non-equilibrium dynamics and the robinson …...kostas skenderis non-equilibrium dynamics and the...

26
Non-equilibrium dynamics and the Robinson-Trautman solution Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre STAG RESEARCH CENTER ER TE New Frontiers in Dynamical Gravity Cambridge, UK, 28 March 2014 Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Upload: others

Post on 10-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Non-equilibrium dynamics and theRobinson-Trautman solution

Kostas Skenderis

Southampton Theory Astrophysics andGravity research centre

STAG RESEARCHCENTERSTAG RESEARCH

CENTERSTAG RESEARCHCENTER

New Frontiers in Dynamical GravityCambridge, UK, 28 March 2014

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 2: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Introduction

â Gauge/gravity duality offers a new tool to studynon-equilibrium dynamics at strong coupling.

â AdS black holes correspond to thermal states of the CFT.â Black hole formation corresponds to thermalization.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 3: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Introduction

â Hydrodynamics capture the dynamics the longwave-length, late time behavior of QFTs close to thermalequilibrium.

â On the gravitational side, one can construct bulk solutionsin a gradient expansion that describe the hydrodynamicregime.

â Global solutions corresponding to non-equilibriumconfigurations should be well-approximated by thesolutions describing the hydrodynamic regime atsufficiently long distances and late times.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 4: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Introduction

â Almost all work on global solutions is numerical.â In this work we aim at obtaining analytic solutions

describing out-of-equilibrium dynamics.â We will discuss this in the context AdS4/CFT3.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 5: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

References

â This talk is based on work done with I. Bakas, to appear.â Related work appeared very recently in [G. de Freitas, H.

Reall, 1403.3537]

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 6: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Equilibrium configuration

â The thermal state corresponds to the AdS Schwarzschildblack hole

ds2 = −f(r)dt2 +dr2

f(r)+ r2

(dθ2 + sin2θdφ2

),

with f(r) = 1− 2mr − Λ

3 r2.

â Linear perturbations around the Schwarzschild solutiondescribe holographically thermal 2-point functions in thedual QFT.

â From those, using linear response theory, one can obtainthe transport coefficients entering the hydrodynamicdescription close to thermal equilibrium.

â To describe out-of-equilibrium dynamics we need to gobeyond linear perturbations.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 7: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Strategy

To describe analytically non-equilibrium phenomena and theirapproach to equilibrium we need

à Exact time-dependent solutions of Einstein equations.à These solutions should limit at late times to the

Schwarzschild solution.

â Can we find analytically exact solutions corresponding tolinear perturbations of the Schwarzschild solution?

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 8: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Linear perturbations of AdS Schwarzschild

Parity even metric perturbations of Schwarzschild solution areparametrized by

f(r)H0(r) H1(r) 0 0

H1(r) H0(r)/f(r) 0 0

0 0 r2K(r) 0

0 0 0 r2K(r)sin2θ

e−iωtPl(cosθ) ,

where Pl(cosθ) are Legendre polynomials. (For simplicity weonly display axially symmetric perturbations.)

à There are also parity odd perturbations. We will not needtheir explicit form here.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 9: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Effective Schödinger problem

â The study of these perturbations can be reduced to aneffective Schrödinger problem [Regge, Wheeler] [Zerilli] ...(

− d2

dr2?

+W 2 ± dW

dr?

)Ψ(r?) = EΨ(r?) .

à The two signs correspond to the parity even and oddcases.

à E = ω2 − ω2s , ωs = − i

12m(l − 1)l(l + 1)(l + 2) .

à Ψeven(r) = r2

(l−1)(l+2)r+6m

(K(r)− if(r)

ωr H1(r))

and there isa similar formula for the odd case.

à r? is the tortoise radial coordinate, dr? = dr/f(r).

à W (r) = 6mf(r)r[(l−1)(l+2)r+6m] + iωs

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 10: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Supersymmetric Quantum mechanics

â There is an underlying supersymmetric structure with Wbeing the superpotential,

Heven = Q†Q+ ω2s , Hodd = QQ

†+ ω2

s

with

Q =

(− d

dr?+W (r?)

), Q† =

(d

dr?+W (r?)

)â Forming

H =

(Heven 0

0 Hodd

)Q =

(0 0Q 0

)one finds that they form a SUSY algebra, {Q,Q†} = H etc.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 11: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Remarks

â The Hamiltonian is only formally hermitian.

â Boundary condition break supersymmetry.

â E is not bounded from below, it is not even real.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 12: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Zero energy solutions

â A special class of solutions are those with zero energy,

E = 0 ⇔ ω = ωs

â These modes satisfy a first order equation

QΨ0 =

(− d

dr?+W (r?)

)Ψ0 = 0

They are the supersymmetric ground states ofsupersymmetric quantum mechanics.

â These are the so-called algebraically special modes[Chandrasekhar].

â It is these modes that we would like to study at thenon-linear level.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 13: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Boundary conditions

â Ψ0 vanishes at the horizon.â It is finite and satisfies mixed boundary conditions at the

conformal boundary,

d

dr?Ψ0(r?) |r?=0 =

(iωs −

2mΛ

(l − 1)(l + 2)

)Ψ0(r? = 0) .

â It is normalizable,∫ 0

−∞dr? | Ψ0(r?) |2<∞ .

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 14: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Robinson-Trautman spacetimes

The metric is given by

ds2 = 2r2eΦ(z,z;u)dzdz − 2dudr − F (r, u, z, z)du2

The function F is uniquely determined in terms of Φ,

F = r∂uΦ−∆Φ− 2m

r− Λ

3r2

where Λ is related to the cosmological constant and∆ = eΦ∂z∂z.The function Φ(z, z;u) should solve the followingRobinson-Trautman equation,

3m∂uΦ + ∆∆Φ = 0.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 15: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Robinson-Trautman equation and the Calabi flow

â The Robinson-Trautman equation coincides with the Calabiflow on S2 that describes a class of deformations of themetric

ds22 = 2eΦ(z,z;u)dzdz .

â The Calabi flow is defined more generally for a metric gabon a Kähler manifold M by the Calabi equation

∂ugab =∂2R

∂za∂zb

where R is the curvature scalar of g.à It provides volume preserving deformations within a given

Kähler class of the metric.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 16: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Calabi flow on S2

â The Calabi flow can be regarded as a non-linear diffusionprocess on S2.

â Starting from a general initial metric gab(z, z; 0), the flowmonotonically deforms the metric to the constant curvaturemetric on S2, described by

eΦ0 =1

(1 + zz/2)2 .

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 17: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

AdS Schwarzschild as Robinson-Trautman

â Using the fixed point solution of the Robinson-Trautmanequation

eΦ0 =1

(1 + zz/2)2 .

the metric becomes

ds2 =2r2

(1 + zz/2)2dzdz − 2dudr −(

1− 2m

r− Λ

3r2

)du2

which is the Schwarzschild metric in the Eddington -Filkenstein coordinates.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 18: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Zero energy solutions as Robinson-Trautman

â Perturbatively solving the Robinson-Trautman equationaround the round sphere

ds22 = [1 + εl(u)Pl(cosθ)]

(dθ2 + sin2θdφ2

)one finds

εl(u) = εl(0)e−iωsu

withωs = −i(l − 1)l(l + 1)(l + 2)

12m

â This is exactly the frequency of the zero energy solutionswe found earlier!

â Inserting in the Robinson-Trautman metric we find the zeroenergy perturbations of AdS Schwarzschild we discussedearlier.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 19: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Summary

The Robinson-Trautman solution is a non-linearversion of the algebraically special perturbations ofSchwarzschild.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 20: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Late-time behavior of solutions [Chrusciel, Singleton]

â We parametrize the conformal factor of the S2 line elementas

eΦ(z,z;u) =1

σ2(z, z;u) (1 + zz/2)2 .

â σ(z, z;u) has the following asymptotic expansion

1 + σ1,0(z, z)e−2u/m + σ2,0(z, z)e−4u/m + · · ·+ σ14,0(z, z)e−28u/m

+[σ15,0(z, z) + σ15,1(z, z)u]e−30u/m +O(e−32u/m

).

â The terms with σ1,0, σ5,0, σ15,0, . . . are due to the linearalgebraically special modes with l = 2, 3, 4, . . ..

â The other terms are due to non-linear effects.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 21: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Global aspects

For large black holes, the solution does not appear to have asmooth extension beyond u→∞ [Bicak, Podolsky].

r = rh

u = ∞

r = 0

r = ∞I

H +

u = u0

1

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 22: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Other properties

â There is a past apparent horizon Σ, whose positionr = U(z, z) and area Area(Σ) we determined.

à At late times, Area(Σ) decreases and becomes equal toarea of the Schwarzschild horizon as u→∞.

â One can define a Bondi massMBondi with the properties

MBondi ≥ m,d

duMBondi ≤ 0,

that satisfies a Penrose inequality

16πM2Bondi ≥ Area(Σ)

(1− Λ

3

Area(Σ)

)2

.

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 23: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Holography

â The boundary metric is time-dependent and it is notconformally flat

ds2I = −dt2 − 6

ΛeΦ(z,z;t)dzdz .

where Φ(z, z; t) = Φ(z, z;u = t− r?)|r?=0.â The holographic energy momentum tensor is

κ2T rentt = −2mΛ

3, κ2T ren

tz = −1

2∂z(∆Φ)

κ2T renzz = meΦ , κ2T ren

zz = − 3

4Λ∂t

((∂zΦ)2 − 2∂2

z Φ),

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 24: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Algebraically special modes

â The holographically energy momentum tensor for the linearalgebraically special modes can be rewritten in a fluid form

T ab = ρuaub + p∆ab − ησab

à 3-velocity

ut = −1, uφ = 0, uθ =1

4mΛ(l−1)(l+2)e−iωst∂θPl(cosθ)

à viscosity

κ2η =1

4l(l + 1)

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 25: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Violation of KSS bound

η

s=l(l + 1)

rh

2m− rh

à The bound η/s ≥ 1/4π is violated for large black holes andsmall enough l.

à These modes however do not satisfy Dirichlet boundaryconditions.

à All modes that violate the bound do not extend smoothlybeyond u =∞ (however there are modes that do not havesmooth extension but nevertheless satisfy the bound).

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution

Page 26: Non-equilibrium dynamics and the Robinson …...Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution Introduction â Almost all work on global solutions is

Conclusions/Outlook

â The Robinson-Trautman solution is a non-linear version ofthe algebraically special perturbation of Schwarzschild.

â One can study quantitatively and analytically the approachto equilibrium and the effects of non-linear terms.

â It would be interesting to understand better holography forthese solutions, in particular the implications of the unusualboundary conditions, the holographic meaning of the Bondimass, the Penrose inequality, etc. ...

Kostas Skenderis Non-equilibrium dynamics and the Robinson-Trautman solution