noncommutative (=nc) instantons and reciprocity · anti‐self‐dual yang ‐mills (asdym) eqs....

21
Noncommutative (=NC) Instantons and Reciprocity MH&T.Nakatsu, ADHM Construction and Group Actions for NC Instantons, to appear (Moyalproduct formalism) MH&T.Nakatsu, Gauge instantons in NC space, work in progress, … (operator formalism) cf.MH&Nakatsu, ADHM const. of NC Instantons, arXiv:1311.5227,… Masashi Hamanaka (Nagoya U, Japan) Based on Group30, July17th 2014 in [email protected]μSv/h

Upload: others

Post on 06-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Noncommutative (=NC) Instantons and Reciprocity

・MH&T.Nakatsu, ADHM Construction and Group Actions for NC Instantons, to appear (Moyal‐product formalism)

・MH&T.Nakatsu, Gauge instantons in NC space, work in progress, … (operator formalism)

cf.MH&Nakatsu, ADHM const. of NC Instantons, arXiv:1311.5227,…

Masashi Hamanaka (Nagoya U, Japan)

Based on

Group30, July17th 2014 in [email protected]μSv/h

1. Introduction• Non‐Commutative (NC) spaces are defined bynoncommutativity of spatial coordinates:

(cf. CCR in QM :                      )( ``space‐space uncertainty relation’’)

Resolution of singularity( new physical objects)

Ex) Resolution of small instanton singularity( U(1) instantons)  

ipq ],[

~

Com. space NC Space

: NC parameter (real const.)

[Nekrasov-Schwarz]

ixx ],[

Anti‐Self‐Dual Yang‐Mills (ASDYM) eqs. play  important roles in elementary particle theory, geometry and integrable systems.• Finite‐action solutions (instantons) reveal non‐perturbative effects in QFT ADHM is essential.

• Noncommutative instantons are used to obtain the Nekrasov partition fcn.

• We want to understand the ADHM fully.• (NC extension  background flux)

1. Introduction

ASDYM eq. in 4‐dim. with G=U(N)• ASDYM eq. (real rep.)

• There are two descripitions of NC extension:‐Moyal‐product formalism (deformation quantization)

‐ Operator formalism (Connes’ theory)

.2314

,4213

3412 ,

FFFFFF

AAAAAAF :

4,3,2,1,

:A Gauge field(N×N anti-Hermitian)

Field strength

NC ASDYM eq. with G=U(N) in Moyal• NC ASDYM eq. (real rep.)

1203

3102

2301

,

,

FF

FF

FF ):( AAAAAAF

00

00

2

2

1

1

O

O

(Spell:All products are Moyal products.)

)()()(2

)()(

)(2

exp)(:)()(

2

Oxgxfixgxf

xgixfxgxf

Under the spell, we geta theory on NC spaces:

i

xxxxxx

:],[

,)()()(),( )2(2)1()0( xAxAxAxA Under the spell, the solution is deformed:

Note: Coordinates and functions themselvesare c-number-valued usual ones

2. Atiyah‐Drinfeld‐Hitchin‐Manin Constructionbased on reciprocity for the instanton moduli space

0

0

21

2211

zz

zzzz

F

FF

kNNkkk JIB :,:,:2,1

ADHM eq. (≒0dim. ASDYM)(Easy)

4dim. ASDYang-Mills eq.(Difficult)

Sol.=ADHM data(G=`U(k)’)

Sol.= instantons(G=U(N), C =k)

1:1

NNA :

0],[0],[],[

21

2211

IJBBJJIIBBBB

k × k Matrix eqs.N × N PDE

2

Gauge trf.:

)(

11

NUggggAgA

Gauge trf.:

gJJIgI

kUggBgB~,~

)(~,~~

1

2,11

2,1

Fourier‐Mukai‐Nahm transformationBeautiful reciprocity between instanton moduli on 4‐

tori and instanton moduli on the dual tori

0

0

21

2211

zz

zzzz

F

FF

4dim. ASD Yang-Mills eq.on the dual torus

4dim. ASDYang-Mills eq.on a 4-torus

Sol.=the dual instantons(G=U(k), C =N)

Sol.=instantons(G=U(N), C =k)

1:1

NNA :

k × k PDEN × N PDE

2 2

0~0~~

21

2211

F

FF

kkA :~

On a 4-torus On the dual 4-torus

Define the maps F & G,& G◦F=id. & F◦G=id.

F

G

Fourier‐Mukai‐Nahm transformationBeautiful reciprocity between instanton moduli on 4‐

tori and instanton moduli on the dual tori

0

0

21

2211

zz

zzzz

F

FF

4dim. ASD Yang-Mills eq.on the dual torus

4dim. ASDYang-Mills eq.on a 4-torus

Sol.=the dual instantons(G=U(k), C =N)

Sol.=instantons(G=U(N), C =k)

1:1

VVxA ,)(

k × k PDEN × N PDE

2 2

0~0~~

21

2211

F

FF

kkA :)(~

map F (Dirac eq.)

On a 4-torus On the dual 4-torusx: :

0)~(

VixAeV

NkV 2:Family index thm.

Fourier‐Mukai‐Nahm trf. (radii of the torus∞)Reciprocity between instanton moduli on R

and instanton moduli on ``1pt.’’  [cf. van Baal, hep‐th/9512223]

0

0

21

2211

zz

zzzz

F

FF

0dim. ASD Yang-Mills eq.4dim. ASDYang-Mills eq.

Sol.=``dual instantons’’(G=U(k), ``C =N’’)

Sol.=instantons(G=U(N), C =k)

1:1

VVA

k × k PDEN × N PDE

2 2

0~0~~

21

2211

F

FF

kkA :~

map F (0dim Dirac eq.)

On a 4-torusR On the dual 4-torus1 pt.

0)~(

VixAeV

NkV 2:Linear alg.

4

]~,~[~~:~ AAAAF

Matrix eq.!

Matrix eq. !

Atiyah‐Drinfeld‐Hitchin‐Manin (ADHM) Constructionbased on the following reciprocity

0

0

21

2211

zz

zzzz

F

FF

kNNk

kk

JIB

:,:,:2,1

ADHM dim. (≒0dim. ASDYM)4dim. ASDYang-Mills eq.

Sol.=ADHM data(G=`U(k)’)

Sol.=instantons(G=U(N), C =k)

NNA :

0],[0],[],[

21

2211

IJBBJJIIBBBB

k × k matrix eq.N × N PDE

2Proved in the same way as the Nahm trf.

],[],[ 2211 zzzz RHS is in fact

1:1

F(0dim D.eq.)

G(4dim D.eq.)

ADHM(Atiyah‐Drinfeld‐Hitchin‐Manin) constructionEx.) Commutative BPST instanton(N=2, k=1)

0

0

21

2211

zz

zzzz

F

FF

ADHM eq.(≒0dim. ASDYM)4dim. ASDYang-Mills eq.

Sol.=ADHM data(G=`U(1)’)

BPST instanton(G=U(2), C =1)

0],[0],[],[

21

2211

IJBBJJIIBBBB

k × k matrix eq.N × N PDE

2

)(222

2

22

)(

))((2

22,)()(

ziF

zbxi

A

0( ),0,

11,2,12,1

JI

B

i

position

size0 : singular

M0

singularity

C

R

ADHM(Atiyah‐Drinfeld‐Hitchin‐Manin) constructionEx.) NC BPST instanton(N=2, k=1)

0

0

21

2211

zz

zzzz

F

FF

NC ADHM eq.NC ASDYang-Mills eq.

Sol.:ADHM data(G=`U(1)’)

NC BPST instanton(G=U(2), C =1)

0],[],[],[

21

2211

IJBBJJIIBBBB

k × k marix eq.N × N PDE

2

i

position

size0 : regular!

02( ),0,

,2,12,1

JI

B

Fat by ζ !

FA , :exact sol.

M0

Resolution of the singurarity!

C

R

ADHM(Atiyah‐Drinfeld‐Hitchin‐Manin) constructionEx.) NC BPST instanton(N=2, k=1)

0

0

21

2211

zz

zzzz

F

FF

NC ADHM eq.NC ASDYang-Mills eq.

Sol.=ADHM data(G=`U(1)’)

NC BPST instanton(G=U(2), C =1)

0],[],[],[

21

2211

IJBBJJIIBBBB

k × k matrix eq.N × N PDE

2

i

position

size0 : regular!

02( ),0,

,2,12,1

JI

B

Fat by ζ!

FA , :exact sol.By calculation of TrFΛF

Do k×k ADHM data giveInstanton number k in general ? (We prove this.)

C

R

3.Origin of instanton number in ADHM construction

We prove the formula:

Then:

kTrd

ffTrxdFFTrxdC

kk

kN

116

816

116

1

2

1242

**422

[Corrigan-Goddard-Osborn-Templeton]

comes from the size of the ADHM data!

)(12 rrf kkk

1)(: f

22

11

11

22 )(BzBz

Bz

BzJI :determined by the

ADHM data only:f always exists.

[Nakajima, Maeda-Sako]

)detlog( 220

124**4

fFFTr

ffTrxdFFTrxd

N

kN

)1),2((''1`` 22

kUr

f

Ex)

4. Proof of the reciprocity: (inst)↔(ADHM)

NC instanton NC ADHM

NNA :

kNNk

kk

JIB

:,:,:2,1

(i) ASD (ASDYM)(ii) C_2=k(iii) D^2 has inverse

(i) ASD (ADHM eq.)(ii) matrix size = k, N(iii) ∇^2 has inverse

F

G

Proof of the one-to-one ⇔ Define the maps F & G,& G◦F=id. & F◦G=id.

(iii) is automatically satisfied in the noncommutative situation [Maeda-Sako] [Nakajima]

F:(ADHM)→(inst):ADHM constructionNC instanton NC ADHM

NNVVA :

kNNk

kk

JIB

:,:,:2,1

NVVV 1,0

22

11

11

22 )(BzBz

Bz

BzJI

kkNopDirac 2)2.(dim0

0dim.Dirac eq.

(i) ASD (ASDYM)(ii) C_2=k

(i) ASD (ADHM eq.)(ii) matrix size= k, N←[MH Nakatsu]

[Nekasov-Schwarz]

G:(inst)→(ADHM): inverse constructionNC instanton NC ADHM

NNA :

kN

kk

rJI

zxdB

:,

,:

3

2,14

2,1

kxdDe 1,0 4

.dim4: opDiracDe

(i) ASD (ASDYM)(ii) C_2=k

(i) ASD (ADHM eq.)(ii) matrix size= k, N

4dim.Dirac eq.

[Maeda-Sako2009] proves the existenseof the Dirac zero-mode be a formalpower expansion of θ recursively. ,),(

,),()2(2)1()0(

)2(2)1()0(

AAAxAx

G◦F=id:(ADHM)→(inst)→(ADHM)NC instanton NC ADHM

??,?2,12,1

JJIIBB

4dim.Dirac eq.

The answerCfVVJIB

),,,(

0dim.Dirac eq.NC ADHM

VJIB ,,2,1 VVA

kxdDe 1,0 4

33

2,12,14

2,1

,,r

JIr

JI

BzxdB

[Maeda-Sako] are shown

find in terms of

the original B, I, J, Vto give the new data

F◦G=id:(inst)→(ADHM)→(inst)NC instanton

0dim.Dirac eq.

),( AVV

4dim.Dirac eq. NC ADHM

VJIB ,,2,1A

[Maeda-Sako] assume the existence of V.[MH-Nakatsu] prove it

NC instanton

? AA

CVD 42 :the answer

AVVA

NVVV 1,0

are shown (existence proof is also made by us)

find in terms of

the original instanton Aμto give the new instanton

Main result:We prove the ADHM one‐to‐one correspondence in the formal power series ofθ-expansion.

5. Conclusion and Discussion• We prove the one‐to‐one correspondence between NC instantons and NC ADHM data in the Moyal‐product formalism. [to appear soon…]

• This is valid only in the region that the θ‐expansions converge.

• We proceed to reveal the reciprocity in operator formalism. (mostly completed [work in progress] )

• We are also interested in non‐finite action solutions (soliton‐like) of NC ASDYM (twistor theory and Ward’s conejecture) in relation to lower‐dimensional integrable systems such as KdV. [See e.g. MH, arXiv:1101.0005]           (and perhaps the AGT corresp.)