nonlinear incremental thermal stress strain … incremental thermal stress strain analysis ... (etl...

25
Nonlinear Incremental Thermal Stress Strain Analysis Portugues Dam Thermal Analysis Project Team David Dollar Project Manager (USACE, Jacksonville District) Ahmed Nisar (MMI Engineering) Paul Jacob (MMI Engineering) Charles Logie (MMI Engineering) 2005 Tri-Services Infrastructure Conference August, 2005

Upload: nguyentuyen

Post on 18-May-2018

266 views

Category:

Documents


15 download

TRANSCRIPT

Page 1: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Nonlinear IncrementalThermal Stress Strain AnalysisPortugues Dam

Thermal Analysis Project TeamDavid Dollar Project Manager (USACE, Jacksonville District)

Ahmed Nisar (MMI Engineering)

Paul Jacob (MMI Engineering)

Charles Logie (MMI Engineering)2005 Tri-Services Infrastructure Conference August, 2005

Page 2: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Objectives of Study

� Long term stable temperature response� Location and behavior of contraction joints� Potential for cracking� Significance of material properties

Page 3: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis
Page 4: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Project Approach

� Phase I - Preliminary Analysis• Model testing (concurrent with dam design)• Parametric study to determine significant

parameters

� Phase II – Final Analysis• Final dam geometry• Final material properties

Page 5: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Heat loss (or gain) toatmosphere through uppersurface of (most recent lift)

Heat loss (or gain) to atmospherethrough upper part of upstream face

Internal heatgeneration

Solar Radiation

Heat loss (or gain )toatmosphere through dam crest

Heat loss (or gain) toatmosphere throughdownstream face

Heat loss (or gain) toatmosphere from foundationHeat loss (or gain) to water

from foundation

Heat loss (or gain) towater through lower partof upstream face

Heat loss (or gain) to atmosphereon north side (most recent lift)

Heat loss (or gain) toatmosphere through uppersurface of (most recent lift)

Heat loss (or gain) to atmosphereon south side (most recent lift)

Heat loss (or gain) to atmosphereon north side (previously placedlifts)

Heat loss (or gain) toatmosphere on south side(previously placed lifts)

Internal heatgeneration(previously placedlifts)

Internal heatgeneration(most recent lift)

Solar Radiation

Analysis Procedure

Page 6: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Analysis Approach(ETL 1110-2-365)

� De-coupled thermal/stress analysisusing ABAQUS/Standard

� Combination 2D and 3D analysis� Incremental placement of lifts� Material nonlinearity� Boundary conditions

Page 7: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

2D Dam Geometry

Page 8: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

3D Dam Geometry

Page 9: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Thermal Material Properties

� Roller compactedconcrete– Non linear internal

heat generation(heat of hydrationfrom adiabatictemperature rise)

– All other propertieslinear (Cp, k, γ)

� Linear (uniform)foundation material

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Time (Days)

Tem

pera

ture

Ris

e (D

egre

es, F

)

tCH p ∆

∆⋅⋅= θγ& (BTU/in3/day)

Page 10: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Structural Material Properties

� General nonlinearproperties for RCC– Modulus– Shrinkage– Creep/Aging

� Linear foundationmaterial

0

20

40

60

80

0 50 100 150 200 250 300 350 400

Time (days)

Shrin

kage

Str

ain

(mill

iont

hs)

Analysis FitTest Data

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

0 50 100 150 200 250 300 350 400

Time (days)

Elas

tic M

odul

us (p

si)

)

Analysis FitTest Data

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450

Time (days)

Test DataVerification 6Verification 10Verification 11

Page 11: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Boundary Conditions

� Thermal analysis– Time/temperature dependent transfer films– Solar radiation flux– Heat loss to foundation

� Structural analysis– Foundation constraint– 3D Model - contact at construction joints

Page 12: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Average Solar Radiation (1961-1990)(every hour for 365 days)

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour

Sola

r Rad

iatio

n (w

att-h

our p

er s

quar

e m

eter

)

Extraterrestrial Horizontal

Global Horizontal

365 lines of data

Page 13: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Average Data (1961 - 1990) 15th Day of Each MonthGlobal Horizontal (Normalized to Max)

0

0.2

0.4

0.6

0.8

1

1.2

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00

Hour

Sola

r Rad

iatio

n (w

att-h

our p

er s

quar

e m

eter

)

JanFebMarAprMayJuneJulyAugSepOctNovDec

Average Maximum Radiation

Zero Solar Radiation

Page 14: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

15th Day of 2004 Normalized to Max Temp of the Day

0.7

0.8

0.9

1

1.1

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Time of Day

Tem

pera

ture

(deg

F)

1/15/20042/16/20043/15/20044/15/20045/15/20046/16/20047/15/20048/15/20049/14/200410/19/200411/18/200412/14/2004

Average Minimum Temperature

Average Maximum Temperature

0.95 x Average MaximumTemperature

Page 15: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Solar Radiation

Lift 50

Lift 100

Lift 150

Lift 200

End of Construction

1-Year After Construction

Run 10monthly temperature variation

with solar radiation

Run 2monthly temperature variation

without solar radiation

Phase IExampleResults

Page 16: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

EL 220

EL 200

EL 000

EL 050

EL 100

EL 150

(a) Solar Radiation not Included (Run 2)

(b) Solar Radiation Included (Run 10)

EL 000 Mid-Point

EL 050 Mid-Point

EL 100 Mid-Point

EL 150 Mid-Point

EL 200 Mid-Point

60

70

80

90

100

110

120

130

0 100 200 300 400 500Time (days)

Tem

pera

ture

(Deg

rees

, F)

60

70

80

90

100

110

120

130

0 100 200 300 400 50Time (days)

Tem

pera

ture

(Deg

rees

, F)Phase I

ExampleResults

Page 17: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

After Placement of 50 Lifts After Placement of 100 Lifts After Placement of 150 Lifts After Placement of 200 Lifts

At the End of Construction 1 year after the Construction 5 years after the Construction 10 years after the Construction

Phase I Example Results

Page 18: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Simplified Analysis

� Tatro & Schrader� ACI 207.2R-95� ETL 1110-2-542

Page 19: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Simplified Analysis

Page 20: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Results Status (Phase II) - Thermal

Page 21: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Results Status Phase II - Stress

Page 22: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Remaining Steps

� Thermal component of analysis are nearingcompletion

� Stress analysis– Construction sequence completed– Long term cool down requires coarser mesh to

achieve adequate computational performance

� Coarse mesh mapping of thermal results isunderway – reasonable comparison is beingobtained

Page 23: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Mesh Mapping Methods

Page 24: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Analytical Management� Management of model size

– Geometry (lift size)– Load time step resolution

(solar radiation/daily temperature variation)– Long duration for dam cool down (years

rather than months)

� 3rd party material model usage– It would be more convenient to use an internal

material model in ABAQUS

Page 25: Nonlinear Incremental Thermal Stress Strain … Incremental Thermal Stress Strain Analysis ... (ETL 1110-2-365) ... ETL 1110-2-542. Simplified Analysis

Analytical Management

� Software bugs– Debugging vendor software– Memory management issues

(porting of software to non native platforms)

� Software limitations (and workarounds)– Mesh mapping to reduce computational

overheads of stress analysis phase of work– Selection of contact algorithms