non welfarist approaches

52
Non Welfarist approaches

Upload: berg

Post on 21-Jan-2016

22 views

Category:

Documents


1 download

DESCRIPTION

Non Welfarist approaches. Basic assumption of welfarism. Distribution of individual’s well-being is the only information that is required to compare social state on the basis of general interest This position has been challenged by many philosophers and economists - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Non Welfarist approaches

Non Welfarist approaches

Page 2: Non Welfarist approaches

Basic assumption of welfarism Distribution of individual’s well-being is the

only information that is required to compare social state on the basis of general interest

This position has been challenged by many philosophers and economists

It ignores other important issues (rights, freedom, discrimination, ressources inequalities) when these have no impact on individual’s well-being

Page 3: Non Welfarist approaches

Examples of situations where other information than well-being may be used?

Assume Bob has initially a well-being of 4 while Mary has a well-being of 10 and that these well-being levels are comparable

Assume that Bob wants to have sex with Mary but Mary does not want to have sex with Bob

Specifically, assume that the situation in which Mary and Bob have sex together (rape) generates a distribution of utilities of 8 and 8 (Bob benefits more from having sex than Mary suffers)

Hammond’s equity principle would consider rape to be better than non rape

So will maxi-min, so will utilitarianism Plausible ?

Page 4: Non Welfarist approaches

Examples of situations where other information than well-being may be used?

Another example: Equal budget Walrassian Equilibrium.

Suppose a standard economy in which you give to everyone an equal share of all ressources of the economy

Define a general competitive (Walrassian) equilibrium for this economy

For many philsophers and economists, the resulting situation is « fair »

It is Pareto-efficient (1st Welfare Theorem) It is Envy-free (no one envies any other)

Page 5: Non Welfarist approaches

Illustration: An Exchange economy

A

B

xB2

xA1

xA2

xB1

Equal share of the endowment

2

1

WalrassianEquilibrium

1/2

2/2

Page 6: Non Welfarist approaches

Complement/substitutes to Welfare An important one: Freedom The well-being achieved by an individual is not

society’s problem. Society’s problem is to allocate efficiently individuals’ opportunities

Freedom is the important distributandum What is individual freedom ?

Page 7: Non Welfarist approaches

Important notion: an opportunity set Opportunity set: set of all options that are available for choice

to an individual. Obvious example: Budget set: set of all consumption

bundles that an individual can afford given prices and wealth Other examples: set of all candidates available at some

election (political freedom), set of all available means of transportation for commuting between two cities, set of all religious rituals that are allowed (including none)

Policies affect opportunity sets: How can the impact of policies on an individual opportunity set be appraised ?

Page 8: Non Welfarist approaches

Important notion: an opportunity set Opportunity set: encompass in a single concept several notions

of freedom discussed by philosophers. Famous distinction: Positive vs negative freedoom Negative freedom: Freedom from constraints imposed by the

behavior of other humans (e.g. I’m not allowed to sunbath topless) Positive freedom: Freedom from technological constraint (An

individual living in Rome in 2007 has the freedom to spend a week end to Beijing; An individual living in Rome in 50 b.c did not have this freedom)

We incorportate all constraints in the definition of opportunity sets.

Page 9: Non Welfarist approaches

Indirect utility ranking of opportunity sets

X set of all conceivable options that the individual can choose a family of subsets of X. Typical elements A, B, C, etc. of

are interpreted as alternative opportunity sets (menus) : a ranking of opportunity sets (A B means « opportunity set

A is weakly better than opportunity set B) Assume that the individual has a preference ordering R over

the option in X (perhaps based on his/her well-being Obvious ranking: A B for all b B, there exists some a in A

such that a R b. (indirect utility ranking) This ranking does not attach intrinsic importance to freedom

Page 10: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

-p

I

I/p

opportunity set if alcoholis legal

Page 11: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

-p

I

I/p

Page 12: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

-p

I

I/p

Page 13: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

-p

I

I/p

Page 14: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 15: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 16: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 17: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 18: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 19: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 20: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Optimal choice if Alcohol is legal

Page 21: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 22: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Page 23: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Opportunity setIf alcohol is illegal

Page 24: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

The opportunity set if alcohol is illegal…

Page 25: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

The opportunity set if alcoholis illegal…is equivalentto the opportunity set when alcohol is legal for a personwho does not drink alcohol when it is legal.

Page 26: Non Welfarist approaches

Intrinsic importance of freedom ? Money available to other use than alcohol

alcohol

I

I/p

Is choosing freely not to drinkequivalent to being forced toabstinence ?

Page 27: Non Welfarist approaches

Two broad approaches to freedom Defining freedom of choice without

resorting to choice motivation (evaluating opportunities)

Defining freedom of choice by appealing to preferences (example: indirect utility ranking, with the preference R interpreted as refleting the motivation of the individual. This motivation need not be entirely connected to well-being.

Page 28: Non Welfarist approaches

Freedom without reference to choice motivations: set inclusion

Elementary principle: Weak Monotonicity with Respect to Set Inclusion. Adding an option to a set does not reduce freedom

Formally: A B A B Weak principle, agreed upon by Indirect utility ranking (someone

who chooses optimally from a set can not loose from its enlargement).

Stronger notion: Strong Monotonicity with respect to set Inclusion. Adding an option to a set strictly increases freedom

Formally: A B A B Some economists and philosophers don’t like this second version

(does adding the option of « being beheaded at dawn » to my opportunity set really increase my freedom ?)

Limitation of Monotonicity to set inclusion principles: Highly incomplete!.

N.B. not a problem for budget sets evaluated at a given prices configuration p (B(p,y) B(p,y’) y y’

Page 29: Non Welfarist approaches

Freedom without reference to choice motivations: cardinality rule

Assume that consists of all non-empty finite subsets of X. A possible (naïve ?) freedom-based ranking of sets: counting the

number of options A card B #A #B Pattanaik and Xu (1990), Rech. Econ. Louv. have proposed an

elegant characterization of this ranking based on 3 axioms. 1) Indifference between no-choice situations.

For all x, y X, {x} {y} 2) Preference for choice over no choice.

For all distinct x, y X, {x,y} {y} 3) Independance:

A, B, C such that A C = B C = A B A C B C Theorem: A reflexive and transitive binary relation on satisfies

axioms 1-3 if and only if = card

Page 30: Non Welfarist approaches

Freedom without reference to choice motivations: cardinality rule

Critique 1 of Pattanaik and Xu results: Indifference between no choice situations: Extreme. If x = « going to a dental surgery with anaesthesia » and y = « going to the same dental surgery without anesthesia », is {x} {y} plausible ?

A way out of this criticism: Additive generalization of the cardinality rule A add B aA v(a) bB v(b) for some (freedom weight) function v: X++

card is a particular case of this class of rules for which v: X++ is defined by v(x)=v(y) for all x, y X

A add B satisfies preference for choice over no-choice and independance but not indifference between no-choice situations (except if v(x)=v(y) for all x, y X)

But there are other rankings that satisfy axioms 2 and 3 and that are not additive generalization of the cardinality rule

Gravel, Laslier and Trannoy (1998) provides a characterization of the additive generalization (see below)

Page 31: Non Welfarist approaches

Freedom without reference to choice motivations: cardinality rule

Critique 2 of Pattanaik and Xu results: Independence. Suppose x = « commuting between Aix and Eguilles on a red bicycle » and y = « commuting between Aix and Eguilles in a red car ». A plausible ranking of these two (zero-choice) situations would be {x} {y}.

Suppose now that the option z = « commuting between Aix and Eguilles on a blue bicycle » is added to both opportunity set. Is the ranking {x,z} {y,z} plausible ?

Thomas d’Aquinae (XIIth century) ‘An angel is more valuable than a stone; it does not follow, however, that two angels are more valuable than one angel and a stone’.

Independance says that the contribution of adding any option to freedom is independant from the set to which it is added. Neglects the diversity of options.

Page 32: Non Welfarist approaches

What is diversity? Important in these days (biodiversity, UN convention on cultural

diversity, product diversity, etc.) Framework for measuring diversity: the same than that for measuring

freedom (A B « A offers weakly more diversity than B ») In biology, the elements of the sets (living individuals) are grouped into

collections (species) Assume there are n species Every set A can be represented by an n-dimensional vector sA=(sA1,

…,sAn) where sAi 0 is the number of individuals belonging to species i (for i = 1,…,n) in set A (the possibility of sAi = 0 is of course not ruled out)

Biologists compare sets (ecosystems) on the basis of their generalized entropy (GE)

Page 33: Non Welfarist approaches

Generalized entropy ?

otherwiseB

s

B

s

A

s

A

s

rforB

s

A

s

rrforB

s

A

sBA

iBn

i

iBn

i

AiAi

rrn

i

Birrn

i

Ai

rrn

i

Birrn

i

AiGE

#ln

#)

#ln(

#

0])#

([])#

([

1,0])#

([])#

([

11

)1/(1

1

)1/(1

1

)1/(1

1

)1/(1

1

Contains several indices

Page 34: Non Welfarist approaches

Generalized entropy ?

)()#

ln(#

)#

ln(# 11

1 EntropyShannonB

s

B

s

A

s

A

sBA iB

n

i

iBn

i

AiAiGE

Measure of the disorder (unpredictability) of a system in information theory (Entropy is maximized in ecosystems in which all species have the same number of members)

Page 35: Non Welfarist approaches

Generalized entropy ?

)0(0:#0:#2 rsisiBA BiAiGE

Species counting

Page 36: Non Welfarist approaches

Generalized entropy ?

)2(##

1

2

2

1

2

23

rs

B

s

ABA n

iBi

n

iAi

GE

Simpson’s index (called sometimes HerfindalIndex in Industrial organizations

Page 37: Non Welfarist approaches

Generalized entropy ?

)(),...,max(

#

),...,max(

#

11

4 rss

B

ss

ABA

BnBAnA

GE

Berger-Parker (1970) index of diversityIndex in Industrial organizations

Page 38: Non Welfarist approaches

Problem with general entropy No justifications in terms of diversity appraisal Treat all species symmetrically (an ecosystem

in which all living individuals are split equally between two different species of fly is just as diverse as an ecosystem in which they are all split between sea horse and chimpanzee

Violates monotonicity with respect to set inclusion

Page 39: Non Welfarist approaches

Other approach: aggregate dissimilarity

There exists an underlying notion of (pairwise) dissimilarity between objects (« a blue bike is more similar to a red bike than to a blue car », etc.)

Diversity of a set is then seen as aggregate dissimilarity

Pioneer of the approach Weizman (QJE 1992; 1993; Econometrica 1998)

Dissimilarity is assumed to be available in the form of a distance function d: X X d(w,z) d(x,y) means « w is weakly less similar to z than x is to y

Page 40: Non Welfarist approaches

Other approach: aggregate dissimilarity (2)

Distance function satisfies: d(x,y) = d(y,x) d(x,x) for all x and y distinct. Satisfies also the so-called « triangle » inequality (i.e. d(x,z) ≤ d(x,y) +

d(y,z) for all x, y and z. Weizman procedure: take any finite set A. For each element a A, calculate the vector of distances between a

and all elements of A (including a itself) and write this vector in an increasing ordered fashion

Compare these vectors by the lexi-min criterion Remove from A the element whose ordered vector of distances is the

lowest for the lexi-min criterion (they may be several such elements in which case any one of them will do).

Record, for the element removed, the value of the smallest non-zero component of the ordered vector of distances

Redo the procedure on the remaining set thus created. At the end one is left with one element and one has obtained a list of

smallest non-zero distances Weizman: compare sets on the basis of the sum of these non-zero

distances

Page 41: Non Welfarist approaches

Weizman procedure:

Ingenious, but complex Has been axiomatized by Bossert, Pattanaik and

Xu (2002). Axioms are not appealing. Rides crucially on a cardinally meaningful notion

of distance which can be added Realistic ? Are our notions of dissimilarity

sufficiently precise to say things like « the dissimilarity between a blue car and a red bicycle is twice that between a blue and a red car ».

Page 42: Non Welfarist approaches

Alternative approach to diversity as aggregate dissimilarity

Using a qualitative (ordinal) notion of dissimilarity. (w,z) Q (x,y) = « w is weakly more dissimilar from z

than x is from y » Q is a quaternary relation QA (strictly more dissimilar), QS (equally dissimilar) Q satisfies (x,y) Q (y,x) Q (x,x) for all x and y. Let us also assume that it satisfies (x,y) QA (x,x)

for all distinct x and y. Can we define diversity by using only ordinal

information on dissimilarity

Page 43: Non Welfarist approaches

Alternative approach to diversity as aggregate dissimilarity (2)

Attempts in Bervoets & Gravel (2007). 3 axioms 1: For all w, x, y, z, (w,z) Q (x,y) {w,z} {x,y} 2: A B A B for all A and B. 3: For all sets A, B, C and D such that B C = C D = B D =

, A B C, A B D and A C D imply that A B C D and A B D, A B C and A C D imply that A B C D

Theorem: A reflexive and transitive ranking of all finite subsets of some finite set X satisfy axioms 1-3 if and only if it is the maxi max ranking (compare sets on the basis of the dissimiliarity of the most dissimilar pair of objects)

Extension: Lexi-max ranking of sets

Page 44: Non Welfarist approaches

Other approach: diversity as the value of the realized attributes

Nehring and Puppe (Econometrica, 2002). Objects in X have attributes (being a mamal, being a

car, etc.) An attribute is modelled a subset of all the objects

having the considered attributes. , the family of relevant attributes Nehring and Puppe propose and axiomatically

characterize the following rule for comparing sets based on their diversity

HBHHAH

HvHvBA::

)()(

Page 45: Non Welfarist approaches

Other approach: diversity as the value of the realized attributes (2)

v is a function that values the attributes. An object contributes to the diversity of set

only through the value of its attributes v has cardinal significance in Nehring and

Puppe’s approach Difficulty: identifying and weighting the

relevant attributes

Page 46: Non Welfarist approaches

Diversity and freedom ? Complex relation Why is diversity an important element of

freedom ? It seems difficult to answer this question

without thinking more about why freedom is important

Page 47: Non Welfarist approaches

Freedom as indeterminacy with respect to preferences

Freedom is important only through the use made of it by the individual

Yet, the individual is not always completely determined with respect to the criterion he or she will use for making a choice in an opportunity set

This suggests that we should appraise freedom of choice by resorting to a family of possible preferences that the individual could use

2 interpretations of this family: 1: the preferences that the individual could possibly use for

choosing and 2, the preference that any reasonable person could use

Page 48: Non Welfarist approaches

Freedom as indeterminacy with respect to preferences (1)

Example: Kreps (1979) preference for flexibility

Opportunity sets are compared on the basis of their expected maximal utility, with the expectation taken over all possible utility functions that represent the preferences in

)(max)()(max)( bURpaURpBA R

BbR

R

AaR

where UR is a numerical representation ofthe preference R.

Page 49: Non Welfarist approaches

Freedom as indeterminacy with respect to preferences (1)

Such a ranking of sets satisfies two axioms 1: weak monotonicity with respect to set inclusion 2: Contraction consistency: For all sets A and B, if A

B and if A {x} A, then B {x} B Theorem (Kreps (1979): An ordering of all finite

subsets of a finite set X satisfies weak monotonicity with respect to set inclusion and contraction consistency if and only if there exists a finite set of preference orderings on X and a probability distribution p on such that :

)(max)()(max)( bURpaURpBA R

BbR

R

AaR

holds for some numerical representation UR of the preferences R in

Page 50: Non Welfarist approaches

Freedom as indeterminacy with respect to preferences (1)

Another approach: Foster (1993) A B for all R , and for all b B, there exists

some a in A such that a R b If = {R}, this ranking is the indirect utility ranking If is the set of all logically conceivable orderings of

X, then this ranking is nothing else than set inclusion. In between these two extreme cases, the ranking is

incomplete but transitive and satisfies monotonicity with respect to set inclusion (prove it!).

Page 51: Non Welfarist approaches

Freedom as indeterminacy with respect to preferences (2)

contains preferences that any reasonnable person (but not necessarily the individual to which we are interested) could have

Example: Allowing women to enroll in the army For any set A, let E(A) denote the set of all (essential)

options in A that could be choosen by some preference in R (that is E(A) = {a A: R such that a R a’ a’ A}

Pattanaik and Xu (1998): rank sets on the basis of their number of essential alternatives for the preferences in

Page 52: Non Welfarist approaches

To be continued