nonlinear physics: hamiltonian chaosmath_research.uct.ac.za/~hskokos/talks/2018_01_30_lemans... ·...

93
Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics and Applied Mathematics University of Cape Town, Cape Town, South Africa E-mail: [email protected] URL: http://math_research.uct.ac.za/~hskokos/

Upload: others

Post on 17-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Nonlinear physics:

Hamiltonian Chaos

Haris Skokos

Department of Mathematics and Applied Mathematics

University of Cape Town, Cape Town, South Africa

E-mail: [email protected]

URL: http://math_research.uct.ac.za/~hskokos/

Page 2: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Outline

• Hamiltonian systems (Example Hénon-Heiles system)

Equations of motion

Chaos

Poincaré Surface of Section

Variational equations

Lyapunov exponents

Page 3: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Autonomous Hamiltonian systems Consider an N degree of freedom autonomous

Hamiltonian system having a Hamiltonian function of the

form:

H(q1,q2,…,qN, p1,p2,…,pN)

positions momenta

Page 4: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Autonomous Hamiltonian systems Consider an N degree of freedom autonomous

Hamiltonian system having a Hamiltonian function of the

form:

H(q1,q2,…,qN, p1,p2,…,pN)

The time evolution of an orbit (trajectory) with initial

condition

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0))

positions momenta

is governed by the Hamilton’s equations of motion

i i

i i

d p d qH H= - , =

d t q d t p

Page 5: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Autonomous Hamiltonian systems Consider an N degree of freedom autonomous

Hamiltonian system having a Hamiltonian function of the

form:

H(q1,q2,…,qN, p1,p2,…,pN)

The time evolution of an orbit (trajectory) with initial

condition

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0))

positions momenta

is governed by the Hamilton’s equations of motion

i i

i i

d p d qH H= - , =

d t q d t p

Phase space: the 2N dimensional space defined by

variables q1,q2,…,qN, p1,p2,…,pN

Page 6: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Page 7: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Page 8: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Page 9: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Hamilton’s equations of motion:

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

Page 10: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Hamilton’s equations of motion:

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y

Page 11: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos Definition [Devaney (1989)]

Let V be a set and f : V → V a map on this set.

We say that f is chaotic on V if

Page 12: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos Definition [Devaney (1989)]

Let V be a set and f : V → V a map on this set.

We say that f is chaotic on V if

1. f has sensitive dependence on initial conditions.

Page 13: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos Definition [Devaney (1989)]

Let V be a set and f : V → V a map on this set.

We say that f is chaotic on V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

Page 14: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos Definition [Devaney (1989)]

Let V be a set and f : V → V a map on this set.

We say that f is chaotic on V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V.

Page 15: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 1. f has sensitive dependence on initial conditions.

Page 16: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 1. f has sensitive dependence on initial conditions.

f : V → V has sensitive dependence on initial conditions if

there exists δ > 0 such that, for any x ∈ V and any

neighborhood Δ of x, there exist y ∈ Δ and n ≥ 0, such that

|f n(x)−f n(y)| > δ, where f n denotes n successive

applications of f.

Page 17: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 1. f has sensitive dependence on initial conditions.

f : V → V has sensitive dependence on initial conditions if

there exists δ > 0 such that, for any x ∈ V and any

neighborhood Δ of x, there exist y ∈ Δ and n ≥ 0, such that

|f n(x)−f n(y)| > δ, where f n denotes n successive

applications of f.

There exist points arbitrarily close to x which eventually

separate from x by at least δ under iterations of f.

Page 18: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 1. f has sensitive dependence on initial conditions.

f : V → V has sensitive dependence on initial conditions if

there exists δ > 0 such that, for any x ∈ V and any

neighborhood Δ of x, there exist y ∈ Δ and n ≥ 0, such that

|f n(x)−f n(y)| > δ, where f n denotes n successive

applications of f.

There exist points arbitrarily close to x which eventually

separate from x by at least δ under iterations of f.

Not all points near x need eventually move away from x

under iteration, but there must be at least one such point

in every neighborhood of x.

Page 19: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 2. f is topologically transitive.

Page 20: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that

f n(U) ∩ W = ∅.

Page 21: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that

f n(U) ∩ W = ∅.

This implies the existence of points which eventually

move under iteration from one arbitrarily small

neighborhood to any other.

Page 22: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos 2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that

f n(U) ∩ W = ∅.

This implies the existence of points which eventually

move under iteration from one arbitrarily small

neighborhood to any other.

Consequently, the dynamical system cannot be

decomposed into two disjoint invariant open sets.

Page 23: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos A chaotic system possesses three ingredients:

Page 24: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive

dependence on initial conditions

Page 25: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive

dependence on initial conditions

2. Indecomposability because it cannot be

decomposed into noninteracting subsystems due

to topological transitivity

Page 26: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive

dependence on initial conditions

2. Indecomposability because it cannot be

decomposed into noninteracting subsystems due

to topological transitivity

3. An element of regularity because it has periodic

points which are dense.

Page 27: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Chaos A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive

dependence on initial conditions

2. Indecomposability because it cannot be

decomposed into noninteracting subsystems due

to topological transitivity

3. An element of regularity because it has periodic

points which are dense.

Usually, in physics and applied sciences, people use

the notion of chaos in relation to the sensitive

dependence on initial conditions.

Page 28: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system 2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Page 29: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Page 30: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Page 31: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

Page 32: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

Page 33: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

Page 34: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

Page 35: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

Page 36: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

Page 37: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

t= 100 x= 0.090272817735167835 0.090272821355768668

Page 38: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

t= 100 x= 0.090272817735167835 0.090272821355768668

t= 200 x= 0.295031687482249283 0.295031884858625637

Page 39: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

t= 100 x= 0.090272817735167835 0.090272821355768668

t= 200 x= 0.295031687482249283 0.295031884858625637

t= 300 x= 0.515226330109450181 0.515225440480693297

Page 40: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

t= 100 x= 0.090272817735167835 0.090272821355768668

t= 200 x= 0.295031687482249283 0.295031884858625637

t= 300 x= 0.515226330109450181 0.515225440480693297

t= 400 x= 0.063441889347425867 0.061359558551008345

Page 41: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0.

We perturb both ICs by δpy=10-11 (!) and check the evolution of x

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t= 100 x= 0.132995718333307644 0.132995718337263064

t= 5000 x= 0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

t= 50000 x= 0.101992400739955760 0.101992400253961321

t=100000 x=-0.381120533746511780 -0.381120533327258870

t= 100 x= 0.090272817735167835 0.090272821355768668

t= 200 x= 0.295031687482249283 0.295031884858625637

t= 300 x= 0.515226330109450181 0.515225440480693297

t= 400 x= 0.063441889347425867 0.061359558551008345

t= 500 x= 0.078357719290523528 -0.270811022674341095

Page 42: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Chaotic orbit

Page 43: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Chaotic orbit and its perturbation

Page 44: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Regular orbit

Page 45: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Regular orbit and its perturbation

Page 46: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Chaotic orbit

Results for 0 ≤ t ≤ 105

Page 47: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Chaotic orbit and its perturbation

Results for 0 ≤ t ≤ 105

Page 48: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Regular orbit

Results for 0 ≤ t ≤ 105

Page 49: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits Regular orbit and its perturbation

Results for 0 ≤ t ≤ 105

Page 50: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Regular vs Chaotic orbits

Results for 0 ≤ t ≤ 105

Page 51: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Poincaré Surface of Section (PSS)

We can constrain the

study of an N+1

degree of freedom

Hamiltonian system

to a 2N-dimensional

subspace of the

general phase space.

Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

Page 52: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Poincaré Surface of Section (PSS)

In general we can assume a PSS of the form qN+1=constant. Then only

variables q1,q2,…,qN,p1,p2,…,pN are needed to describe the evolution

of an orbit on the PSS, since pN+1 can be found from the Hamiltonian.

We can constrain the

study of an N+1

degree of freedom

Hamiltonian system

to a 2N-dimensional

subspace of the

general phase space.

Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

Page 53: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Poincaré Surface of Section (PSS)

In general we can assume a PSS of the form qN+1=constant. Then only

variables q1,q2,…,qN,p1,p2,…,pN are needed to describe the evolution

of an orbit on the PSS, since pN+1 can be found from the Hamiltonian.

We can constrain the

study of an N+1

degree of freedom

Hamiltonian system

to a 2N-dimensional

subspace of the

general phase space.

In this sense an N+1 degree of freedom Hamiltonian

system corresponds to a 2N-dimensional map.

Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

Page 54: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Hénon-Heiles system: PSS (x=0)

Chaotic orbit

Page 55: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Hénon-Heiles system: PSS (x=0)

Chaotic orbit - Perturbed chaotic orbit

Page 56: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Hénon-Heiles system: PSS (x=0)

Chaotic orbit - Perturbed chaotic orbit

Regular orbit

Page 57: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Hénon-Heiles system: PSS (x=0)

Chaotic orbit - Perturbed chaotic orbit

Regular orbit - Perturbed regular orbit

Page 58: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Hénon-Heiles system: PSS (x=0)

Chaotic motion

Chaotic sea

Regular motion

Island of stability

Page 59: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Page 60: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Page 61: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

Page 62: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

Page 63: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

Page 64: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

tn+2τ, xM(tn+2τ)-A>0

Page 65: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

tn+2τ, xM(tn+2τ)-A>0

Page 66: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

tn+2τ, xM(tn+2τ)-A>0

Page 67: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

tn+2τ, xM(tn+2τ)-A>0

Integration step

(for variable xM)

is T=A-xM(tn).

Page 68: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

PSS: xM-A=0

tn, xM(tn)-A<0

tn+τ, xM(tn+τ)-A>0

tn+2τ, xM(tn+2τ)-A>0

Integration step

(for variable xM)

is T=A-xM(tn).

t=tc, xM(tc)-A=0 !

Page 69: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Both sets of differential equations

can be written in a common form

(Hénon 1982), where τ is the

integration variable:

Page 70: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Both sets of differential equations

can be written in a common form

(Hénon 1982), where τ is the

integration variable:

Page 71: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Both sets of differential equations

can be written in a common form

(Hénon 1982), where τ is the

integration variable: τ=t,

Κ=1

Page 72: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the PSS

Both sets of differential equations

can be written in a common form

(Hénon 1982), where τ is the

integration variable: τ=t,

Κ=1

τ=xM,

Κ=1/fM(x1, x2, …, xM)

Page 73: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Variational Equations

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The

deviation vector from a given orbit is denoted by

v = (δx1, δx2,…,δxn)T , with n=2N

The time evolution of v is given by

the so-called variational equations:

dv

= -J P vdt

i, j = 1, 2, , n

2N N

i j

N N i j

0 -I HJ = , P =

I 0 x x

where

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Page 74: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Hamilton’s equations of motion:

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y

Page 75: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Hamilton’s equations of motion:

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + yIn order to get the variational equations we linearize the above equations by

substituting x, y, px, py with x+v1, y+v2, px+v3, py+v4 where v=(v1,v2,v3,v4) is

the deviation vector. So we get:

x 3 1 1 2

x 3 1 2 1 1 2

p + v = -x - v - 2(x + v )(y + v )

p + v = -x - v - 2xy - 2xv - 2yv - 2v v

Page 76: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Hamilton’s equations of motion:

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + yIn order to get the variational equations we linearize the above equations by

substituting x, y, px, py with x+v1, y+v2, px+v3, py+v4 where v=(v1,v2,v3,v4) is

the deviation vector. So we get:

x 3 1 1 2

x 3 1 2 1 1 2

p + v = -x - v - 2(x + v )(y + v )

p + v = -x - v - 2xy - 2xv - 2yv - 2v v

Page 77: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Hamilton’s equations of motion:

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + yIn order to get the variational equations we linearize the above equations by

substituting x, y, px, py with x+v1, y+v2, px+v3, py+v4 where v=(v1,v2,v3,v4) is

the deviation vector. So we get:

x 3 1 1 2

x 3 1 2 1 1 2

p + v = -x - v - 2(x + v )(y + v )

p + v = -x - v - 2xy - 2xv - 2yv - 2v v

Page 78: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Hamilton’s equations of motion:

2 2 2 2 2 3

x y

1 1 1H = p + p + x + y + x y - y

2 2 3

i i

i i

d p d qH H= - , =

d t q d t p

∂ ∂

∂ ∂

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + yIn order to get the variational equations we linearize the above equations by

substituting x, y, px, py with x+v1, y+v2, px+v3, py+v4 where v=(v1,v2,v3,v4) is

the deviation vector. So we get:

x 3 1 1 2

x 3 1 2 1 1 2

p + v = -x - v - 2(x + v )(y + v )

p + v = -x - v - 2xy - 2xv - 2yv - 2v v

3 1 1 2v = - v - 2 y v - 2 x v

Page 79: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

Page 80: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

Page 81: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

Page 82: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

Page 83: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

1

2

3

4

v

v

v

v

Page 84: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

1

2

3

4

v

v

v

v

1 3

2 4

3 1 2 1

4 2 1 2

v = v

v = v

v = -v - 2xv - 2yv

v = -v - 2xv + 2yv

Page 85: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

1

2

3

4

v

v

v

v

1 3

2 4

3 1 2 1

4 2 1 2

v = v

v = v

v = -v - 2xv - 2yv

v = -v - 2xv + 2yv

Page 86: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Example (Hénon-Heiles system)

Variational equations: dv

= -J P vdt

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

1

2

3

4

v

v

v

v

1 3

2 4

3 1 2 1

4 2 1 2

v = v

v = v

v = -v - 2xv - 2yv

v = -v - 2xv + 2yv

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y

Complete set of equations

Page 87: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given

orbit characterize the mean exponential rate of divergence

of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with

initial condition x(0) and an initial deviation vector from it

v(0). Then the mean exponential rate of divergence is:

t

v(t)1σ(x (0), v(0)) = lim ln

t v(0)

We commonly use the Euclidian norm and set

d(0)=||v(0)||=1

Page 88: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Lyapunov Exponents

There exists an M-

dimensional basis {êi} of v

such that for any v, σ takes

one of the M (possibly

nondistinct) values

σi(x(0)) = σ(x(0), êi)

which are the Lyapunov

exponents.

In autonomous Hamiltonian systems the M exponents are ordered in

pairs of opposite sign numbers and two of them are 0.

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Page 89: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Computation of the Maximum

Lyapunov Exponent Due to the exponential growth of v(t) (and of d(t)=||v(t)||)

we renormalize v(t) from time to time.

Then the Maximum Lyapunov exponent is computed as

n

n

1 i

i= 1

1σ = lim ln d

n

Page 90: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Maximum Lyapunov Exponent

If we start with more than one linearly independent

deviation vectors they will align to the direction defined by

the largest Lyapunov exponent for chaotic orbits.

σ1=0 Regular motion

σ10 Chaotic motion

Page 91: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Maximum Lyapunov Exponent

Hénon-Heiles system: Regular orbit

Page 92: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

Maximum Lyapunov Exponent

Hénon-Heiles system: Regular orbit and Chaotic orbit

Page 93: Nonlinear physics: Hamiltonian Chaosmath_research.uct.ac.za/~hskokos/Talks/2018_01_30_LeMans... · 2018-01-28 · Nonlinear physics: Hamiltonian Chaos Haris Skokos Department of Mathematics

References

• Hamiltonian systems

Lieberman A. J. & Lichtenberg M. A. (1992) Regular and Chaotic Dynamics,

Springer

Cvitanović P., Artuso R., Dahlqvist P., Mainieri R., Tanner G., Vattay G.,

Whelan N. & Wirzba A., (2015) Chaos – Classical and Quantum, version 15,

http://chaosbook.org/

Bountis T. C. & Skokos Ch. (2012) Complex Hamiltonian Dynamics, Springer

Series in Synergetics

• Lyapunov exponents Oseledec V. I. (1968) Trans. Moscow Math. Soc., 19, 197

Benettin G., Galgani L., Giorgilli A. & Strelcyn J.-M. (1980) Meccanica ,March, 9

Benettin G., Galgani L., Giorgilli A. & Strelcyn J.-M. (1980) Meccanica, March, 21

Skokos Ch. (2010) Lect. Notes Phys., 790, 63

• Other papers

Hénon M. & Heiles, C. (1964) Astron. J., 69, 73

Hénon M. (1982) Physica D, 5, 412