Province of China (A201107).

References

[1] T. E. Wheldon, J. Kirk, and H. M. Finlay, “Cyclical granulopoiesis in chronic granulocytic leukemia: asimulation study,” Blood, vol. 43, no. 3, pp. 379–387, 1974.

[2] A. Ruehli, U. Miekkala, A. Bellen, and H. Heeb, “Stable time domain solutions for EMC problemsusing PEEC circuit models,” in Proceedings of the IEEE International Symposium on ElectromagneticCompatibility, pp. 371–376, August 1994.

[3] R. K. Brayton, “Small signal stability criterion for networks containing lossless transmission lines,”IBM Journal of Research and Development, vol. 12, pp. 431–440, 1968.

[4] N. Guglielmi, “Inexact Newton methods for the steady state analysis of nonlinear circuits,”Mathematical Models & Methods in Applied Sciences, vol. 6, no. 1, pp. 43–57, 1996.

[5] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematicsin Science and Engineering, Academic Press Inc., Boston, Mass, USA, 1993.

[6] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematicsand Scientific Computation, The Clarendon Press Oxford University Press, New York, NY, USA, 2003.

[7] L. Torelli, “Stability of numerical methods for delay differential equations,” Journal of Computationaland Applied Mathematics, vol. 25, no. 1, pp. 15–26, 1989.

[8] C. J. Zhang and G. Sun, “Nonlinear stability of Runge-Kutta methods applied to infinite-delay-differential equations,” Mathematical and Computer Modelling, vol. 39, no. 4-5, pp. 495–503, 2004.

[9] A. Bellen and M. Zennaro, “Strong contractivity properties of numerical methods for ordinary anddelay differential equations,” Applied Numerical Mathematics, vol. 9, no. 3-5, pp. 321–346, 1992.

[10] C.-J. Zhang and S.-F. Li, “Dissipativity and exponentially asymptotic stability of the solutions fornonlinear neutral functional-differential equations,” Applied Mathematics and Computation, vol. 119,no. 1, pp. 109–115, 2001.

[11] M. Zennaro, “Contractivity of Runge-Kutta methods with respect to forcing terms,”Applied NumericalMathematics, vol. 11, no. 4, pp. 321–345, 1993.

[12] M. Zennaro, “Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delaydifferential equations,” Numerische Mathematik, vol. 77, no. 4, pp. 549–563, 1997.

[13] A. Araujo, “A note on B-stability of splitting methods,” Computing and Visualization in Science, vol. 6,no. 2-3, pp. 53–57, 2004.

[14] B. Garcıa-Celayeta, I. Higueras, and T. Roldan, “Contractivity/monotonicity for additive Runge-Kutta methods: inner product norms,” Applied Numerical Mathematics, vol. 56, no. 6, pp. 862–878,2006.

[15] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of AppliedMathematical Sciences, Springer, New York, NY, USA, 1993.

Page 22: Nonlinear Stability and D-Convergence of Additive Runge

22 Abstract and Applied Analysis

[16] V. Kolmanovskiı and A. Myshkis, Applied Theory of Functional-Differential Equations, vol. 85 ofMathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, The Netherlands,1992.

[17] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematicsin Science and Engineering, Academic Press, Boston, Mass, 1993.

[18] C. Zhang and S. Vandewalle, “General linear methods for Volterra integro-differential equations withmemory,” SIAM Journal on Scientific Computing, vol. 27, no. 6, pp. 2010–2031, 2006.

[19] C. Zhang and S. Vandewalle, “Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations,” IMA Journal of Numerical Analysis, vol. 24, no. 2, pp. 193–214, 2004.

[20] C. J. Zhang and S. Vandewalle, “Stability criteria for exact and discrete solutions of neutralmultidelay-integro-differential equations,” Advances in Computational Mathematics, vol. 28, no. 4, pp.383–399, 2008.

[21] T. Koto, “Stability of θ-methods for delay integro-differential equations,” Journal of Computational andApplied Mathematics, vol. 161, no. 2, pp. 393–404, 2003.

[22] C. J. Zhang and Y. Y. He, “The extended one-leg methods for nonlinear neutral delay-integro-differential equations,” Applied Numerical Mathematics, vol. 59, no. 6, pp. 1409–1418, 2009.

[23] T. Koto, “Stability of Runge-Kutta methods for delay integro-differential equations,” Journal ofComputational and Applied Mathematics, vol. 145, no. 2, pp. 483–492, 2002.

[24] C. Huang and S. Vandewalle, “An analysis of delay-dependent stability for ordinary and partialdifferential equations with fixed and distributed delays,” SIAM Journal on Scientific Computing, vol.25, no. 5, pp. 1608–1632, 2004.

[25] C. J. Zhang and S. Z. Zhou, “Nonlinear stability and D-convergence of Runge-Kutta methods fordelay differential equations,” Journal of Computational and Applied Mathematics, vol. 85, no. 2, pp. 225–237, 1997.

[26] R. Frank, J. Schneid, and C.W. Ueberhuber, “The concept of -convergence,” SIAM Journal on NumericalAnalysis, vol. 18, no. 5, pp. 753–780, 1981.

[27] K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations,vol. 2 of CWI Monographs, North-Holland Publishing, Amsterdam, The Netherlands, 1984.

[28] J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, UK,1991.

[29] W. H. Hundsdorfer, “Stability and B-convergence of linearly implicit Runge-Kutta methods,” Numer-ische Mathematik, vol. 50, no. 1, pp. 83–95, 1986.

Page 23: Nonlinear Stability and D-Convergence of Additive Runge

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of